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Abstract: The limitation of battery size for electric vehicles has driven researchers to study driving
distance. Trip patterns and traveler preferences in terms of distance are affected by multiple variables.
This study, using socioeconomics, weather conditions, and vehicle characteristics as covariates,
compares lognormal, log-logistic, and Weibull distribution assumptions on daily car travel distances
with a parametric hazard model for both pooled and panel regression. The results reveal that the
log-logistic distribution performed best for both the pooled and panel models, and the inclusion of
heterogeneity by the panel model improves the model. The results suggest that the travel distances
achieved by people in Toyota City, Japan, is highly dependent on the weather conditions, specifically
the precipitation and wind speed. Socioeconomic indicators, such as age and gender, and vehicle
characteristics, such as engine size and vehicle price, also significantly affect the car travel distance.

Keywords: travel distance; travel behavior; hazard duration model; panel data

1. Introduction

Driving experience is obtained over time, and changes in transportation habits are typical [1].
Trip patterns and traveler preferences in terms of distance or time could be associated with explanatory
variables such as socio-demographics and environmental characteristics.

Duration data modeled by hazard-based models to explain the relationship between transportation
habits and explanatory variables have been investigated by researchers with the goal of developing
transport analysis applications [1–4]. One simplistic approach for the analysis of urban travel focuses
on travel time [5–11]. As a dependent variable in hazard models, time has been studied in different
ways, such as departure times for shopping trips [12], social activity duration [13], traffic incident
duration [14], hurricane evacuation time [15], and the braking reaction time of young drivers [16].

In contrast, driving distance has recently gained increasing research attention for its environmental
impact, because minimizing driving distance can lower greenhouse gas (GHG) emissions [17,18].
Moreover, the rising demand for new energy-type transportation modes such as electric vehicles (EV)
means that driving distance reduction can help achieve the goal of electric power peak-shaving [19,20].
However, the implementation of EVs is facing problems due to battery size limitations. Owing to
this limitation, a better understanding of traveler preferences and trip patterns in terms of travel
distance is needed. Reference [21] used softmax regression to calculate the probabilities of assignment
for battery electric vehicles based on car usage profiles, while others have focused on selecting the
appropriate distribution function to characterize the travel distance. Some researchers have compared
single distribution forms [22–24], and others have used a mixed distribution to characterize the travel
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distance [25–27]. These studies of distribution functions have managed to reveal driving habits
statistically but are unable to explain these habits, particularly the specific reasons behind the driver’s
behavior, but clearly some people may have the tendency of short driving distance, which makes them
more adaptable for electric vehicles. A fully parametric duration model is one solution for linking the
explanatory variables with the travel distance using assumptions about the distribution. The study
conducted by Anastasopoulos et al. [28] analyzed the distance by new energy-type transportation
modes and explanatory variables, such as traveler socio-economic and demographic characteristics,
using a hazard-based approach. Ding et al. [29] also applied a hazard model for travel distances,
and focused on the environmental impact of distance. Other studies out of environmental consideration
are also approached by hazard-based models, such as the commuting distance to a carsharing pod [30]
and the behavioral determinants of utilitarian bicycle use [31]. However, the study of travel distance
using the hazard duration approach is limited [13], and the duration dependence is often ignored since
the travel distance is typically considered as a travel outcome rather than a process [29].

Thus, this study first uses a conventional solution for the distribution test for daily travel distance
to determine the best fitted distribution shape which can represent the driver’s habit with regard to
the daily travel distance, and can ascertain whether the daily driving demand could be fulfilled with
electric vehicles. To reveal the factors that affect their driving distance, a parametric duration model is
used to link the explanatory variables with the daily travel distance. This study acknowledges not
only the socioeconomic conditions that affect daily driving distance, which are traditionally used in
the parametric hazard model, but also some factors that change daily, such as the weather condition.
The effect of the weather condition on travel distance has not been included in similar research.
Thus, this study attempts to statistically determine the impact of weather-related variables. The use of
panel data in the duration model determines the unobserved heterogeneity between each individual.

The remainder of this paper begins with the modeling approach used in this study. Basic data
description is described in the third section. The subsequent section states the modeling results and
discusses the results. The final section provides conclusions and discusses potential future study.

2. Methodology

Different distributions, specifically the Weibull and lognormal distributions, have been widely
tested [22,24,27]. The log-logistic distribution has also been widely used in many hazard model
studies [13,32]. Here, we examine these three distribution models.

The distribution function displays the regular pattern of the driver, while the parametric duration
model can explain these patterns by explanatory variables. As described by Washington et al. [1],
hazard duration models can be classified as nonparametric, semiparametric, and fully parametric
models. This study applies a fully parametric model which assumes a distribution for the time duration
and retains the parametric assumption of the covariate influence.

Taking the daily travel distance d as a random variable, the hazard duration function can be
written as:

h(d|λ ) =
f (d|λ )

[1− F(d|λ )]
= f (d|λ )/S(d|λ ), (1)

where F(d|λ ) is the cumulative distribution function, f (d|λ ) is the density function of the daily travel
distances, and S(d|λ ) is the survival function (the probability that a vehicle travels greater than or equal
to distance d in a day). Thus, the hazard function h(d|λ ) is the conditional probability that vehicle will
travel up to distance d, given that the vehicle has not reached distance d.

The hazard functions for the distribution duration model can be represented as:

Weibull : h(d|λ ) = λp·(λd)p−1 exp [−(λd)p]/ exp [−(λd)p] = λp(λd)p−1, (2)

Lognormal : h(d|λ ) = Φ[−plog(λd)]/Φ[−plog(λd)], (3)

Log− logistic : h(d|λ ) = λp(λd)p−1/[1 + (λd)p], (4)
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where λ is a positive rate parameter, p is a positive scale parameter, Φ(.) is the standard probability
density function, and Φ(.) is the standard normal cumulative distribution function.

To describe the exposure outcome relationship adjusted for covariates, a survival analysis with
linear regression is widely used [33]. The covariates in survival analysis act multiplicatively on the
baseline hazard function [1], and since panel data are applied here, the hazard function with covariates
can be expressed as:

h(di j|λi j) = h0(di j) exp (Xijβi), (5)

where i indexes the individual, j indexes the date, di j is the daily travel distance for individual i in day
j, h0(di j) is the baseline hazard function assuming that the covariate vectors are zero, Xij is a vector of
the explanatory variables for individual i in day j, and βi is a vector of the estimable parameters for
individual i.

Two popular techniques to examine the homogeneity among individuals are the random slope
model and the random intercept model [34–38]. In this study, we assume that the individual-specific
effect is a random variable that is uncorrelated with the covariates and is normally distributed by
implementing a random intercept regression. The random parameter duration model estimation is
attained by a simulation with 100 random draws.

As all the daily travel distances are observed until the vehicle stops, thus, there are no censored
data in our study and the log-likelihood function can be defined as:

LL =
N∑

i=1

ln

 1
R

R∑
r=1

T∏
j=1

f (di j|λ
r
i j)

, (6)

where R is the number of draws, ln(λr
i j) = Xijβi + µr, and µr is the r-th draw from the normally

distributed random term µ. The variance of µ can be used as a measure of the heterogeneity of the
daily travel distance across different individuals.

The hazard models were estimated using NLOGIT 6.0 (Econometric Software, Inc., Plainview, NY, USA),
and the model calculation was based on the natural logarithm of the daily travel distance.

3. Data Description

The data used in this study were collected from individuals who work or live in Toyota City.
As mentioned in [39], the city is covered by forest by approximately 68%, and is characterized by
a relatively low population density. As mentioned in [40], the accessibility of a location by public
transport could be used as a measure for objective car dependence. Moreover, both [39,41] suggest
that private cars might be indispensable for this city, since it does not have a sufficient railway system.
Thus, we expect that Toyota City could be inferred as a car-dependent city, and users in our study
usually use private vehicle as their main transportation mode. The observation period was 183 days,
from April to September in 2011. There were 131 individuals in total. Taking each individual as a
group, the largest group holds 182 observations, while the smallest has only 8 observations. It could be
quite confused that this participant used vehicles for only 8 days during the observation period, but
he may share a vehicle which is provided by a colleague. The unbalanced panel data holds 15,118
observed trips in total; each trip was collected by a device on the vehicle with real-time GPS information,
so we believe the device would automatically record the driver’s trip if there is one. The daily travel
distance was derived from the GPS data for each individual. We could not guarantee that the vehicle
would not be used by other family members, but 98.15% of the users had fixed jobs, and 70.78% of the
trips were during the weekday, since weekday trips are mostly commuting trips. Thus, we believe
these trips are conducted by themselves. The covariates used here, as enumerated in Table 1, can be
categorized as personal information, vehicle information, and daily information.
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Table 1. Descriptive statistics of the selected variables *.

Variables Mean (or %) Minimum Maximum

Daily average temperature (◦C) 22.05 7.7 29.9
Daily average precipitation (mm) 6.78 0 97
Daily average wind speed (m/s) 1.56 0.6 3.8

Weekday dummy (1 if weekday, 0 otherwise) 69.95% 0 1
Engine size (100 cc) 19.19 9.9 34.5

Fuel efficiency (jc08-mode, km/L) 18.53 8.8 29.6
Price of vehicle (100,000 yen) 23.42 10.6 33.5

Vehicle type (1 if hybrid vehicle, 0 otherwise) 32.37% 0 1
Driver’s age 45.70 23 72

Gender (1 if male, 0 otherwise) 90.84% 0 1
Job description (1 if working in Toyota City

government, 0 otherwise) 53.35% 0 1

Job description (1 if working for car manufacturer,
0 otherwise) 24.08% 0 1

Job description (1 if working for public facility,
0 otherwise) 8.61% 0 1

Job description (1 if working as company staff,
0 otherwise) 5.16% 0 1

Job description (1 if working for driving school,
0 otherwise) 3.90% 0 1

Job description (1 if working as association staff,
0 otherwise) 3.05% 0 1

Job description (1 if unemployed, 0 otherwise) 1.85% 0 1

* The weather information and weekday dummy are based on 183 observation days; others are based on
131 individuals.

The personal information used in this study include age, gender, and occupation. Nearly half of
the participants work in Toyota City, and only two participants have no job; thus, most of the weekday
trips can be referred to as commuting trips. The ages of the participants range from 23 to 67, and only
12 are female.

The transportation mode characteristics are also widely used as explanatory variables. However,
since we only focus on the daily travel distance conducted by vehicles, vehicle information is used
instead. Vehicle information includes engine size, fuel efficiency, and vehicle price, as well as the vehicle
type (dummy variable for hybrid vehicle). The engine size in this study is very limited; only 7 different
engine sizes were used among the 131 individuals, ranging from 990 to 3450 cc. The fuel efficiency for
each vehicle in this study was measured using the Japanese Fuel Economy Standard JC08 test.

Personal information has been widely used in similar research to determine the impact of travel
distance [29,32]. Most participants except two are either working for private companies, such as car
manufacturers or for nonprofit organizations (NPO) such as a government office. Daily information
that differentiates between weekdays and the weekend was also used in some research [42]. The trips
in the weekday are here considered roughly as commuting, and the trips at the weekend are considered
as other leisure trips. Even though commuting trips mostly have a certain origin and destination,
small changes in route choice could lead to different driving distances. Leisure trips, on the other hand,
are more flexible and dependent on variables such as the attractiveness of the destination. However,
the weather condition was not included in previous studies. In addition to the alternative covariates
above, we introduced the daily weather information—specifically, the average temperature, average
precipitation, and average wind speed, as shown in Figure 1.
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Figure 1. Daily weather information during the observation period.

Toyota City is a coastal city located in north-central Achi Prefecture, the climate of which is
characterized by hot and humid summers and is prone to marine calamity [41]. It is a city with four
distinct seasons, and the weather condition changes significantly throughout the year. According to
the weather data (from 1981 to 2010) released by the Japan Meteorology Agency (JMA), the second
hottest month in Toyota, September, is also the wettest month of the year. The data used in this study
were collected during spring and summer time, which could help in determining the impact of hot and
humid weather on people’s driving habits, since the city is highly dependent on private vehicles [41].

4. Model Estimation Results

Maximum likelihood methods are used to estimate the parameter vector (β) in the hazard duration
model. To evaluate the goodness of fit, the Akaike Information Criterion (AIC) and likelihood ratio
(X2) are used and are expressed as:

Akaike Information Criterion : AIC = 2k− 2LL(β), (7)

Likelihood ratio : X2 = −2[LL(β) − LL(0)], (8)

where k is the number of estimable parameters in the model, LL(β) is the log-likelihood of the model
at convergence, and LL(0) is the log-likelihood of the baseline.

To develop the model gradually, we first start with a distribution test for the daily travel distance.
As mentioned above, we assume lognormal, log-logistic, and Weibull distributions. The estimated
parameters are listed in Table 2, and the distribution shapes are shown in Figure 2. To clearly show
the distribution shapes of the three models, Figure 2 only presents daily travel distances within
200 km, which comprise 98.62% of the whole data set. Based on the log-likelihood and the graph of
distributions, the log-logistic model clearly fits the observed daily travel distance the best. The shape
of the lognormal model is similar to that of the log-logistic model. The peak of the lognormal model
is beyond the observed peak, and the peak of the Weibull model is a little bit short compared to the
observed peak. The 95% quantile of daily travel distance for each distribution is 90 km for Weibull,
103 km for log-logistic, and 129 km for lognormal. Thus, we can assume that electric vehicles with
a driving range larger than 103 km could fulfill the driving demand of our participants, and [43]
mentioned 57 types of EV; only 3 of them cannot reach the need of our study. However, clearly people
still have different preferences regarding the driving distance, and some people may be more adaptable
to EVs, considering the battery range.
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Table 2. Estimated parameters for the three distribution models.

Dependent Variable Logarithm of Daily Travel Distance

Distribution Location Parameter Scale Parameter (p) Log-Likelihood

Lognormal 3.06 1.130 −23,322.8
Log-logistic 3.12 0.580 −22,154.5

Weibull 3.57 0.965 −22,539.7
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Figure 2. Probability density for the three models.

The three distributions peak at around 10 km, and we believe that the distribution shape is affected
by other covariates, such as socioeconomics. To understand how the covariates affect the daily travel
distance and explain how people’s driving intention is affected by various variables, a parametric
duration model is applied.

To test the heterogeneity between different individuals, the duration model was tested with pooled
regression and a panel model. The results of the hazard duration models using pooled regression and
the panel model are summarized in Tables 3 and 4, respectively.



Sustainability 2020, 12, 6331 7 of 13

Table 3. Model estimation results for pooled regression.

Dependent Variable: Natural Logarithm of Daily Travel Distance (km) Lognormal Duration Weibull Duration Log-Logistic Duration

Explanatory Variables Coefficient Prob. |z|>Z Coefficient Prob. |z|>Z Coefficient Prob. |z|>Z

Constant 3.14325 0.0000 3.32110 0.0000 3.28881 0.0000
Daily average temperature (◦C) 0.00359 0.0135 0.00325 0.0020 0.00429 0.0015

Daily average precipitation (mm) −0.00197 0.0017 −0.00283 0.0000 −0.00172 0.0016
Daily average wind speed (m/s) −0.06030 0.0031 −0.05800 0.0003 −0.04074 0.0413

Weekday dummy (1 if weekday, 0 otherwise) −0.05296 0.0043 −0.25470 0.0000 −0.09310 0.0000
Engine size (100 cc) −0.02054 0.0000 −0.01878 0.0000 −0.02712 0.0000

Fuel efficiency (jc08-mode, km/L) 0.00911 0.0837 0.02061 0.0000 0.01034 0.0266
Price of vehicle (100,000 yen) 0.01468 0.0000 0.02662 0.0000 0.01734 0.0000

Vehicle type (1 if hybrid vehicle, 0 otherwise) 0.22142 0.0010 0.03746 0.4480 0.23627 0.0001
Age −0.00601 0.0000 −0.00827 0.0000 −0.00688 0.0000

Gender (1 if male, 0 otherwise) 0.09815 0.0054 0.17672 0.0000 0.08206 0.0121
Job description (1 if working for car manufacturer, 0 otherwise) −0.09112 0.0001 −0.00198 0.9002 −0.12268 0.0000

Job description (1 if working for public facility, 0 otherwise) −0.03070 0.3526 0.08971 0.0001 −0.09606 0.0009
Job description (1 if working as company staff, 0 otherwise) 0.20993 0.0000 0.18038 0.0000 0.21507 0.0000

Job description (1 if working for driving school, 0 otherwise) 0.05295 0.2587 −0.02980 0.5257 0.10149 0.0281
Job description (1 if working as association staff, 0 otherwise) −0.08662 0.1038 0.02049 0.6176 −0.13689 0.0018

Job description (1 if unemployed, 0 otherwise) −0.25231 0.0004 0.03304 0.3847 −0.34250 0.0000
Scale parameter for survival distribution (p) 1.11172 0.0000 0.93473 0.0000 0.56312 0.0000

Initial log-likelihood LL(0) −23,322.81 −22,539.75 −22,154.52
Log-likelihood at convergence LL(β) −23,090.43 −22,129.83 −21,785.89

Likelihood ratios 464.76 819.84 737.26
Akaike Information Criterion (AIC) 46,216.86 44,295.66 43,607.78
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Table 4. Model estimation results for panel data.

Dependent Variable: Natural Logarithm of Daily Travel Distance (km) Lognormal Duration Weibull Duration Log-Logistic Duration

Explanatory Variables Coefficient Prob. |z|>Z Coefficient Prob. |z|>Z Coefficient Prob. |z|>Z

Daily average temperature (◦C) 0.00379 0.0005 0.00137 0.0446 0.00000 0.9861
Daily average precipitation (mm) −0.00186 0.0048 −0.00310 0.0000 −0.00149 0.0014
Daily average wind speed (m/s) −0.05944 0.0147 −0.05298 0.0002 −0.04210 0.0176

Weekday dummy (1 if weekday, 0 otherwise) −0.05222 0.0000 −0.28743 0.0000 −0.11532 0.0000
Engine size (100 cc) −0.02003 0.0000 0.01953 0.0000 −0.02027 0.0000

Fuel efficiency (jc08-mode, km/L) 0.00920 0.0000 0.06357 0.0000 0.03423 0.0000
Price of vehicle (100,000 yen) 0.01474 0.0000 0.03324 0.0000 0.03107 0.0000

Vehicle type (1 if hybrid vehicle, 0 otherwise) 0.21835 0.0000 −0.59288 0.0000 −0.06972 0.1465
Age −0.00540 0.0000 −0.00534 0.0000 −0.00782 0.0000

Gender (1 if male, 0 otherwise) 0.09680 0.0000 0.19651 0.0000 0.28473 0.0000
Job description (1 if working for car manufacturer, 0 otherwise) −0.08985 0.0000 0.21099 0.0000 −0.00159 0.9211

Job description (1 if working for public facility, 0 otherwise) −0.03028 0.0000 0.16471 0.0000 −0.28980 0.0000
Job description (1 if working as company staff, 0 otherwise) 0.20702 0.0000 0.10726 0.0012 −0.03591 0.2540

Job description (1 if working for driving school, 0 otherwise) 0.05222 0.0000 0.39482 0.0000 0.03742 0.3017
Job description (1 if working as association staff, 0 otherwise) −0.08542 0.0000 0.14466 0.0009 0.45943 0.0000

Job description (1 if unemployed, 0 otherwise) −0.24880 0.0000 0.55913 0.0000 0.72097 0.0000
Constant (means for random parameters) 3.09958 0.0000 1.61064 0.0000 2.31731 0.0000

Constant (scale parameter for random parameters) 0.00922 0.0000 0.50549 0.0000 0.68278 0.0000
Scale parameter for survival distribution (p) 1.11058 0.0000 0.84781 0.0000 0.45431 0.0000

Initial log-likelihood LL(0) −23,322.81 −22,539.75 −22,154.52
log-likelihood at convergence LL(β) −23,077.00 −20,714.03 −19,353.08

Likelihood ratios 491.62 3651.44 5602.88
Akaike Information Criterion (AIC) 46,192.00 41,466.06 38,744.16
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The AIC in Table 3 shows that the log-logistic duration model provides the best fit among the three
alternatives, which is consistent with the result in Table 4. Therefore, the log-logistic duration model
fits the daily travel distance best among the duration model distribution assumptions. The explanatory
variables for the lognormal and Weibull duration models in Table 4 are all significant at a 95%
confidence level, which can be considered an improvement compared to Table 3. However, the best
fitted log-logistic model has an improvement only based on the AIC and log-likelihood ratios, but has
not been improved regarding the number of significant variables.

In Table 3, at a 95% confidence level, the variables in the log-logistic model are all significant, while
the lognormal model has four insignificant variables and the Weibull model has five. Even though
it is mentioned in Hojati et al. [14] that weather conditions including temperature, wind speed,
and precipitation do not have significant effects on traffic incident durations, these variables are found
to be statistically significant in Table 3 for all the alternative duration models. Both precipitation and
wind speed have a negative effect on the daily travel distance. This is consistent with our assumption
that, since Toyota is a coastal city, people would be prevented from driving by heavy rains and strong
winds. The weekday dummy variable as another daily information is also significant for all the
alternative models. The negative effect indicates that people tend to drive longer distances during the
weekend. This may be due to vehicle dependency, as well as longer travel distances to leisure areas in
Toyota City. Even though the fuel efficiency is insignificant for the lognormal duration model, it still
achieves a 91% confidence level with a positive effect. The main reason may be an environmental
consideration, since Toyota has been selected as an environmental model city by the Japanese
government [44]. The negative effect caused by the engine size may be due to the same environmental
consideration, and is showing consistency over three alternative distribution assumptions.

Hybrid vehicles could be an environmentally friendly transportation mode, but it is insignificant
with the Weibull model. It positively affects the travel distance in the other two models. The basic
personal covariates, age and gender, are significant in all the models. Age shows a consistent negative
effect for all the models, and male drivers tend to drive longer distances based on all the models.
Half of the job description variables are insignificant in the lognormal duration model. The result
of the Weibull model shows that only two occupations affect the travel distance. Only the variable
representing those who are working as company staff is significant for all the models in Table 3,
with a positive effect which indicates that they tend to drive longer than average.

Table 4 summarizes that the log-logistic duration model for the panel data is the best fitted among
the alternative models, but the number of significant variables is the least. At a 95% confidence level,
the variables are all significant in both the lognormal and Weibull models, but the log-logistic model
has five variables that are insignificant. The improvement in the number of significant variables in
the lognormal and Weibull duration models implies that the individual effect should be considered.
The daily average temperature is the only daily information covariate that is not significant for the
log-logistic model, which is consistent with Hojati et al. [14] and different from our expectation.
However, similar as summarized in Table 3, the other weather condition variables, such as the
precipitation and wind speed, along with weekday dummy in Table 4, still have negative effects on the
travel distance. Except for the hybrid vehicle dummy, which is insignificant in the log-logistic model,
the other vehicle information variables are all significant for all the alternative models. The result is
similar to that above, showing that people who pay more for their vehicle are also willing to travel
longer. The larger fuel efficiency also leads to a longer travel distance; this may cause fewer emissions
when the same distance is traveled and may be one of the reasons for Toyota City being selected as
an environmental model city in the pursuit of a low-carbon society [44]. Differently from Table 3,
even though the engine size is still significant for all the distribution assumptions, it shows a positive
effect in the Weibull duration model for the panel data. The gender variable shows the same effect as
the pooled model in Table 3; males would driver longer distances than females, and as age increases the
travel distance decreases. Unlike in Ding et al. [29], age is still significant for all the models, and it is
found to have a negative effect on the daily travel distance. This is expected, since 98.15% of our
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participants are working people, and young people are always more likely to be sent by older people
to do the leg work, such as sending documents to clients face to face in Japanese society. The effect
of occupation is totally different from the pooled model. Six occupation variables are significant in
both the lognormal and Weibull models, but only half of them are significant in the log-logistic model.
The job of driving school is the only variable which shows a consistent positive effect over three models.

From the results shown in Tables 3 and 4, even though the panel models are all improved compared
to the pooled model, the lognormal duration model is not much improved compared to the other
alternatives. The small magnitudes of the random parameters in the lognormal duration model implies
that the individual effect is too insignificant to be considered. The Weibull and log-logistic duration
models for the panel data were improved compared to the pooled models according to both the AIC
and the likelihood ratio. This implies individual effects do exist and should be considered in these two
duration models.

The daily average precipitation and wind speed as representative elements of weather covariates
presented a consistent negative effect on the daily travel distance for all the alternative distribution
assumptions in both the conventional and panel models. Similar to what was mentioned in [45], car trips
are affected by rain, as people are not particularly fond of driving when the weather conditions are not
good. This is quite understandable, since vehicle trips unlike railways are more flexible, and travel
plans might be easily changed when people found out it is rainy, especially for the leisure trips at the
weekend, since there are various alternative destinations. However, the insignificance of the daily
average temperature in the log-logistic panel model was unexpected. The weekday dummy suggests
that people tend to drive more during the weekend. Considering that 98.15% of the participants
are employed, their driving purposes on weekdays could be quite unified as commuting. However,
because of the multiple purposes for trips at the weekend and since Toyota is a vehicle-dependent
city, people may still use private vehicles rather than public transportation for their leisure and other
non-commuting-related trips.

The covariates of vehicle information are statistically significant at the 95% confidence level
for almost all the panel duration models, except for the hybrid dummy in the log-logistic model.
The positive effect produced by fuel efficiency may come with economic and environmental
consequences. As mentioned in [46], a green lifestyle may lead to a person’s propensity to buy
an electric vehicle, and thus the people who own better fuel efficiency vehicles may be prone to buy
an electric vehicle, which holds a longer battery capacity. Household income is another widely used
variable in similar studies [29,32], but since the participants were very sensitive about their income,
we used the price of the vehicle to measure their willingness to pay for transportation. It is deemed
that, with a consistent positive effect in both the pooled and panel models with all the distribution
assumptions, people who are willing to spend more on their vehicles are also the ones who travel
longer. This can be explained psychologically by what has been mentioned in [47]; those people who
hold less willingness to pay for transportation may prefer living in a less car-dependent area.

The covariates of personal information—specifically, age and gender—are consistent in both the
pooled and panel models with all three alternative distribution assumptions. The covariate of age
reveals that older people tend to drive less than young people. Thus, different from what has been
suggested in [46]—that youths share a propensity for electric vehicles—in our research, the shorter daily
distance demand from older drivers could be easier fulfilled by electric vehicles. The former mainly
considers people’s willingness to pay for electric vehicles, but we care more about the adaptation of
people’s daily travel demands. The factor of gender indicates that males tend to drive longer than
females, and this is consistent with many previous studies [29,48,49]. This may be because Japanese
women are often expected to contribute themselves to the family enterprise. Even though the effect of
each job is determined in the models, the result is not consistent over alternative models.
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5. Conclusions

Travel behavior has been studied by examining explanatory variables in several manners. It has
been demonstrated that travel distance can be used in a survival analysis as travel time [28,32].
This study developed a duration model not only with pooled regression, but also with panel data.
A comparison of pooled regression and panel data models indicates that individual effects exist
and can be considered using a combination of a duration model and random intercept regression.
The use of lognormal, log-logistic, and Weibull models also allows an exploration of the distribution
assumption for a fully parametric duration model, and here the log-logistic model demonstrated the
best performance.

The daily travel distance is determined by many key factors, as tested in this study. The daily
travel distance of people who live in a coastal city, such as Toyota City, is highly dependent on the
weather conditions, such as precipitation and wind speed, but is not really affected by temperature
during the spring and summertime as expected. The engine size, fuel efficiency, and price of the
vehicle affect the travel distance significantly. Dummy variables, such as weekdays and gender, are also
important in determining the travel distance. Electric vehicles a with limited battery capacity could be
more adaptable to older drivers who live in a rainy and windy city, such as Toyota, and who have
environmental awareness.

A limitation of this study is that even though the log-logistic panel model performed best according
to the AIC and log-likelihood, the temperature variable and half of the occupational variables were
insignificant. To eliminate this issue, the data observation period should be expanded to include the
autumn and winter. This could help to enhance the effect of weather variables. Further research
should be conducted using a random slope duration model which can also consider the individual
heterogeneity. In addition, previous research also compared the travel distance by different travel
purposes. In this study, we simply used a weekday dummy to differentiate commuting trips with
other trips. This could be improved by the collection of trip purpose data.
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