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Abstract: Monthly electric load forecasting is essential to efficiently operate urban power grids.
Although diverse forecasting models based on artificial intelligence techniques have been proposed
with good performance, they require sufficient datasets for training. In the case of monthly forecasting,
because just one data point is generated per month, it is not easy to collect sufficient data to construct
models. This lack of data can be alleviated using transfer learning techniques. In this paper,
we propose a novel monthly electric load forecasting scheme for a city or district based on transfer
learning using similar data from other cities or districts. To do this, we collected the monthly
electric load data from 25 districts in Seoul for five categories and various external data, such as
calendar, population, and weather data. Then, based on the available data of the target city or district,
we selected similar data from the collected datasets by calculating the Pearson correlation coefficient
and constructed a forecasting model using the selected data. Lastly, we fine-tuned the model using
the target data. To demonstrate the effectiveness of our model, we conducted an extensive comparison
with other popular machine-learning techniques through various experiments. We report some of
the results.

Keywords: smart city; monthly electric load forecasting; mid-term load forecasting; transfer learning;
Pearson correlation coefficient; deep neural network

1. Introduction

With the recent increase in the use of fossil fuels to cope with the explosive demand for energy,
diverse global problems, such as greenhouse gas and energy resource depletion, have attracted much
attention. For instance, many efforts have been made to reduce greenhouse gas emissions [1,2]. One
of the representative efforts of the local government is the transition to a smart city. A smart city
can be defined as a developed urban area that employs big data and advanced information and
communication technologies (ICTs) to improve sustainability through planning [3,4]. Smart cities
can reduce greenhouse gas emissions by reducing traffic congestion and energy consumption via big
data analysis and then introducing alternatives, such as electric vehicles and renewable energy [5].
The transition to a smart city has been accelerated and refined by various artificial intelligence
(AI) technologies, which have already enhanced the performance of various ICT areas, such as
communications [6,7], applications [8,9], content [10,11], and digital commerce [12,13].

The infrastructure for electricity forms the basis for maintaining the fundamental survival of
members of society [14]; hence, it is imperative to supply electricity stably and efficiently in an
environmentally friendly manner [15]. The current electric grid can respond to different contextual
purposes in diverse environments using various subsystems and components [16]. However, because
traditional power systems operate based on old technology, it is difficult to meet new requirements,
such as optimal power generation [17]. Improving the productivity and quality of the electricity is one
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of the most common issues requiring resolution [18], and many studies have been conducted to solve
this issue by applying Al technologies to energy data for diverse goals, such as analysis, management,
and forecasting [19].

Load forecasting is a technique that predicts how much electricity will be used in the future, which
enables electricity suppliers to produce electricity without waste [20]. Load forecasting can be classified
into four categories based on the time resolution [21]: very-short-term load forecasting, short-term
load forecasting, mid-term load forecasting (MTLF), and long-term load forecasting. Very-short-term
load forecasting forecasts several minutes to several hours ahead. Short-term load forecasting forecasts
several hours to several days ahead. Mid-term load forecasting forecasts more than one week to several
months ahead. Long-term load forecasting forecasts more than one year ahead. The load forecasting
type is chosen based on the requirements of the application [22,23]. Very-short-term and short-term load
forecasting techniques are applied to ensure the reliability of the everyday power system operation [22].
Mid-term and long-term load forecasting techniques predict long-term electricity energy consumption
and can be used to determine the system capacity, system operation and maintenance costs, and future
grid expansion plans [23].

Mid-term load forecasting is especially critical to enforcing a reliable power system in a smart city
by making it possible to generate electricity depending on the future energy demand [24]. For instance,
Seoul, which is the capital and largest metropolis in South Korea, has been pursuing a leading smart
city, which requires an accurate monthly electric load forecasting model for annual urban energy
planning [25,26]. However, energy consumption can change dramatically depending on various factors,
such as government policies, weather changes, population changes, and economic factors. Consequently,
it is crucial to carefully consider various factors for MTLF [27]. Diverse statistical techniques and
machine-learning methods have been used to construct electric load forecasting models [28,29].
Currently, because computer performance has been remarkably improved, many load forecasting
models based on artificial neural networks (ANNs) have demonstrated superb performance [29-33].

However, the performance of such ANN models is heavily dependent on the quantity and quality
of the datasets required for training [34]. For instance, monthly electricity consumption data are
generally small compared to daily or hourly electricity consumption data because only one data point
is collected per month. Efforts have been made to solve this data shortage problem using transfer
learning [34,35]. Transfer learning [35] is a technique that reuses trained models to build a model
in a domain with insufficient data, which exhibits notable performance when the target and source
domain data are similar. In contrast, if the data for training have no correlation with the target domain
data, the resulting model might exhibit poor performance. In this paper, we propose a novel transfer
learning-based monthly load forecasting model for cities or districts using other domain data that have
a high correlation coefficient with the target data.

The main contributions of this paper are as follows:

1. We use the transfer learning technique to perform accurate hierarchical monthly electric load
forecasting for metropolitan cities using public datasets.

2. By calculating the Pearson correlation coefficients (PCCs), we selected relevant domains that can
improve the effectiveness of transfer learning.

3. We demonstrate that our proposed model can exhibit higher performance than popular statistical
and ensemble methods.

This paper is organized as follows. In Section 2, we introduce several related studies on electric
load forecasting. In Section 3, we describe our forecasting modeling. In Section 4, we explain some
of the experiments for evaluating the performance of our forecasting model. Finally, in Section 5,
we conclude the paper.
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2. Related Work

Thus far, many studies have been conducted to construct electric load forecasting models using
various techniques, such as statistics and machine learning. In particular, because deep learning
algorithms are used to construct such models, it has become critical to acquire sufficient data for training.
When the available data for training a model are extremely limited, transfer learning can be considered
to solve the data shortage problem. Table 1 summarizes the various models for load forecasting.

Table 1. Summary of related studies on electric load forecasting.

Prediction

Category Ref. Dataset or Data Repository Granularity Input Variable Method

. . Historical load
[30] Iberian electric market operator 1h Weather information DNN

USA district public consumption

(1] Electric Reliability Council of Texas Lh Historical load CNN
ANN-based British C]cflu;nbila Institute of Historical load
model echnology istorical loa
(321 British Columbia’s system th Weather information SRWNN
California’s system
Periodic smart meter ener: Historical load
[33] N :a o re gris erey 1h Time factors DNN
usage rep Weather information
[36] Thailand’s electric utility 1 month Time factors SARIMA

[37] Four buildings in Singapore 1 month Weather 1r.1format10n SVM
Economic factors

MTLF model Historical load
[38] Large-scale public buildings in Xi'an 1 month Time factors MLR
Weather information
[39] One million customers from Bexar 1 month H1§t0r1ca1 load LSTM network
County, Texas Time factors

y . . . . Q-learning

[40] Baltimore Gas and Electric Company 1h Historical load with DBN
TL-bzllseld [41] Four schools provided by 1da Time factors MLP
mode Powersmiths y Weather information SVR
[42] Open PV Project 15 min Historical load CNN

ANN: artificial neural network, MTLF: mid-term load forecasting, TL: transfer learning, USA: United States of
America, UCI: University of California, Irvine, PV: photovoltaic, CNN: convolutional neural network, SRWNN:
self-recurrent wavelet neural network, CRBM: conditional restricted Boltzmann machine, FCRBM: factored CRBM,
SARIMA: seasonal autoregressive integrated moving average, SVM: support vector machine, MLR: multiple linear
regression, LSTM: long short-term memory, DBN: deep belief network, MLP: multilayer perceptron, SVR: support
vector regression.

2.1. Artificial Neural Network-Based Models

Hossen et al. [30] proposed a deep neural network (DNN)-based load forecasting model. To train
the model, they collected hourly ninety days of electric load data. When constructing the forecasting
model, they considered temperature, wind speed, solar irradiance, and the prior load data as input.
They investigated various combinations of activation functions for short-term load forecasting and
compared the results.

Kuo and Huang [31] developed an hourly electric load forecasting model based on a convolutional
neural network (CNN). To build the forecasting model, they considered the electric load data from
the past seven days for input variables and the next three days for output variables. Through an
extensive comparison with other models based on support vector machine (SVM), random forest
(RF), decision tree, and other methods, they demonstrated that the proposed model achieved the best
prediction performance.

In addition, Chitsaz et al. [32] proposed a self-recurrent wavelet neural network (SRWNN)-based
electric load forecasting model. The SRWNN is a modified wavelet neural network model that includes
the properties of the dynamics of a recurrent neural network (RNN). Their forecasting model predicted
the hourly electric load of one building and two power systems.
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Moreover, Hosein et al. [33] built short-term load forecasting models using the DNN and popular
machine-learning techniques such as weighted moving average, linear regression, regression trees, and
support vector regression, and compared their performance. They demonstrated that the DNN-based
models outperform the machine-learning-based models.

2.2. Mid-Term Load Forecasting Models

Damrongkulkamjorn et al. [36] constructed a monthly electric energy forecasting model using the
seasonal autoregressive integrated moving average (SARIMA). They presented the idea of forecasting
the trend-cycle portion of the decomposition method using the autoregressive integrated moving
average (ARIMA) method. The seasonal component was estimated using an averaging method. Then,
they compared their forecasting model with standard approaches and estimated the trend-cycle using
a best-fit mathematical function called the S-curve.

Furthermore, Dong et al. [37] proposed a forecasting model using the SVM to predict the monthly
electricity consumption of four buildings in a tropical region. They trained the model using data
collected over the previous three years, and then the trained model was applied to one year of data.
They demonstrated that their forecasting model exhibits effective performance.

Ma et al. [38] integrated multiple linear regression and self-regression methods to predict monthly
electricity consumption for large-scale public buildings. They eliminated the error caused by the
self-selection of variables through the self-regression analysis.

In addition, Berriel et al. [39] developed several forecasting models based on deep learning
approaches for monthly energy consumption prediction. They used more than 10 million samples from
almost one million customers to build forecasting models based on the DNN, CNN, and long short-term
memory (LSTM). They confirmed that the LSTM model has the highest prediction performance.

2.3. Transfer Learning-Based Models

Mocanu et al. [40] constructed a building energy prediction model using reinforcement learning.
They presented a deep belief network (DBN) for feature extraction and then extended two reinforcement
learning algorithms to perform knowledge transfer between reference building and target building.
They found that reinforcement learning using DBNs for continuous-state estimation can successfully
perform energy prediction. Moreover, they found that the proposed method can be used to apply
trained models to other buildings.

Rebeiro et al. [41] proposed a transfer learning method called Hephaestus for cross-building
energy forecasting based on time-series multi-feature regression with seasonal and trend adjustment
to forecast the energy consumption of educational buildings. They collected energy consumption
data from similar buildings with different energy magnitudes and merged them. The data were
processed using the Hephaestus steps. They confirmed that the proposed approach could improve
energy prediction for a university by using additional data from other universities.

Moreover, Hooshmand and Sharma [42] proposed a transfer learning method based on a CNN
and demonstrated their approach to the use case of daily electric load forecasting. They confirmed
that the proposed transfer learning strategy on the CNN model demonstrates superior prediction
performance compared to other forecasting methods, such as SARIMA and the basic CNN model.

Diverse machine-learning and deep learning techniques have been proposed for monthly load
forecasting. However, few studies have been done on deep learning models using transfer learning.
To the best of our knowledge, this is the first study that used transfer learning based on similarity
between data for MTLE.

3. Proposed Model

In this section, we first describe the dataset we used to construct our monthly load forecasting
model. The dataset, which is provided by Seoul, contains the monthly electric load of 25 districts
in Seoul from January 2005 to December 2018. The dataset can be divided into five categories:
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household, public, industrial, service, and total [43]. Figure 1 illustrates the details of the dataset. The
household dataset comprises the monthly electricity consumption of purely residential customers.
The public dataset contains the monthly electricity consumption for public purposes, such as social
infrastructures and government organizations. Likewise, the industrial dataset reveals the monthly
electricity consumption for mining, manufacturing, construction, and so on. The service dataset
includes the monthly electricity consumption for water/wastewater treatment, fast transit systems,
commercial offices, and retail buildings. Finally, the total dataset represents the sum of electricity
consumption in only these four categories. As aresult, the dataset comprises 125 pieces of sequence data
for 14 years covering five categories and 25 districts and is used as source domains for transfer learning.

Seoul
District 1 : District 2 : .o o District 25 :
Dobong Dongdaemun Yongsan
Month Household K Household o Household o
Y Public : Public . Public .
Electric . . LI .
= Service Service Service
Load . . .
Data Industrial Industrial Industrial
Total L Total Total N

14 years
Figure 1. Hierarchical structure of Seoul’s monthly electric load.

3.1. Input Variable Configuration

3.1.1. Calendar Data

In general, the amount of electricity consumption is determined by diverse factors. Among them,
we considered three major factors. The first major factor is calendar data, such as the year, month,
season, number of days, number of weekends, and number of holidays. The data are summarized
with a brief description of the data representation in Table 2.

Months have periodic properties [44]. For example, because December and January are temporally
adjacent to each other, they have similar characteristics in terms of temperature and season. However,
if we represent them numerically using 12 and 1, the difference in the categorical format becomes 11.
To reflect this periodicity, we transform the month data into continuous data using Equation (1) and
Equation (2) [45]:

Month, = sin(% X Month) 1

360
Month, = COS(E X Month) 2)

Additionally, electricity consumption is usually reduced on holidays. Hence, the number of days
and holidays in a month is related to the electricity consumption of the month [46]. In particular,
because the number of holidays on weekdays may significantly affect the model, we also considered
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the number of holidays on weekdays for input variables. In addition, the extended holiday season is
likely to generate a different electricity demand pattern than usual. Thus, the maximum holiday length
for the month was also considered. We collected the holiday data from the website Time and Date
(https://www.timeanddate.com). Consequently, we chose 24 input variables from the calendar data.

Table 2. Calendar data.

No. Input Variable Description
1 Year Integer [5:18]
2 Month Integer [1:12]
3 Monthx Continuous on [—1:1]
4 Monthy Continuous on [-1:1]
5 Spring Binary
6 Summer Binary
7 Fall Binary
8 Winter Binary
9 No. of Days Integer
10 No. of Mondays Integer
11 No. of Tuesdays Integer
12 No. of Wednesdays Integer
13 No. of Thursdays Integer
14 No. of Fridays Integer
15 No. of Saturdays Integer
16 No. of Sundays Integer
17 No. of holidays on Mondays Integer
18 No. of holidays on Tuesdays Integer
19 No. of holidays on Wednesdays Integer

20 No. of holidays on Thursdays Integer
21 No. of holidays on Fridays Integer
22 No. of Holidays Integer
23 No. of weekdays Integer
24 Maximum holiday length Integer

3.1.2. Population Data

The second factor that we considered for the model construction was the population data for a
district [47]. The population data for the districts in Seoul are available from the Seoul Open Data Plaza
(http://data.seoul.go.kr/). Table 3 presents the input variables representing the population data, which
include the population, area of the district, population density, in-migration, out-migration, and net
migration. These data are determined in March each year based on the ID card information. The two
types of population data are annual and monthly. The annual population data contain the population,
district area, and population density. Monthly population data contain in-migration, out-migration,
and net migration. The population in a district is highly correlated with the electricity consumption of
that district. Still, we considered the monthly population data for a more detailed analysis.

Table 3. Input variables of population data.

No. Input Variable Description
1 Population Annual
2 District area Annual
3 Population density Annual
4 In-migration Monthly
5 Out-migration Monthly
6 Net migration Monthly
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3.1.3. Weather Data

The last factor is the weather data, such as temperature, humidity, and precipitation [48].
We collected the monthly weather data from the Korea Meteorological Administration (KMA). The
KMA provides diverse types of forecasts, such as three-day ahead, mid-term, and long-range forecasts,
depending on the time resolution. The long-range forecast consists of the one-month and three-month
outlooks. We used the one-month outlook forecast for MTLF to provide a monthly weather forecast.
The one-month outlook included the average temperature, average maximum temperature, average
minimum temperature, and total precipitation for one month. We used them as the weather data.

3.2. Model Construction

In this paper, we aim to construct a forecasting model for a specific category of district. Hence,
the target domain is represented by the district name and electricity category, and other combinations
of districts and categories become the source domain. As we mentioned, we have a total of 125
combinations from 25 districts and five categories. We first constructed a monthly electric load
forecasting model using similar electric load data from the remaining 124 electric load data, which
are the source domains. To do this, we first divided each source data and target data into a training
and a test set. To find similar load data from the source domains, we calculated the PCCs between the
training sets of the source data and the target data. Then, using the selected source data, we constructed
a DNN-based forecasting model. Finally, we fine-tuned the forecasting model using the training set
of the target data and evaluated the model using the test set of the target data. The overall steps for
constructing our model are illustrated in Figure 2.

Datasets Model Construction
T 1 U — 1
i H L DNN Model i
i | Source Domain I i H Pre-training E
| | I |
i i i i
i | Target Domain Ii > D.NN Mo_del :
i i ! Fine-tuning i
S ¢ s
. .| il DNNModel |!
‘| Min-Max Scaling |1 L -[ eStm_g__________i
E v Target Domain i ittt l ............ 1
i PCC bl Normalization i
i Comparison ! i Reversing i
i ! ol I i
{|  Source Domain ; {|  Monthly Electric |}
! Selection i 1| Load Forecasting i

Source Domain Selection Post Processing

Figure 2. Overall steps for monthly electric load forecasting.

3.2.1. Deep Neural Network

The artificial neural network is a machine-learning algorithm that imitates the human brain
and consists of three layers: an input layer, one or more hidden layers, and an output layer [49,50].
Each layer consists of several nodes called perceptrons. Each node takes values from the nodes in the
previous layer and determines an activation for the next nodes through a node activation function,
such as a sigmoid function, hyperbolic tangent function, rectified linear unit (ReLU), exponential
linear unit (ELU), scaled exponential linear unit (SELU), and so on. This process is repeated and the
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activation of the nodes in the final layer (the output layer) produces the desired outputs. If the number
of hidden layers in the ANN is at least two, the network is called a DNN [50]. Figure 3 illustrates a
typical DNN structure for MTLE. The more hidden layers in the DNN, the more complex the network
becomes. Increasing the network complexity may improve the performance of the network. However,
if the structure of DNN is more complex than necessary, the model could exhibit poor performance
for unseen data, called overfitting [51]. Consequently, selecting the proper number of hidden layers
is essential.

ooy T
_ellallallalel
e w W/ \Wl \W[.

/Q):o Q “ Forecza;)t Load
- M{qﬁ./ \g/h\\q /'A\\

I N
7}"«»"‘«»"‘«»"‘»’

Figure 3. Typical deep neural network structure for monthly electric load forecasting.

Various hyper-parameters must be considered to construct a DNN-based MTLF model, such as the
number of hidden layers, number of nodes in the hidden layers, and activation function. To determine
the hyper-parameters of the DNN model, we performed several comparative experiments. We set the
number of hidden layers to 3, 4, 5, and 6, and considered SELU, ReLU, and ELU as activation functions.
Table 4 shows the results. The number of hidden layers is set to five, and the activation function in a
multilayer perceptron is SELU [49]. Compared with the ReLU and ELU functions, which are typically
used in DNNs, SELU is linear and increases the convergence speed of the stochastic gradient descent.
The SELU is defined by Equation (3), where a and A are fixed constants, and x is the input value.
In the node configuration of the DNN model, the input layer comprises 33 nodes, and the hidden layer
comprises 22 nodes per layer by applying two-thirds of the number of nodes of the input layer [52,53].
The output layer has only one node. Furthermore, we set the rest of the hyper-parameters as follows:
batch size to 12, epoch to 1000, learning rate to 0.0001, and optimizer to adaptive moment estimation
(Adam). We use the mean squared error (MSE) as a loss function, which is defined in Equation (4),
where 7 is the number of observations and y; and §; are the actual and predicted values at time i:

x forx >0
ae* —a forx<0’

flan) = ®

_ Iy N
MSE = -} (vi= )" 4)
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Table 4. Performance comparison according to hyper-parameters.

Activation Function. No. of Hidden Layers MAPE NRMSE
3 7.02 8.54
4 6.93 8.48
ELU 5 6.61 8.22
6 6.80 8.35
3 6.96 8.46
4 6.96 8.46
ReLU 5 6.66 8.23
6 6.83 8.43
3 7.05 8.67
4 6.96 8.60
SELU 5 6.52 8.11
6 6.67 8.29

3.2.2. Transfer Learning

When limited data are available from the target domain for training, adaptation techniques, such as
transfer learning, can be employed to improve the performance of a forecasting model [34,54]. Figure 4
illustrates a typical structure for transfer learning that uses the weights generated by neural networks
trained using a large dataset similar to the target domain dataset. This process is called pre-training.

Source
Domain 1

Source

T o |

A4
o e

Figure 4. Process of transfer learning.

Source
Domain N

Then, the pre-trained network is trained again using the smaller target domain dataset. This process
is called fine-tuning. When the data in the target domain and the source domain are similar, the resulting
model could exhibit satisfactory performance. Thus, to find similar source domain data, correlation
analysis methods, such as the PCC analysis, can be used to determine the similarity between two
domains [34,55]. The PCC analysis is defined by Equation (5), where Rxy denotes the PCC between X
and Y, n is the number of observations, and X; and Y; are the values at time i. Moreover, X and Y are
the mean values of X and Y, respectively:

Li(xi - X)(vi-Y)

ST

®)
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The PCC is used to measure the linear correlation between two variables X and Y. It has a value
between +1 and —1. Whereas a value of +1 (1) indicates the total positive (negative) linear correlation
between them, 0 indicates no linear correlation. Figure 5 illustrates an example of constructing a
transfer learning-based DNN model, where X; s and X; t are the input of the source domain and the
target domain at time i, respectively. Y; s and Y; r are the output of the source domain and the target
domain at time i, respectively. When selecting the source domain, to consider all possible positive and
negative trends, we selected domains with an absolute value of PCC close to 1. Using the selected
source domains as a training set, we pre-trained the DNN model and fine-tuned the DNN model using
a training set for the target domain.

Source Domain 1 XZ"S \ kqb qb qb qb qb
. "6’5 /H\%\./ l
Source Domain 2 - .‘ ~\WJ \)’f’ \XJ,\W/ .
: Kaas VIIAMD/A\ / i/\\ il\\ qb "
Source Domain N i |
Xar Fine-tuning
~ O /éswﬁ."wwu ,

AW

| ‘ m

Forecast Load
(¥r)

;‘u &

Figure 5. Example of constructing a transfer learning-based deep neural network model.
4. Experimental Results

To evaluate the effectiveness of our model, we performed very extensive experiments. For the
experiments, we collected five categories of monthly electric load data for 25 districts in Seoul from
January 2005 to December 2018. Among them, we used the data from January 2005 to December 2016
as a training set and the data from January 2017 to December 2018 as a testing set. In the experiment,
we considered every combination of district and category as a target domain and the other data as
source domains. All experiments were performed in Python 3.7.6, and the models were constructed
using TensorFlow 1.13.1.

Figure 6 reveals part of a table containing PCC values calculated for the 125 domains. Each cell
is marked with distinct colors according to the PCC value. The figure schematically shows the data
characteristics by district and category. For instance, Jongno’s total is very similar to most categories of
other districts because they have high PCC values. In contrast, Yongsan’s industrial is very different
from most categories of other districts because they show low PCC values. This indicates that the
Jongno's total data are suitable for transfer learning, while the Yongsan’s industrial data are not.
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Meanwhile, Jongno’s industrial is not similar to Jung’s industrial, even though they belong to the same
category. Rather, it is more similar to Jung’s service even though they belong to different categories.
As a result, electric data from various domains can be effectively used for transfer learning if the
similarity between data is well considered.

Jongno Jung Yongsan

Correlation

T e
. H 0.6—0.8

s o JHl o 8] s o o oo
2

O J@Q > 0 ¢«

0.

J 0.27 0.48
u H 04—0.6
n = oo
: o [ s < I = Sy
020 [GEIGE] - |
0—0.2

o o
w n
a R

S waQ 30 <

Figure 6. Example of the calculated Pearson correlation coefficient (PCC); T, H, P, S, and I represent the
total, household, public, service, and industrial, respectively.

In addition, to observe the effect of the number of data for training the forecasting model,
we constructed three different DNN models by selecting the top 10 (DNN_T10), 20 (DNN_T20), and
30 (DNN_T30) most similar domains in terms of PCC. Table 5 lists the average of the highest 10, 20,
and 30 PCC values in the five categories for each district.

For the performance comparison, we considered the mean absolute percentage error (MAPE) and
the normalized root mean squared error (NRMSE) [20,50]. The MAPE and NRMSE are defined by
Equations (6) and (7), where 7 is the number of observations, y; and #; are the actual and predicted
values at time i, respectively, and ¥ is the mean of the actual values:

100 v
MAPE = — Z{
1=

yi— i

6
" (6)

ne. a2
NRMSE:% Lilyi= 9 (yln - @)
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Table 5. Averages of the highest 10, 20, and 30 Pearson correlation coefficients for each district.

District Top10 PCCs  Top20PCCs  Top 30 PCCs
Jongno 0.89 0.86 0.84
Jung 0.93 0.91 0.89
Yongsan 0.92 0.87 0.83
Seongdong 0.72 0.69 0.67
Gwangjin 0.87 0.84 0.82
Dongdaemun 0.93 0.91 0.88
Jungnang 0.89 0.87 0.85
Seongbuk 091 0.89 0.87
Gangbuk 0.93 0.90 0.88
Dobong 0.82 0.77 0.73
Nowon 0.92 0.90 0.88
Eunpyeong 0.88 0.85 0.82
Seodaemun 0.89 0.85 0.82
Mapo 0.89 0.84 0.80
Yangcheon 0.90 0.87 0.85
Gangseo 0.85 0.79 0.73
Guro 0.91 0.85 0.80
Geumcheon 0.86 0.82 0.78
Yeongdeungpo 0.92 0.87 0.83
Dongjak 0.91 0.86 0.82
Gwanak 0.93 0.90 0.87
Seocho 0.81 0.79 0.77
Gangnam 091 0.88 0.85
Songpa 0.88 0.83 0.78
Gangdong 0.92 0.90 0.88

In addition to these three models, we considered four more forecasting models for comparison [56]:
multiple linear regression (MLR), RF, extreme gradient boost (XGB), and baseline DNN. We calculated
the MAPE and NRMSE values for all categories and then calculated the average value for each
district. Tables 6 and 7 present the average MAPEs and NRMSE:s of five datasets for each district.
The most commonly used method for tuning hyper-parameters is a grid search, which tries all possible
combinations of the hyper-parameters of interest. Therefore, we selected the optimal hyper-parameters
for the RF and XGB models using the grid search with cross-validation. The hyper-parameter tuning
method, which divides data into training, validation, and test sets, can cause the problem of overfitting
the validation set. To prevent this problem, we divided the data into training and test sets, and then
used 5-fold cross-validation for the training data. Figures 7 and 8 illustrate the box plots for the MAPE
and NRMSE of the forecasting models. Our three transfer learning-based MTLF models exhibit better
prediction performance than baseline DNN and other machine-learning-based models.

Figure 9 illustrates the trend intuitively by presenting the MAPE reduction rate for PCC values for
DNN_T10, 20, and 30. The x-axis represents the PCC, and the y-axis represents the MAPE reduction
rate, with each point representing the MAPE reduction rate for each PCC of the proposed models. The
red line in the middle represents the trend line of the MAPE values. Figure 9 depicts a positive trend
line slope, so the increase in the PCC value corresponding with transfer learning is closely related to
the improvement in performance.
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Table 6. Average of mean absolute percentage errors (MAPE, unit: %) of five datasets in each district.

L Forecasting Model
District
MLR RF XGB DNN DNN_T10 DNN_T20 DNN_T30
Jongno 10.32 8.22 7.44 3.74 2.56 3.44 4.07
Jung 9.64 7.03 5.65 6.47 2.66 297 2.19
Yongsan 9.43 6.62 6.57 3.62 3.42 3.16 2.86
Seongdong 20.74 22.95 2224 5.28 5.29 13.88 6.94
Gwangjin 9.10 6.05 4.49 5.20 2.01 1.84 2.38
Dongdaemun 822 6.47 5.31 2.56 2.36 1.76 1.90
Jungnang 8.38 5.87 415 3.22 3.59 3.52 1.56
Seongbuk 9.16 5.97 4.32 3.10 1.66 2.09 1.98
Gangbuk 9.05 9.39 8.21 3.08 2.28 2.57 1.46
Dobong 8.47 8.38 6.83 4.39 3.18 4.32 4.83
Nowon 8.20 5.45 4.03 4.30 3.20 1.86 1.26
Eunpyeong 10.21 8.89 7.55 522 3.74 4.05 471
Seodaemun 713 5.12 3.82 7.62 2.17 2.85 2.51
Mapo 10.19 8.71 7.05 3.77 4.12 3.90 3.81
Yangcheon 9.31 8.36 6.79 3.21 2.99 3.15 3.20
Gangseo 26.35 13.99 11.87 7.27 7.10 6.77 7.09
Guro 22.69 7.73 6.21 5.23 7.14 7.96 4.96
Geumcheon 10.10 8.01 6.98 4.50 4.10 4.33 3.72
Yeongdeungpo 10.09 5.37 4.00 4.87 4.23 2.02 2.95
Dongjak 25.26 5.51 6.13 6.96 6.21 6.50 5.70
Gwanak 8.90 8.55 6.03 3.11 2.83 2.36 2.26
Seocho 25.10 6.27 7.01 54.63 7.20 14.59 58.38
Gangnam 11.25 6.14 5.50 2.90 2.19 3.40 3.26
Songpa 19.18 7.80 7.33 5.60 7.60 4.03 415
Gangdong 11.02 7.25 6.11 4.85 3.25 2.22 2.83

DNN: deep neural network; DNN_T10: DNN pre-trained using top 10 similar data; DNN_T20: DNN pre-trained
using top 20 similar data; DNN_T30: DNN pre-trained using top 30 similar data; MLR: multiple linear regression,
RF: random forest, XGB: extreme gradient boosting.

Table 7. Average of normalized root mean squared errors (NRMSE, Unit: %) of five datasets in

each district.

L. Forecasting Model
District
MLR RF XGB DNN DNN_T10 DNN_T20 DNN_T30

Jongno 13.82 10.87 10.03 4.69 3.50 4.44 5.16
Jung 14.72 9.97 8.20 8.25 3.40 4.06 2.70
Yongsan 11.59 8.99 8.68 4.85 4.62 4.34 3.77
Seongdong 25.99 27.69 27.5 6.65 7.42 16.39 8.19
Gwangjin 12.24 8.01 6.38 6.58 2.71 2.71 3.46
Dongdaemun  12.09 9.51 7.85 3.55 3.43 2.50 2.48
Jungnang 11.90 7.75 6.01 4.37 4.62 4.71 2.09
Seongbuk 12.43 8.19 6.28 3.87 2.29 2.70 2.67
Gangbuk 13.56 12.64 11.68 4.33 2.94 3.44 1.99
Dobong 11.22 10.4 8.54 5.67 4.52 5.76 5.79
Nowon 11.69 7.55 5.88 5.75 3.84 2.60 1.69
Eunpyeong 13.16 12.18 10.76 6.70 5.07 5.33 6.15
Seodaemun 10.22 7.42 5.78 9.43 2.8 3.70 3.53
Mapo 15.07 12.18 9.91 4.88 5.18 5.68 5.34
Yangcheon 12.63 10.77 8.78 3.99 3.88 4.36 4.21
Gangseo 26.87 17.54 15.75 9.89 9.41 8.94 8.72
Guro 15.13 9.62 7.90 7.04 9.39 10.27 6.48
Geumcheon 14.28 10.67 9.38 5.72 5.11 5.77 4.53
Yeongdeungpo 12.80 7.84 5.80 5.98 5.06 2.68 3.72
Dongjak 16.82 8.29 6.31 8.05 8.02 7.13 7.41
Gwanak 12.09 11.18 8.13 412 3.72 3.28 3.07
Seocho 52.53 6.78 7.15 64.56 10.26 21.71 69.66
Gangnam 13.83 8.43 7.32 3.86 3.08 4.49 4.44
Songpa 16.19 10.73 10.2 6.95 9.98 5.71 5.56
Gangdong 14.8 10.06 8.65 5.80 4.34 2.90 3.61

DNN: deep neural network; DNN_T10: DNN pre-trained using top 10 similar data; DNN_T20: DNN pre-trained
using top 20 similar data; DNN_T30: DNN pre-trained using top 30 similar data; MLR: multiple linear regression,
RF: random forest, XGB: extreme gradient boosting.
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Figure 7. Box plot of the mean absolute percentage error (MAPE) of the forecasting models; DNN: deep
neural network; DNN_T10: DNN pre-trained using top 10 similar data; DNIN_T20: DNN pre-trained
using top 20 similar data; DNN_T30: DNN pre-trained using top 30 similar data; MLR: multiple linear
regression, RF: random forest, XGB: extreme gradient boosting.
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Figure 8. Box plot of the normalized root mean squared error (NRMSE) of the forecasting models;
DNN: deep neural network; DNN_T10: DNN pre-trained using top 10 similar data; DNN_T20: DNN
pre-trained using top 20 similar data; DNN_T30: DNN pre-trained using top 30 similar data; MLR:
multiple linear regression, RF: random forest, XGB: extreme gradient boosting.
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Figure 9. Mean Absolute percentage error (MAPE) reduction rate versus the Pearson

correlation coefficient.
5. Conclusions

Because collecting sufficient monthly electricity consumption data is challenging due to the long
recording period, it is difficult to build a sophisticated forecasting model based on an Al technique.
To address this issue, in this study, we developed transfer-learning-based DNN models for monthly
load forecasting. We used monthly electric load data collected for 14 years from Seoul public data.
We configured the 33 input variables of three types, and constructed DNN-based MTLF models of 22
hidden nodes within five hidden layers. We considered the PCC to determine the similarity between
the two domains. Then, we determined the top 10, 20, and 30 values with the highest PCC values
as the source domains. We concatenated them to develop a training set for pre-training the DNN
model. The pre-trained DNN model was fine-tuned using a training set for the target domain. We
compared the performance of the proposed models with that of the machine-learning-based models,
such as MLR, RF, and XGB, and a basic DNN model. We adopted the MAPE and NRMSE, which are
the most popular performance metrics, to compare the prediction performance. We demonstrated
that our model outperforms the existing machine-learning-based models and the base DNN model.
Consequently, we conclude that the prediction performance improved when using transfer learning
compared to the basic DNN.

In future studies, we plan to collect additional datasets from other regions and then to verify that
our model is available to different datasets. Furthermore, by discussing other correlation coefficients,
we can discover which correlation coefficients are useful for transfer learning.
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