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Abstract: Excessive consumption of traditional fossil energy has led to more serious global air pollution.
This article incorporates renewable energy green innovation (REGI), fossil energy consumption (FEC),
and air pollution into a unified analysis framework. Using China’s provincial panel data, a spatial
measurement model was used to investigate the spatial effects of renewable energy green innovation
and fossil energy consumption on air pollution in China from 2011 to 2017. The global Moran index
shows that over time, the spatial correlation of air pollution has gradually weakened, while the global
correlation of renewable energy green innovation and fossil energy consumption is increasing year by
year. ArcGIS visualization and partial Moran index show that air pollution, renewable energy green
innovation, and fossil energy consumption are extremely uneven in geographic space. The spatial
distribution of air pollution, renewable energy green innovations, and fossil energy consumption are
all characterized by high in the east and low in the west and they all show a strong spatial aggregation.
Applying the spatial adjacency matrix to the spatial Durbin model gave the results that China’s air
pollution has a significant spatial spillover effect. Replacing fossil fuels with clean renewable energy
will reduce air pollutant emissions. The Environment Kuznets Curve (EKC) hypothesis has not been
supported and verified in China. The partial differential method test found that the spatial spillover
benefits can be decomposed into direct effects and indirect effects. The direct and indirect effects
of renewable energy green innovation on air pollution are both significantly negative, indicating
that green innovation of renewable energy not only inhibits local air pollution, but also inhibits air
pollution in nearby areas. The consumption of fossil energy will significantly increase the local air
pollution, while the impact of sulfur dioxide (SO2) and soot (DS) pollution in nearby areas is not
obvious. It is recommended to increase investment in renewable energy green innovation, reduce the
proportion of traditional fossil energy consumption, and pay attention to the spatial connection and
overflow of renewable energy green innovation and air pollution.

Keywords: renewable energy; energy consumption; air pollution; spatial Durbin model; spatial
analysis

1. Introduction

In the 21st century, with the rapid economic development, China’s energy consumption has been
rising rapidly. As a result of the massive increase in energy consumption, the air pollution problem
has become more serious. According to a report by the International Energy Agency [1], as shown
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in Figure 1, up to 99% of sulfur dioxide (SO2) and oxynitride (NOx) emissions and up to 85% of fine
particulate matter (PM2.5) emissions are attributable to energy production and use [1].Sustainability 2020, 12, x FOR PEER REVIEW 3 of 23 

 
Figure 1. Selected primary air pollutants and their sources, 2015. Source: International Energy Agency 
(2016): 26. 
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[17]. Considering the situation, China relies on thermal power generation, and thermal power plants 
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[19]. Zhang, S. et al. (2015) [20] found that the cement industry is China’s second-largest energy-
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important source of SO2 in major cities. Yuan, J. et al. (2017) [22] found that due to the large-scale 
utilization of high-carbon fossil energy, many critical air pollutants (CAPs) and greenhouse gases 
(GHGs) are emitted, which has led to increasingly serious problems of global climate change and 
local air pollution. 

The renewable energy green innovation that this article focuses on is considered to play an 
important role in alleviating air pollution [23,24]. This is because the green innovation of renewable 
energy can promote the consumption and application of clean and renewable energy, replace fossil 
energy, and reduce air pollution [25]. Boudri, J. et al. (2002) [26] studied the potential of China and 
India in using renewable energy and their cost-effectiveness in reducing air pollution in Asia. It is 
found that increasing the use of renewable energy can reduce the cost of controlling sulfur dioxide 
emission by 17%–35% in China, and reduce the cost of controlling sulfur dioxide emission by more 
than two-thirds in India. Alvarez et al. (2017) [27] confirmed the positive impact of the energy 
innovation process on air pollution and pointed out that renewable energy can help improve air 
quality. Xie et al. (2018) [28] concluded through scenario analysis that improvements in renewable 
energy have always been more effective than taxation in reducing carbon dioxide and air pollutant 
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Figure 1. Selected primary air pollutants and their sources, 2015. Source: International Energy Agency
(2016): 26.

The sulfur dioxide (SO2), nitrogen oxides (NOx), and soot (DS) in China’s air pollutants mainly
come from the burning of fossil fuels. In China’s fossil energy consumption, coal is the most important
energy source. Therefore, an important cause of air pollution in China is the burning of coal as a fuel [2].
Coal combustion produces a large amount of SO2, NOx, DS, which increases the concentration of air
pollutants. Studies have shown that an increase in the concentration of air pollutants will significantly
reduce the health of residents [3]. Both short-term and long-term income elasticity show that sulfur
oxide emissions have a significant positive impact on health expenditures [4]. Moreover, previous
studies have found that air pollution has a strong spatial spillover effect, and air pollution has a strong
mutual influence in geographically similar cities or regions [5–8].

Therefore, to reduce air pollution, it is necessary to reduce the proportion of coal consumption in
fossil energy consumption, and thus the SO2, NOx, and DS emissions during the energy consumption
process are reduced. At this stage, to reduce the proportion of coal consumption, replacing fossil
fuel combustion with clean renewable energy is generally considered to be the best solution [9].
Therefore, increasing the proportion of renewable energy consumption to replace part of the fossil
energy consumption is a very suitable solution to the problem of air pollution. However, the problem
is that the price, stability, and technological maturity of renewable energy at this stage are worse than
those of fossil energy. Obviously, this hinders the consumption of renewable energy. Therefore, if we
want to increase the proportion of renewable energy consumption on the consumer side, we must
strengthen the green innovation of renewable energy. When the price, stability, and technological
maturity of renewable energy are comparable to fossil energy, the proportion of renewable energy
consumption will increase. As a result, the proportion of coal consumption will drop, and the air
pollution problem will be alleviated.

However, existing research focuses on the impact of energy consumption and economic and social
factors on air pollutant emissions. Some scientists have separately studied the impact of renewable
energy green innovation on air pollution and the impact of fossil energy consumption on air pollution.
However, there are not many scientists who have combined renewable energy green innovation and
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fossil energy consumption to conduct research. Among researchers, spatial effects have not received
enough attention.

To improve the research in this area, this article fully considers the spatial effect. Using spatial
econometric models, we investigated the temporal and spatial evolution characteristics, spatial
correlation, and spatial aggregation effects of air pollution in China. This article also focuses on the
impact of renewable energy green innovation and fossil energy consumption on air pollution emissions.

The rest of this research is organized as follows. Section 2 is a literature review of related
research and the contributions of this research. Section 3 introduces the variables, models, data
sources, and methods of this study. Section 4 presents the results and discussion of spatial exploration
analysis. Section 5 shows the empirical results of the spatial panel model. Conclusions and policy
recommendations can be found in Section 6.

2. Literature Review

In recent years, the increasing energy consumption and increasingly unreasonable energy
consumption structure have aggravated the air pollution problem, attracting the attention of many
scientists [10–12].

Among the influencing factors of air pollution, fossil energy consumption is an important
incentive [13–15]. Research shows that 75% of global greenhouse gas emissions, 66% of nitrogen oxide
emissions, and most of the emissions of particulate matter (PM2.5) come from the energy sector [16]
with oil, coal, and natural gas energy as the main energy consumption resources. Coal consumption
has become the main type of energy consumption in the industrial sector and thermal power plants [17].
Considering the situation, China relies on thermal power generation, and thermal power plants emit a
large amount of SO2 and NOx, which are considered to be the main reason for China’s sulfur dioxide
emissions [18]. Electricity consumption is also considered as non-clean energy consumption [19].
Zhang, S. et al. (2015) [20] found that the cement industry is China’s second-largest energy-consuming
industry and the main source of carbon dioxide and air pollutants. The cement industry accounts
for 7% of China’s total energy consumption and 15% of CO2, accounting for 21% of PM, 4% of SO2,
and 10% of NOx. Kanada et al. (2013) [21] found that the consumption of energy fossils is an important
source of SO2 in major cities. Yuan, J. et al. (2017) [22] found that due to the large-scale utilization
of high-carbon fossil energy, many critical air pollutants (CAPs) and greenhouse gases (GHGs) are
emitted, which has led to increasingly serious problems of global climate change and local air pollution.

The renewable energy green innovation that this article focuses on is considered to play an
important role in alleviating air pollution [23,24]. This is because the green innovation of renewable
energy can promote the consumption and application of clean and renewable energy, replace fossil
energy, and reduce air pollution [25]. Boudri, J. et al. (2002) [26] studied the potential of China and India
in using renewable energy and their cost-effectiveness in reducing air pollution in Asia. It is found that
increasing the use of renewable energy can reduce the cost of controlling sulfur dioxide emission by
17%–35% in China, and reduce the cost of controlling sulfur dioxide emission by more than two-thirds
in India. Alvarez et al. (2017) [27] confirmed the positive impact of the energy innovation process on
air pollution and pointed out that renewable energy can help improve air quality. Xie et al. (2018) [28]
concluded through scenario analysis that improvements in renewable energy have always been more
effective than taxation in reducing carbon dioxide and air pollutant emissions. Zhu et al. (2019) [29]
found that technological innovations in renewable energy help reduce the concentration of nitrogen
oxides (NOx) and respirable suspended particulates (PM10). Obviously, increasing the proportion of
clean energy consumption and reducing fossil energy consumption are very effective ways to control
air pollution and achieve green development [24,30].

Most of the previous literature separately studied the impact of fossil energy consumption or
renewable energy green innovation on air pollution. Previous scientists rarely integrated renewable
energy green innovation and fossil energy consumption to study their impact on air pollution. There are
not many scientists studying the alternative relationship between fossil energy consumption and
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renewable energy. There is not enough attention on the spatial correlation and spatial overflow
between the three. However, as small as individual cities, as large as individual provinces or regions,
the discharge of pollutants has spatial spillover and correlation effects. Xie et al. (2019) [21] found
that PM2.5 pollutants have strong spatial spillover characteristics. Zhao et al. (2018) [31] discussed the
temporal trends and spatial differences of air pollution in five hotspots in China, as well as the impact
of macro-influencing factors on four pollutants, and found that there is a spatial spillover phenomenon
of particulate matter across the country. Zeng, et al. (2019) [32] found that provincial renewable energy
policies have a positive impact on the reduction of SO2 and PM2.5, and that the energy policy of a
province will affect the pollutant emissions of neighboring provinces. Li et al. (2020) [33] found that air
pollution emissions have a significant agglomeration effect, and the spatial accumulation pattern of air
pollution emissions is similar to that of fossil energy consumption. The proportion of clean energy
consumption and the allocation of energy and labor factors have suppressed air pollution emissions.

Therefore, this article will fully explore how renewable energy innovation affects air pollution,
organically integrate the substitution relationship between renewable energy and fossil energy, and fully
consider the spatial spillover and related effects of renewable energy. Furthermore, it will explore the
linkage mechanism and interaction relationship among renewable energy green innovation, fossil energy
consumption, and air pollution. Specifically, the contribution of this research will lie in the following
aspects. First, we use non-spatial models and spatial measurement models to study the impact of
renewable energy green innovation and fossil energy consumption on air pollution. Second, we fully
consider the spatial correlation and spatial spillover effects of renewable energy green innovation and
fossil energy consumption, and quantify their impact on air pollution. Third, we use visualization
methods to show the temporal and spatial characteristics of renewable energy green innovation, fossil
energy consumption, and air pollution. Fourth, we expand the STIRPAT (stochastic impacts by regression
on population, affluence, and technology) model to quantify the impact of renewable energy green
innovation, fossil energy consumption, environmental regulations, industrial structure, population,
GDP (Gross Domestic Product), and other factors on air pollution.

The framework of this study is shown in Figure 2. Among them, REGI (renewable energy green
innovation) has a positive effect on RE (renewable energy). RE has a negative effect on FEC (fossil energy
consumption) and AP (air pollution). FEC has a positive effect on AP.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 23 

reduce the concentration of nitrogen oxides (NOx) and respirable suspended particulates (PM10). 
Obviously, increasing the proportion of clean energy consumption and reducing fossil energy 
consumption are very effective ways to control air pollution and achieve green development [24,30]. 

Most of the previous literature separately studied the impact of fossil energy consumption or 
renewable energy green innovation on air pollution. Previous scientists rarely integrated renewable 
energy green innovation and fossil energy consumption to study their impact on air pollution. There 
are not many scientists studying the alternative relationship between fossil energy consumption and 
renewable energy. There is not enough attention on the spatial correlation and spatial overflow 
between the three. However, as small as individual cities, as large as individual provinces or regions, 
the discharge of pollutants has spatial spillover and correlation effects. Xie et al. (2019) [21] found 
that PM2.5 pollutants have strong spatial spillover characteristics. Zhao et al. (2018) [31] discussed the 
temporal trends and spatial differences of air pollution in five hotspots in China, as well as the impact 
of macro-influencing factors on four pollutants, and found that there is a spatial spillover 
phenomenon of particulate matter across the country. Zeng, et al. (2019) [32] found that provincial 
renewable energy policies have a positive impact on the reduction of SO2 and PM2.5, and that the 
energy policy of a province will affect the pollutant emissions of neighboring provinces. Li et al (2020) 
[33] found that air pollution emissions have a significant agglomeration effect, and the spatial 
accumulation pattern of air pollution emissions is similar to that of fossil energy consumption. The 
proportion of clean energy consumption and the allocation of energy and labor factors have 
suppressed air pollution emissions. 

Therefore, this article will fully explore how renewable energy innovation affects air pollution, 
organically integrate the substitution relationship between renewable energy and fossil energy, and 
fully consider the spatial spillover and related effects of renewable energy. Furthermore, it will 
explore the linkage mechanism and interaction relationship among renewable energy green 
innovation, fossil energy consumption, and air pollution. Specifically, the contribution of this 
research will lie in the following aspects. First, we use non-spatial models and spatial measurement 
models to study the impact of renewable energy green innovation and fossil energy consumption on 
air pollution. Second, we fully consider the spatial correlation and spatial spillover effects of 
renewable energy green innovation and fossil energy consumption, and quantify their impact on air 
pollution. Third, we use visualization methods to show the temporal and spatial characteristics of 
renewable energy green innovation, fossil energy consumption, and air pollution. Fourth, we expand 
the STIRPAT (stochastic impacts by regression on population, affluence, and technology) model to 
quantify the impact of renewable energy green innovation, fossil energy consumption, 
environmental regulations, industrial structure, population, GDP (Gross Domestic Product), and 
other factors on air pollution. 

The framework of this study is shown in Figure 2. Among them, REGI (renewable energy green 
innovation) has a positive effect on RE (renewable energy). RE has a negative effect on FEC (fossil 
energy consumption) and AP (air pollution). FEC has a positive effect on AP. 

 

Figure 2. The framework of the research. REGI—renewable energy green innovation, RE—renewable 
energy, FEC—fossil energy consumption, AP—air pollution. 

 

Figure 2. The framework of the research. REGI—renewable energy green innovation, RE—renewable
energy, FEC—fossil energy consumption, AP—air pollution.

3. Methodology

3.1. Variables and Data

3.1.1. Explained Variable

Air pollution: The most representative variable of air pollution is air pollutant emission. In previous
studies, the concentration of PM2.5 was generally used as a proxy variable to measure the degree
of air pollution. However, PM2.5 cannot make an objective and comprehensive evaluation of air
pollution. Therefore, the pollutant indicators for measuring air pollution in this article mainly include
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sulfur dioxide (SO2), oxynitride (NOx), and dust and smoke (DS). In addition, considering that each
pollutant has its own limitations, this article reduces the dimensions of these indicators to obtain a new
indicator—comprehensive pollution (CP). Consequently, an objective and comprehensive assessment
of air pollution is made.

This article draws on the method of Liu et al. (2015) [34] for index dimensionality reduction.
First, the three environmental output indicators are subjected to a unified dimensionality reduction
process by factor analysis. After the Bartlett sphere test, the statistic value is 56.077, the significance
probability is 0.000, and the Kaiser–Meyer–Olkin (KMO) value is 0.748. Therefore, the null hypothesis
that the indicators are not correlated is rejected. It is suitable for factor analysis. At the same time,
the corresponding weight of each indicator is calculated through the factor score matrix and the
variance contribution rate of the common factor. As a result, the weights of sulfur dioxide, nitrogen
oxides, and dust and smoke indicators were 24%, 49%, and 27%, respectively. Combining the weights
of the three types of pollution indicators, the comprehensive pollution (CP) can be calculated, and the
formula is as follows:

CPit =
∑n

i=1
wit ∗Xit (1)

Among them: wit is the weight of each pollutant, Xit is the pollutant component.

3.1.2. Explanatory Variables

Main Explanatory Variable

(1). Renewable Energy Green Innovation (REGI): The article selects renewable energy patents
as a proxy variable for green innovation. Refer to Zhu, Y et al. (2019) [29] to select the International
Patent Classification (IPC) code shown as Table 1 to represent the renewable type. The patent has an
impact on the corresponding technology from the date of application. Therefore, previous studies
mostly counted the number of patents from the date of patent application. This article refers to the
practice of Wang ban-ban et al. (2019) [35]; count the number of renewable energy green patents based
on the date of application.

Table 1. Renewable energy IPC code.

Energy IPC Codes

Wind F03D

Solar F03G6; F24J2; F26B3/28; H01L27/142; H01L31/042-058

Marine E02B9/08; F03B13/10-26; F03G7/05

Biomass C10L5/42-44; F02B43/08

Storage H01M10/06-18; H01M10/24-32; H01M10/34; H01M10/36-40

IPC—International Patent Classification.

Hypothesis 1a. Renewable energy green innovation will reduce comprehensive pollution (CP) emissions.

Hypothesis 1b. Renewable energy green innovation will reduce sulfur dioxide (SO2) emissions.

Hypothesis 1c. Renewable energy green innovation will reduce oxynitride (NOx) emissions.

Hypothesis 1d. Renewable energy green innovation will reduce dust and smoke (DS) emissions.

(2). Fossil energy consumption (FEC): China’s rapid development has led to a large consumption
of energy, especially fossil fuel consumption. The main cause of pollution is the consumption of fossil
fuels, and coal consumption accounts for more than 50% of China’s fossil energy consumption [36].
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Therefore, coal consumption and pollutant emissions are closely related, so this paper selects coal
consumption to represent fossil energy consumption.

Hypothesis 2a. Fossil energy consumption (FEC) will increase comprehensive pollution (CP) emissions.

Hypothesis 2b. Fossil energy consumption (FEC) will increase sulfur dioxide (SO2) emissions.

Hypothesis 2c. Fossil energy consumption (FEC) will increase oxynitride (NOx) emissions.

Hypothesis 2d. Fossil energy consumption (FEC) will increase dust and smoke (DS) emissions.

Control Variable

(1) Environmental Regulation (ER): There are many ways to measure the intensity of environmental
regulation, considering China’s environmental pollution control policies. This article refers to the
practice of Zhu Y et al. (2019) [29] and selects the number of environmental punishment cases as
a proxy variable for the intensity of environmental regulation. To a certain extent, environmental
regulations will restrain the emission of micro-subjects.

(2) Industrial Structure (IS): Select the proportion of the secondary industry as a proxy variable.
The study of Hao et al. (2016) [37] shows that the correlation coefficient between the proportion
of secondary industry and the amount of pollutant emissions is positive. Therefore, this article
assumes that there is a positive correlation between industrial structure and air pollution.

(3) Gross Domestic Product (GDP): Due to the difference between nominal GDP and real GDP,
this article is based on the GDP of each province and municipality directly under the central
government in 2000. By calculating the GDP deflator, the constant price GDP is calculated.

(4) Population (POP): There is a direct link between population size and pollutant emissions.
An increase in population will significantly increase energy consumption and pollutant emissions.

3.1.3. Variable Descriptive Statistics

The descriptive statistics of all variables in this article are shown in Table 2.

Table 2. Description of variables in models.

Variables Explanation Units

CPit Comprehensive pollution of i province in t year 104 ton

SO2it SO2 emission of i province in t year 104 ton

NOxit NOx emission of i province in t year 104 ton

DSit Dust and smoke emission of i province in t year 104 ton

REGIit Number of renewable energy patents Item

FECit Fossil energy consumption 104 ton

ISit The proportion of secondary industry %

ERit Environmental regulation %

GDPit Province gross domestic product 108 yuan

POPit Province people 104 people

3.1.4. Data Resources

The emission data of air pollutants and the data of environmental regulations come from the China
Environmental Yearbook. Energy consumption data comes from China Energy Statistical Yearbook.
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The GDP and population data come from the China Statistical Yearbook. Patent data comes from the
wisdom bud patent database.

3.2. Spatial Autocorrelation Test

3.2.1. Global Correlation Index

Here, this article calculates the global spatial correlation according to the global Moran index:

Moran′s Iglobal=

∑n
i=1

∑n
j,i wi j(xi − x)

(
x j − x

)
σ2 ∑n

i=1
∑n

j,i wi j

=

∑n
i=1

∑n
j,i wi j

(
xi −

1
n
∑n

i=1 xi
)(

x j −
1
n
∑n

i=1 xi
)

1
n
∑n

i=1 (xi −
1
n
∑n

i=1 xi)
2 ∑n

i=1
∑n

j,i wi j

(2)

Among them: xi, x j represent spatial and geographic units i and j, and i , j. wi j represents the
spatial weight matrix; x represents the average value of each province and municipality. σ2 represents
the variance; (xi − x)

(
x j − x

)
represents the similarity between spatial units i and j; n represents

the number.

3.2.2. Local Correlation Index

However, the global correlation index cannot measure the local correlation, so the local Moran
index needs to be quoted:

Moran′s Ilocal
i =

n(xi − x)
∑n

j=1 Wi j
(
x j − x

)
∑n

i=1(xi − x)2 (3)

(1) H–H: area units with high observation values are surrounded by high-value areas.
(2) H–L: area units with high observation values are surrounded by areas with low values.
(3) L–L: area units with low observation values are surrounded by low-value areas.
(4) L–H: area units with low observation values are surrounded by high-value areas.

Whether it is global spatial autocorrelation or local spatial autocorrelation, the establishment of
the spatial weight matrix is very important. This article selects the spatial adjacency weight matrix.

The spatial adjacency weight matrix is a spatial weight matrix that reflects the spatial adjacency
relationship. It can be set that there is a significant mutual influence relationship between the adjacent
areas, and the non-adjacent areas have no significant interaction. The spatial adjacency weight matrix
can more closely reflect the spatial relationship of the development indicators of each region. Therefore,
this paper introduces the spatial adjacency weight matrix to make the spatial relationship of development
indicators specific.

WA
ij =

{
1, i f province i and j is adjacent

0, i f province i and j is not adjacent
(4)

3.3. Spatial Econometric Model

Based on the above regression model, we set a general provincial pollutant emission regression model.
The IPAT (Impact, Population, Affluence, Technology) model is used to explore the complex

social dynamics generated by environmental problems. The original IPAT model was proposed by the
famous American demographers Ehrlich and Holdren in 1971. The model believes that environmental
pressure (impact) is the product of population (population), affluence (affluence), and technology
(technology) [38]. Dietz et al. (2004) [39–41] expressed the IPAT model in a stochastic form to estimate
the environmental impact of population, wealth, and technological level. A STIRPAT model (stochastic
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impacts by regression on population, affluence, and technology) was proposed. The specific expression
of the STIRPAT model is:

Iit = aPb
itA

c
itT

d
iteit (5)

Among them, a is a constant term; b, c, and d are exponential terms of P, A, and T, respectively;
and e is an error term.

Take the logarithm of the left and right sides of the equation:

ln Iit = lna + blnPit + clnAit + dlnTit + lneit (6)

Applied to this article, the following formula can be obtained:

ln Yit = λ0 + λ1lnRETIit + λ2lnPOPit + λ3lnGDPit + eit (7)

However, the general regression model does not consider the spatial influence between variables,
and the spatial economic model incorporates the spatial influence on the basis of the general regression
model [39]. The spatial lag model (SLM) can be expressed as:

y = ρWy + Xβ+ ε (8)

where Y is the vector of the dependent variable; X represents an explanatory variable matrix; W is
the spatial weight matrix; Wy is the vector of the spatial lagging dependent variable; ρ is the spatial
regression coefficient, reflecting the spatial autocorrelation relationship of the dependent variable; β is
a parameter vector, reflecting the influence of explanatory variables on dependent variables; and ε is a
vector of disturbance terms.

By distinguishing the spatially related error ε and the spatially independent error µ, the spatial
error model (SEM) can be expressed as [42]:{

y = Xβ+ ε
ε = λWε+ µ

(9)

Among them, λ is the spatial autocorrelation coefficient on the error term, reflecting the influence
of the residual of the nearby area on the residual of the area; µ is the interference term of a vector.
The values of other variables and parameters are the same as the SLM formula.

For SLM and SEM, specific panel data estimation methods are used, namely: fixed effects and
random effects are calculated in this study. In addition, to estimate the spatial spillover effects of each
region, this study examines the direct and indirect effects of explanatory variables.

As a result of the mutual influence among air pollution, innovation factors, and energy factors in
different regions. When measuring their influence from a spatial perspective, the spatial measurement
model is generally used. For the sake of generality, this article adopts the spatial Durbin model (SDM),
which is the general form of the spatial lag model (SLM) and the spatial error model (SEM), and its
expression is:

yit = δ
n∑

j=1

Wi jyit + c + xitβ+
n∑

j=1

Wi jxitθ+ µi + λt + εit (10)

Among them, yit is the explained variable, xit is the explanatory variable, c is the constant term,
δ is the spatial autoregressive coefficient, β and θ are the coefficients to be estimated, and ε is the
residual term. xitβ is the influence of the regional independent variable on the dependent variable.
δ
∑n

j=1 Wi jyit is the spatial lag term, which means that the explanatory variable of each spatial unit
(i = 1 . . . , n) is at time t (t = 1 . . . , T) the dependent variable composed of observations. εit is an
independent and identically distributed random error term; µi and λt represent spatial and temporal
effects, respectively. This paper constructs spatial variables: W* dependent variables describe the
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spatial spillover effects of pollutant emissions, renewable energy green innovation, and fossil energy
consumption. W is the spatial weight, which indicates the degree of correlation and mutual influence
between various spatial elements.

3.4. Direct and Indirect Spatial Impact

In the spatial econometric model, the independent variable usually has an indirect effect on
the dependent variable in the surrounding area (spatial spillover). We estimated direct, indirect,
and total spatial effects based on estimated spatial regression coefficients [43,44]. We further quantified
the spatial spillover effects of renewable energy green innovation, energy consumption, and other
socio-economic indicators on air pollution. Determine the direct and indirect spatial effects according
to the determined spatial correlation coefficient ρ, as shown in the formula below:

Yt = (Xtβ+ WXθ+ ε+ τnαt)I − ρW−1 (11)

where X represents the explanatory variable, τn represents the constant vector, and α is the parameter
of the intercept term.

The partial derivative differential equation matrix of the explained variable to the Kth independent
variable is:

[
∂y
∂Xik
· · ·

∂y
∂XNk

]
=


∂y1
∂Xik

· · ·
∂y1
∂Xnk

...
. . .

...
∂yn
∂Xik

· · ·
∂yn
∂Xnk

= (I − ρW)−1


βk

w21θk

· · ·

wn1θk

w12θk

βk

· · ·

wn2θk

· · ·

· · ·

· · ·

· · ·

w1nθk

w2nθk

· · ·

βk

 (12)

The above Equation (12) defines the average value of the sum of the elements of the right matrix
as a direct effect. The average value of the sum of all row and column elements of off-diagonal
elements is an indirect effect, reflecting the influence of other regional independent variables on
regional dependent variables.

4. Exploratory Spatial Analysis Results and Discussion

4.1. Temporal and Spatial Distribution Characteristics of Air Pollution, REGI, and Fossil Energy Consumption

To visually display the spatial and temporal distribution characteristics of comprehensive pollution
(CP), SO2, NOx, dust and smoke (DS), renewable energy green innovation (REGI), and fossil energy
consumption (FEC) we used ArcGIS to show the spatial and temporal distribution characteristics of
China’s 26 provinces and 4 municipalities in 2011 and 2017.

From Figure 3a,b, it can be found that the distribution of air pollutant emissions in China is
higher in the east and lower in the west, and higher in the north and lower in the south. The peaks of
comprehensive pollutant emissions are located in Inner Mongolia, Shanxi, Hebei, Shandong, Liaoning,
Henan, and Guangdong. Although the overall emission of pollutants across the country has shown
a significant decline over time, the peak of comprehensive pollutant emission in the northeastern
provinces is still much higher than that in the southwestern provinces. This finding is consistent with
Zhao et al. (2018) [31].

Figure 3c–h shows the spatial distribution of SO2, NOx, and DS. Their geographical distribution
laws are similar. The peaks of SO2, NOx, and DS emissions are in the provinces of Northeast China:
Shandong, Hebei, Inner Mongolia, Liaoning, Jiangsu, and the southern province Guangdong.

From Figure 3i,j, it can be found that Liaoning, Beijing, Shandong, Jiangsu, Shanghai, Zhejiang,
Guangdong, and other places in the eastern and southern coastal areas of China have far more
advantages in renewable energy green innovation than the central and western provinces. Moreover,
this advantage gradually expands over time. Although the central and western provinces have also
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made great progress in renewable energy technology year by year, it was far less than the southeast
coastal area; the southeast coastal area has formed a green innovation highland.

From Figure 3k,l, it can be found that the provinces that consumed the most fossil fuels in China
in 2011 were Inner Mongolia, Hebei, Shanxi, Shandong, Jiangsu, Henan in the middle, and Guangdong
in the south. However, the central area of fossil fuel combustion has gradually moved northward
over time. It can be found that the peak area of fossil fuel consumption and the peak area of pollutant
emissions are highly overlapped.
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Figure 3. Spatial distribution map of air pollution, renewable energy green innovation (REGI), and fossil
energy consumption (FEC). The figure on the left shows the data in 2011, and the figure on the right shows
the data in 2017. (a) and (b) are comprehensive pollution (CP). (c) and (d) are sulfur dioxide (SO2). (e) and
(f) are oxynitride (NOx). (g) and (h) are dust and smoke (DS). (i) and (j) are REGI. (k) and (l) are FEC.

4.2. Global Spatial Correlation Analysis

The global Moran index of air pollution, renewable energy green innovations, and fossil energy
consumption in China’s 26 provinces and 4 municipalities are shown in Table 3. They all have a
very significant spatial correlation. Over time, however, the spatial correlation of environmental
pollution has gradually weakened, and its significance has also decreased. The cause may be that the
pollution control measures of the provincial government have worked. The discharge of pollutants is
reduced and, additionally, the spatial spread of pollutants between provinces is controlled. Obviously,
the overall correlation and significance of renewable energy green innovation and fossil energy
consumption are still very high.

4.3. Local Indicators of Spatial Association (LISA) Analysis Results

Although we have calculated the global Moran index of air pollution, renewable energy green
innovation, and fossil energy consumption, the global Moran index cannot detect local spatial
associations, so we drew Moran’s I scatter plots for 2011 and 2017, as shown in Figure 4.

According to Figure 4a,b, in the Moran’s I scatter plots of comprehensive air pollutants in 2011,
there are 20 sample points (66.7%) in the first and third quadrants, and this number is 19 in 2017 (63.3%).
Figure 4c,d shows that in 2011 Moran’s I scatter plots of SO2 had 14 sample points (46.7%) located
in the first and third quadrants, while in 2017 it dropped to 12 (40%). Figure 4e,f shows that there
were 18 sample points (60%) of NOx in the first and third quadrants in 2011, and 19 (63.3%) in 2017.
The number of dust and smoke (DS) is 24 (80%) in 2011 and 20 (66.7%) in 2017. As for the renewable
energy green innovation, the sample points in the first and third quadrants in 2011 and 2017 remained
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22 (73.3%). For fossil energy consumption, there were 19 sample points in the first and third quadrants
in 2011 (63.3%), and 21 (70%) in 2017.

Table 3. The Moran’s I statistics of China’s pollution, REGI, and fossil energy consumption.

2011 2012 2013 2014 2015 2016 2017

CP 0.3386 *** 0.3285 *** 0.3153 *** 0.2501 ** 0.2719 ** 0.2425 ** 0.1980 **
3.337109 3.242872 3.125831 2.34488 2.527662 2.538885 2.119734

SO2 0.2397 ** 0.2288 ** 0.1641 * 0.2152 ** 0.2253 ** 0.1460 * 0.1242
2.454958 2.360465 1.63636 2.234856 2.330737 1.666974 1.424221

DS 0.3589 *** 0.3351 *** 0.3131 *** 0.3863 *** 0.4104 *** 0.3136 *** 0.2230 **
3.645495 3.374994 3.194374 3.860736 4.095359 3.341564 2.354572

NOx 0.3444 *** 0.2565 ** 0.3265 *** 0.3248 *** 0.3321 *** 0.2351 ** 0.2467 **
3.379879 2.390973 3.222591 3.208654 3.277173 2.440664 2.572206

REGI 0.3100 *** 0.3170 *** 0.3243 *** 0.2979 *** 0.3426 *** 0.3258 *** 0.3090 ***
3.302344 3.622955 3.61426 3.326746 3.390146 3.578343 3.445492

FEC 0.3655 *** 0.3496 *** 0.3679 *** 0.3564 *** 0.3486 *** 0.3277 *** 0.3278 ***
3.598077 3.468931 3.621565 3.533754 3.467786 3.272563 3.288949

Notes: z-statistics in parenthesis. *, **, and *** indicate that p values are less than 0.1, 0.05, and 0.01 levels, respectively.
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Figure 4. The Moran’s I plot of air pollution, REGI, and FEC. The figure on the left shows the data in
2011, and the figure on the right shows the data in 2017. (a) and (b) are comprehensive pollution (CP).
(c) and (d) are sulfur dioxide (SO2). (e) and (f) are oxynitride (NOx). (g) and (h) are dust and smoke
(DS). (i) and (j) are REGI. (k) and (l) are FEC.

In addition, the LISA map provides visual evidence of the spatial clustering of comprehensive
pollution (CP), oxynitrides (NOx), dust and smoke (DS), sulfur dioxide (SO2), renewable energy green
innovation (REGI), and fossil energy consumption (FEC) (see Figure 5).

Figure 5a–h shows that the H–H cluster of China’s comprehensive pollution (CP), oxynitrides
(NOx), dust and smoke (DS), and sulfur dioxide (SO2) is highly overlapped in Henan, Shandong,
Hebei, Shanxi, and Shaanxi in 2011. However, this pollution discharge aggregation phenomenon was
significantly alleviated by 2017. The number of provinces in the H–H cluster decreased significantly in
2017. In 2011, the comprehensive pollution (CP), oxynitrides (NOx), dust and smoke (DS), and sulfur
dioxide (SO2) H–L clusters were mainly concentrated in Guangdong and Xinjiang, and their pollutant
emissions far exceeded the surrounding provinces. By 2017, only Guangdong was left in the H–L
cluster of the above three pollutants.

Through Figure 5i,j, we found that the spatial aggregation of renewable energy green innovation
is very significant. Xinjiang, Gansu, Sichuan, and Qinghai are in L–L clusters, forming a low-lying land
of renewable energy green innovation. This innovation low-lying land shrunk in 2017. In contrast,
the innovation highlands in the H–H cluster expanded from Shanghai, Jiangsu, Zhejiang, and Anhui
in 2011 to Shanghai, Jiangsu, Anhui, Zhejiang, and Shandong in 2017. The spatial spillover effect of
renewable energy green innovation has taken effect.

From Figure 5k,l, it can be found that Hebei, Shanxi, Henan, Shandong, Anhui, and Liaoning are
in the H–H cluster of fossil energy consumption. Moreover, this fossil energy consumption highland
gradually moved northward. By 2017, the fossil energy consumption H–H cluster moved to Henan,
Shandong, Shanxi, Hebei, Inner Mongolia, and Liaoning. Fossil energy consumption has a strong
spatial correlation, possibly because energy consumption patterns are closely related to economic
development patterns. Li et al. (2020) [33] believe that the economic policies of a region are often
easily imitated and tracked by surrounding regions, so this demonstration effect produces a spatial
spillover effect. If the economic development model brings better returns in terms of economic benefits,
the surrounding areas will learn and imitate it.

Based on the analysis above, we can find that China’s air pollution, renewable energy green
innovation, and fossil energy consumption are extremely uneven in geographical space. They all show
the characteristics of high in the east and low in the west in their spatial distribution, and show strong
spatial aggregation. Therefore, when analyzing the role of renewable energy green innovation and
fossil energy consumption on China’s air pollution, spatial factors cannot be ignored. Next, we will
use the spatial measurement model to analyze their spatial characteristics.
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Figure 5. Local indicators of spatial association (LISA) map of air pollution, REGI, and FEC. The figure
on the left shows the data in 2011, and the figure on the right shows the data in 2017. (a) and (b) are
comprehensive pollution. (c) and (d) are oxynitride (NOx). (e) and (f) are dust and smoke (DS). (g) and
(h) are sulfur dioxide (SO2). (i) and (j) are REGI. (k) and (l) are FEC.

5. Spatial Panel Estimate Results and Discussion

5.1. Analysis of Non-Spatial Panel Model Results

To compare with the spatial panel model, we first use the non-spatial panel model to analyze.
The results are shown in Table 4. Renewable energy green innovation and environmental regulations
have a significant negative correlation with comprehensive pollution (CP), NOx, SO2, and DS, which is
significant at the 1% level. Therefore, Hypotheses 1a, 1b, 1c, and 1d are confirmed, which is consistent with
the findings of Alvarez et al. (2017) [27]. Fossil energy consumption has a significant positive correlation
with SO2 and DS, and it is significant at the 10% level. This finding supports Hypotheses 2b and 2d.
However, fossil energy consumption has a negative correlation with comprehensive pollution (CP) and
NOx emissions. This may be related to the advancement of clean coal combustion technology and the
increase in the exhaust emission requirements for coal combustion. Xu et al. (2019) [45] verified that
adopting fuel-rich/lean technology can further reduce NOx emissions through experiments.

Table 4. Estimation results of non-spatial panel models with spatial fixed effects.

lnCP lnNOx lnSO2 lnDS

lnREGI −0.1625 *** −0.1056 ** −0.2224 ** −0.2993 ***

(0.0447) (0.0415) (0.0684) (0.0726)

lnFEC −0.0370 −0.1030 0.2434* 0.2355 *

(0.0829) (0.0769) (0.1270) (0.1347)
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Table 4. Cont.

lnCP lnNOx lnSO2 lnDS

lnPOP 1.6969 0.7971 2.6985 4.6511 **

(1.1027) (1.0229) (1.6881) (1.7911)

lnIS 1.2855 *** 1.2633 *** 1.6842 *** 0.8334 **

(0.1733) (0.1608) (0.2653) (0.2815)

lnER −0.1247 *** −0.0948 *** −0.1893 *** −0.1253 ***

(0.0218) (0.0203) (0.0334) (0.0355)

lnGDP 2.0521 ** 0.5965 4.0354 *** 2.8432 **

(0.7251) (0.6726) (1.1100) (1.1777)

(lnGDP)2 −0.1370 *** −0.0630 * −0.2577 *** −0.1601 **

(0.0375) (0.0348) (0.0574) (0.0609)

cons −14.0485 0.6090 −31.6856 ** −46.1835 **

(8.6659) (8.0388) (13.2663) (14.0754)

N 210 210 210 210

R-sq 0.745 0.769 0.728 0.334

Note: Standard errors in parentheses; * p < 0.10 ** p < 0.05 *** p < 0.001.

Does the above-mentioned correlation still exist in geographic space? We need to further verify
the spatial Durbin model.

5.2. Analysis of Spatial Durbin Model Results

We built a spatial Durbin model and used the spatial adjacency matrix to do regression analysis.
The results are shown in Table 5. The Wald and LR test results are both significant at the 1% level,
indicating that the spatial Durbin model cannot be replaced by SEM and SLM. From the results of
the SDM, the renewable energy green innovation has a negative correlation with comprehensive
pollutants, NOx, and SO2, which supports Hypotheses 1a, 1b, and 1c. The consumption of fossil
energy has a positive correlation with comprehensive pollution, NOx, SO2, and DS. Among them,
fossil energy consumption has a negative correlation with SO2 and DS, and it is significant at the
1% level. This confirms Hypotheses 1a, 1b, 1c, and 1d. The logarithmic form of GDP—lnGDP and
the logarithmic square form of GDP—(lnGDP)2 show positive and negative correlations with air
pollutants, respectively. However, the significance level test failed, so Environment Kuznets Curve
(EKC) hypothesis is not supported. The coefficients of ρ under the four explanatory variables (CP, NOx,
SO2, DS) are 0.6408 (t = 0.0564, p = 0.000), 0.5248 (t = 0.0680, p = 0.000), 0.6043 (t = 0.0592, p = 0.000),
and 0.6320 (t = 0.0543, p = 0.000), which show that China’s air pollution has a significant provincial
spatial spillover effect.

Table 5. Results of spatial Durbin model.

lnCP lnNOx lnSO2 lnDS

Main

lnREGI −0.0258 −0.0439 −0.0401 0.0130

(0.0263) (0.0288) (0.0431) (0.0421)

lnFEC 0.0313 0.0050 0.4982 *** 0.4350 ***

(0.0569) (0.0655) (0.0754) (0.0750)
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Table 5. Cont.

lnCP lnNOx lnSO2 lnDS

Main

lnPOP 0.6722 *** 0.6427 *** 0.3229 ** 0.7107 ***

(0.1882) (0.1882) (0.1587) (0.2092)

lnIS 0.3281 ** 0.2756 * 0.5179 ** 0.3524 *

(0.1296) (0.1416) (0.1696) (0.1905)

lnER −0.0537 *** −0.0490 *** −0.0673 ** −0.0088
(0.0125) (0.0138) (0.0215) (0.0202)

lnGDP 0.9549 ** 0.2234 0.7882 0.3224

(0.4424) (0.4684) (0.5982) (0.6165)

(lnGDP)2 −0.0471 ** −0.0030 −0.0375 −0.0369

(0.0223) (0.0238) (0.0307) (0.0320)

_cons −6.4776 * −4.2013 −14.0928 ** −2.6661

(3.4906) (3.6056) (4.6683) (4.7041)

Wx

lnREGI −0.1090 ** −0.0371 −0.0795 −0.3228 ***

(0.0480) (0.0507) (0.0752) (0.0761)

lnFEC 0.0988 0.1038 −0.3217 ** −0.2858 **

(0.0937) (0.1012) (0.1188) (0.1247)

lnPOP −0.6155 ** −0.5392 ** −0.0940 −0.7550 **

(0.2660) (0.2676) (0.2454) (0.2959)

lnIS 0.3541 * 0.8603 *** 0.2420 0.0286

(0.2053) (0.2408) (0.2822) (0.2666)

lnER −0.0106 −0.0084 −0.0578 −0.0923 **

(0.0236) (0.0253) (0.0404) (0.0368)

lnGDP 0.6716 1.0241 2.3489 ** 0.4698

(0.6865) (0.7194) (0.9698) (0.9943)

(lnGDP)2 −0.0360 −0.0617 * −0.1337 ** 0.0164

(0.0349) (0.0367) (0.0495) (0.0500)

ρ 0.6408 *** 0.5248 *** 0.6043 *** 0.6320 ***

(0.0564) (0.0680) (0.0592) (0.0543)

LR-lag 28.83 *** 38.44 *** 35.60 *** 52.37 ***

LR-error 44.43 *** 56.55 *** 39.14 *** 34.72 ***

Wald-lag 32.84 *** 42.43 *** 60.52 *** 59.05 ***

Wald-error 30.29 *** 34.94 *** 34.23 *** 28.62 ***

Note: Standard errors in parentheses. * p < 0.10 ** p < 0.05 *** p < 0.001.

In addition, we used partial differential methods to study the direct, indirect, and total effects of
renewable energy green innovation and fossil energy consumption on China’s air pollution (see Table 6).
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Table 6. Estimate results of direct effects, indirect effects, and total effects.

lnCP lnNOx lnSO2 lnDS

LR_Direct

lnREGI −0.0531 * −0.0520 * −0.0586 −0.0560

(0.0300) (0.0309) (0.0467) (0.0461)

lnFEC 0.0582 0.0208 0.4919 *** 0.4301 ***

(0.0590) (0.0641) (0.0746) (0.0798)

lnPOP 0.6462 *** 0.6270 *** 0.3592 ** 0.6614 ***

(0.1811) (0.1755) (0.1488) (0.2000)

lnIS 0.4631 *** 0.4437 ** 0.6371 *** 0.4137 **

(0.1351) (0.1397) (0.1832) (0.2013)

lnER −0.0645 *** −0.0550 *** −0.0885 *** −0.0315

(0.0141) (0.0143) (0.0237) (0.0226)

lnGDP 1.2637 ** 0.4199 1.3969 ** 0.4875

(0.4962) (0.4936) (0.6635) (0.6954)

(lnGDP)2 −0.0637 ** −0.0146 −0.0719 ** −0.0400

(0.0258) (0.0258) (0.0347) (0.0368)

LR_Indirect

lnREGI −0.3079 ** −0.1075 −0.2227 −0.7686 ***

(0.1130) (0.0928) (0.1611) (0.1664)

lnFEC 0.3183 0.2151 −0.0372 −0.0201

(0.2389) (0.1857) (0.2544) (0.3043)

lnPOP −0.5079 −0.4269 0.2040 −0.7953

(0.5199) (0.3953) (0.4495) (0.5858)

lnIS 1.4485 ** 1.9555 *** 1.2891 ** 0.6552

(0.4614) (0.3751) (0.6277) (0.6728)

lnER −0.1183 ** −0.0697 −0.2332 ** −0.2490 **

(0.0568) (0.0468) (0.0904) (0.0918)

lnGDP 3.3012 * 2.2426 6.6331 ** 1.6962

(1.7082) (1.3902) (2.2782) (2.5653)

(lnGDP)2 −0.1697 ** −0.1236 * −0.3671 ** −0.0176

(0.0859) (0.0700) (0.1154) (0.1295)

LR_Total

lnREGI −0.3610 ** −0.1595 −0.2813 −0.8246 ***

(0.1292) (0.1057) (0.1817) (0.1880)

lnFEC 0.3765 0.2359 0.4548 0.4101

(0.2665) (0.2070) (0.2818) (0.3460)

lnPOP 0.1383 0.2001 0.5632 −0.1340

(0.5753) (0.4238) (0.4806) (0.6411)

lnIS 1.9115 *** 2.3992 *** 1.9262 ** 1.0688

(0.5200) (0.4223) (0.7281) (0.7721)
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Table 6. Cont.

lnCP lnNOx lnSO2 lnDS

LR_Total

lnER −0.1828 ** −0.1247 ** −0.3217 ** −0.2806 **

(0.0657) (0.0545) (0.1046) (0.1059)

lnGDP 4.5650 ** 2.6625 8.0300 ** 2.1837

(2.0213) (1.6614) (2.6918) (2.9974)

(lnGDP)2 −0.2334 ** −0.1382 −0.4390 ** −0.0575

(0.1024) (0.0846) (0.1373) (0.1526)

Note: Standard errors in parentheses. * p < 0.10 ** p < 0.05 *** p < 0.001.

5.3. Direct Effect, Indirect Effect, and Total Effect

Spatial spillover effects include direct effects and indirect effects. Table 6 shows the direct,
indirect, and total effects of renewable energy green innovation and fossil energy consumption on
comprehensive pollutants, SO2, NOx, and DS emissions. The direct and indirect effects of renewable
energy green innovation on comprehensive air pollution, NOx, SO2, and DS are all negative. This
result supports Hypotheses 1a, 1b, 1c, and 1d. Among them, the indirect effect coefficients of REGI on
comprehensive air pollution and DS are −0.3079 (t value is 0.1130, p value is 0.000), −0.7686 (t value is
0.1664, p value is 0.05). This result shows that the renewable energy green innovation not only inhibits
local air pollution, but also inhibits air pollution in neighboring provinces.

The direct effects of fossil energy consumption (FEC) on comprehensive pollution (CP), NOx,
SO2, and DS are all positive. As coal is the main source of China’s energy consumption at present,
accounting for 64.0% of China’s total energy consumption in 2015, coal is the foundation of China’s
economic growth [46]. When fossil energy consumption increases, NOx, SO2, and DS emissions will
increase accordingly. This finding is consistent with Zhu et al. (2017) [47] and Dong et al. (2014) [48].
However, fossil energy consumption has an indirect positive effect only on comprehensive pollution
and NOx, not including SO2 and DS. This result shows that fossil energy consumption will significantly
increase local air pollution, while its effect on SO2 and DS in adjacent areas is not obvious. This may be
due to the coordinated environmental management between regions, which weakened the diffusion
effect of SO2 and DS emitted by coal combustion.

In terms of socio-economic factors, the direct and indirect effects of industrial structure on air
pollution emissions are both positive. This is the same as the discovery of Zheng Y et al. (2020) [49].
Reducing the proportion of the output of the secondary industry in GDP can significantly reduce
NOx pollution and SO2 pollution, and the industrial structure can change the impact of economic
development on air pollution. The increase in population size also shows a positive correlation with
air pollution, which is consistent with the empirical results of Li, K et al. (2019) [50]. Both population
size and urbanization rate have a significant positive impact on air pollution. However, this impact is
spatially heterogeneous. The population size of the eastern region has far less impact on air pollution
than the central and western regions. As for the intensity of environmental regulations, the increase in
the intensity of environmental regulations has a negative impact on pollutant emissions, especially
NOx and SO2.

6. Conclusions and Policy Implication

China’s air pollution problem is complex and comprehensive, involving many factors.
The distribution of air pollution has spatial correlation, and air pollution also has a strong spatial
spillover effect. Renewable energy green innovation and fossil energy consumption have a profound
spatial impact on air pollution. The discussion mainly draws the following conclusions:
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(1) The spatial distribution of air pollution in China is characterized by high in the east and low in
the west, and high in the north and low in the south. The peaks of comprehensive pollutants,
NOx, SO2, and dust and smoke (DS) are distributed in Shandong, Hebei, Shanxi, Henan, Inner
Mongolia, and Guangdong. In addition, China’s air pollution has a strong spatial agglomeration
effect. Shandong, Hebei, Shanxi, Henan, and Shaanxi are in the H–H cluster of comprehensive
pollutants, NOx, SO2, and dust and smoke (DS) emissions.

(2) Renewable energy green innovation and fossil energy consumption have shown increasingly
significant spatial correlation. Renewable energy green innovation highland and low-lying land
are becoming more and more prominent. The renewable energy green innovation H–H cluster
gradually expanded to Shanghai, Jiangsu, Anhui, Zhejiang, and Shandong. The H–H cluster of
fossil energy consumption gradually moved north to Henan, Shandong, Shanxi, Hebei, Liaoning,
and Inner Mongolia.

(3) Renewable energy green innovation and environmental regulations have a significant inhibitory
effect on air pollution (SO2, NOx, DS). Renewable energy green innovations have curbed
air pollution both locally and in neighboring provinces. The consumption of fossil energy,
the increase in the proportion of the secondary industry in the industrial structure, and the
increase in population size will all lead to an increase in air pollution.

Based on the above analysis, the following policy recommendations are proposed to alleviate
air pollution:

(1) It is recommended to establish a regional coordination mechanism for environmental governance.
Neighboring regions should strengthen cooperation to jointly control pollution. When formulating
environmental policies, coordination and communication should be emphasized.

(2) It is recommended that while increasing investment in renewable energy innovation, the spatial
diffusion of renewable energy green innovation should be strengthened. The government should
build a platform for the backward provinces of renewable energy green innovation to introduce
advanced renewable energy technologies. In this way, the green innovation of renewable energy
can play the biggest role.

(3) The consumption of infectious fossil energy should be controlled. Replacing traditional fossil
energy with more renewable energy can effectively reduce air pollution. While upgrading the
industrial structure, the government should reasonably control the proportion of industries
with high fossil energy consumption and high pollution. Environmental regulations should be
appropriately increased.
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