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Abstract: Mitigating the effects of natural hazards through infrastructure planning requires integration
of diverse types of information from a range of fields, including engineering, geography, social
science, and geology. Challenges in data availability and previously siloed data have hindered the
ability to obtain the information necessary to support decision making for disaster risk management.
This is particularly challenging for areas susceptible to multiple types of natural hazards, especially
in low-income communities that lack the resources for data collection. The data revolution is altering
this landscape, due to the increased availability of remotely sensed data and global data repositories.
This work seeks to leverage these advancements to develop a framework using open global datasets
for identifying optimal locations for disaster relief shelters. The goal of this study is to empower
low-income regions and make resilience more equitable by providing a multi-hazard shelter planning
framework that is accessible to all decision-makers. The tool described integrates spatial multi-criteria
decision analysis methods with a network analysis procedure to inform decisions regarding disaster
shelter planning and siting.
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1. Introduction

Disasters can have devastating impacts on societies, resulting in loss of critical infrastructure, loss
of economic viability, and above all else, loss of life. Managing disasters is challenging because the types
of hazards vary greatly (e.g., natural hazards such as hurricanes, floods, earthquakes, and landslides,
or anthropogenic hazards such as terrorism, armed conflict, and oil spills) [1]. Disasters impact
communities across a range of sectors at varying levels [2,3], and the magnitude of their impact is
determined by a community’s social, economic, and environmental capacity to adapt to them [4].
Disaster events are particularly damaging to low-income nations, which do not have adequate resources
to withstand the impacts [2,5–7].

Shelter allocation is a critical component of disaster risk management [8] that low-income
nations do not have adequate resources to plan effectively [7]. Effective shelter allocation requires
integrated assessment of multiple hazards, as well as infrastructural and non-infrastructural elements [9].
Because low-income nations often do not have the resources for information management to make informed
shelter planning decisions, shelters may fail to meet the needs of the population [10,11]. The shelter
allocation process varies by government policymaker and aid organization [9], but common practices in
shelter allocation suffer from several drawbacks that may hinder recovery [8,9]. One drawback is that
disaster risk management is often approached through a top-down structure that neglects community
participation and local needs [12]. Another is that a segmented approach is often taken to disaster risk
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management [13]. This work addresses these two common shortcomings of disaster risk management
with respect to shelter site planning for natural hazard events.

1.1. Disaster Risk Management and Resilience

Disaster risk management is the practice of preventing new disaster risks, reducing existing
disaster risks, and managing residual risks to strengthen resilience and reduce losses [14]. ‘Resilience’ is
the ability of a system or society exposed to hazards to resist, adapt to, and recover from the effects of a
hazard [14]. Resilience relies on effective decision-making in all phases of disaster risk management:
Mitigation, preparedness, response, and recovery [15,16]. The disaster risk reduction paradigm aims
to build community resilience and reduce vulnerabilities in order to better manage disaster risks and
impacts [12]. ‘Vulnerability’ is the measure of a community’s susceptibility to the impacts of hazards
due to physical, social, economic, and environmental factors [14]. Vulnerability is used in this study as
an indicator of a community’s ability to respond to a disaster. It is characterized by a combination of
the physical environment, built environment, and social conditions [17]. Hazard exposure is used to
represent vulnerability in this study.

A common shortcoming to disaster risk management is a top-down approach, which has been
found in historical disasters to not only be ineffective, but undermine the goal of reducing vulnerability
to and impacts of disaster in communities. An example of the failures of top-down disaster risk
management is the 2009 L’Aquila earthquake in Italy, which was devastating in large part because
risk assessment in the area did not consider social factors of risk at the local community level [12].
Project management must consider and engage communities to ensure that their needs are met and
specific vulnerabilities are reduced [18]. Participation in disaster risk management, especially the
shelter process, has been found in many studies to empower communities to build resilience and
improve the community’s likelihood of successful recovery and long-term rehabilitation [9,17,19,20].

1.2. Disaster Shelter Location

A key aspect of disaster risk management is planning shelter locations, made necessary by the
displacement of populations as a result of a disaster [21]. In 2019 alone, an estimated 24.9 million
people across the world were displaced by disasters with shelter needs [22]. Different types of shelters
with different characteristics and requirements are employed for the stages of disaster risk management.
A linear, segmented approach is often taken to disaster risk management [13], resulting in emergency
shelters that are planned as response preparation without adequate consideration of the potential need
for post-disaster shelters during the recovery phase. For example, after the 2010 earthquake in Haiti,
the humanitarian emergency shelter response was successful in sheltering the targeted 100,000 families,
but the transitional phase towards recovery lasted for years in large part because the emergency shelter
plan was not designed to facilitate housing recovery [23]. In many cases, external aid is focused on
emergency efforts and does not continue through recovery, leaving communities without resources or
guidance to facilitate long-term rehabilitation [9]. Shelter is a process, and continual support is needed
to transition from emergency to recovery [24,25].

1.3. SMCDA in Disaster Risk Management

In recent years, the spatial multi-criteria decision analysis (SMCDA) method has been shown
to have potential for disaster planning decisions, including shelter site location [26]. SMCDA is a
procedure that can be used by a range of stakeholders, including community members, in collaboration
to inform a complex decision process such as those associated with shelter site selection [26,27].
The majority of studies utilizing SMCDA for shelter allocation consider a single hazard [28,29] and rely
on detailed local data. SMCDA has the capacity to consider criteria for temporary and post-disaster
shelter simultaneously, allowing it to harness the complexity of interactions between multiple stages of
disaster risk management. It addresses issues in top-down approaches to disaster management by
offering a platform for stakeholder collaboration [30]. In SMCDA, alternative solutions, defined in this
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case as sites under consideration for shelter allocation, are evaluated by decision makers using weighted
criteria [26]. SMCDA for disaster management is commonly approached through the Analytical
Hierarchy Process (AHP) that defines the hierarchy on which criteria are evaluated. This is particularly
beneficial to addressing the shelter allocation component of disaster planning, because it can account for
input from multiple stakeholders, including government policy makers, aid organizations, impacted
communities, technical experts, and involved private sector [4,31]. This procedure allows them to make
decisions within their limitations and to set priority between and amongst risks and requirements
for a shelter site [27]. This methodology gives the stakeholders the ability to consider both the most
likely or frequent natural hazard, as well as the most destructive natural hazard that may affect their
community [5]. A limitation of this method is that it is susceptible to uncertainty associated with
human decision-making and interpretation [32].

In recent years many studies have utilized SMCDA for shelter allocation: For example, Kar et al.
identified potential emergency shelters for hurricanes in the United States [33]; Alçada-Almeida et al.
utilized a multi-objective model to locate emergency shelters in response to major fires in Portugal [34];
and Xu et al. employed a multi-criteria model to allocate urban earthquake emergency shelters in
China [35]. However, these are all single-hazard studies, while in reality, disasters are not always
isolated incidents. One may occur during the recovery period for another, or a certain hazard event
may trigger another [21]. For example, it is common for landslides to occur following large rainfall
events, such as in Sierra Leone in August 2017 [36], or to be triggered by earthquakes, such as
the 2010 Haiti earthquake that caused landslides that blocked roads, dammed rivers and streams,
and threatened infrastructure [37]. Additionally, highly devastating disasters may keep populations
displaced for an extended period of time, during which another disaster may occur. In order to address
problems associated with a segmented disaster risk management approach and plan emergency
shelters that orient long-term recovery, multiple hazards must be considered simultaneously. In the
Sendai Framework for Disaster Risk Reduction 2015–2030, the United Nations emphasizes the need for
multi-hazard approach for effective disaster risk management [4]. A multi-hazard approach enables
shelter infrastructure to be adaptable to the uncertainty associated with disasters and to the complexity
of disaster recovery. The interactions between hazards and the entanglement of the stages of disaster
risk reduction result in very complex decision-making that SMCDA has the capacity to tackle, allowing
shelters to be planned in a way that facilitates transition from one stage to another and promotes
resilience of shelter infrastructure.

Some recent SMCDA studies consider multiple hazards: Karaman [38] and Skilodimou et al. [39]
performed multi-hazard risk assessments in Istanbul, Turkey, and the Peneus river basin, Greece,
respectively. These studies, along with the previously cited single-hazard studies, rely on local and
private data. Gallina et al. [40] performed a multi-hazard risk assessment at the North Adriatic coast,
Italy, using publicly available regional data. Studies which use open data often face challenges in
data acquisition that limit the scope of their work, such as the site suitability analysis of emergency
earthquake shelters in Japan conducted by Akamatsu and Yamamoto that was restricted to cities which
had published their emergency shelter information [41]. Open data has the potential to advance the
initiatives contributing to resilience where high costs surveys may not be an option [42].

1.4. Data Driven Approach for Disaster Risk Management and Shelter Location

Integrated assessments of information from a range of scientific and social disciplines are needed to
inform disaster risk management [7,29]. Previously, challenges in data acquisition and integration have
limited the success of planning for disasters, particularly in low-income nations where the infrastructure
for data collection, storage, and integration has not been available [10,43]. The current data revolution is
quickly opening doors to potential solutions for disaster risk management in international development
through global, open access spatial data that allows for the identification of risk and facilitates planning to
reduce it [44]. Global datasets are increasingly made available, making the SMCDA approach to shelter
site selection feasible worldwide, including in low-income, data-sparse communities.
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The goal of this study is to leverage the current data revolution to develop a framework for
identifying optimal locations for multi-hazard shelters that is accessible to decision makers anywhere
using global, publicly available data. This framework addresses the problems associated with a
segmented approach to the shelter process and a top-down approach to disaster risk management
by integrating information on multiple hazards and creating a platform for stakeholder collaboration
that promotes community participation. As a result, this SMCDA framework promotes more effective
disaster risk management. The practice of disaster risk management serves to reduce community
vulnerability and strengthen resilience; therefore, the use of global, open data gives this framework the
potential to make resilience more equitable by empowering low-resource communities worldwide to
make informed shelter allocation decisions.

2. Methods

We propose a multi-hazard SMCDA approach using global data for shelter allocation to address
common failures of top-down, segmented, single-hazard approaches in disaster risk management.
To the authors’ knowledge, utilizing a multi-hazard SMCDA for the purpose of shelter site selection
is novel, as is relying on global, open data. This project seeks to create a methodology for disaster
shelter planning that can be translated and adapted to different regions, countries, hazard scenarios,
decision-maker preferences, and optimization goals. We approach shelter as a continuum or a process,
as it is required to evolve through multiple phases of disaster risk management [45,46]. While we
focus on emergency shelter, our approach has implications for long-term recovery and the inclusion of
criteria around livelihood.

Using Haiti as a case study, this paper demonstrates the decision process developed to identify
optimal, safe locations for shelters following a disaster event. The study area, shown in Figure 1,
was chosen to simulate the framework’s applicability in a developing country with high disaster risk
whose resilience has been impacted by its lack of resources for effective disaster risk management.
High-quality data is typically not available in low-resource communities such as Haiti. Haiti has
been continually devastated by multiple types of disasters due to natural hazards throughout history
including earthquakes, floods, landslides, and hurricanes [47].
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We utilize a geographic information system (GIS) to process and represent data that support
planning recommendations [7,26]. It consists of two stages: Spatially explicit multi-objective decision
analysis to identify suitable shelter locations, and a location-allocation algorithm to optimize selection
among the suitable locations. The first stage relies on technical intelligence to characterize risk
and serviceability of infrastructure at all alternatives, which are defined here as the locations being
considered for a shelter site. This involves the integration of relevant datasets from different sources,
and provenance through standardization procedures. The process of identifying suitable locations is
designed to incorporate, although does not need to rely on, decision-maker preferences.

The second stage utilizes a location-allocation algorithm to optimize selection among the suitable
locations, identified in the first step, with respect to vulnerable populations and scenario-specific,
user-defined constraints. The location-allocation analysis is executed specific to the problem statement
and what the decision-maker defines as “optimal” based on their goals and constraints. The framework
is structured by the analytical hierarchy process, which organizes the criteria for site suitability and
optimal location into a hierarchy for analysis. Figure 2 shows the hierarchy through which this
decision-making process is completed. Attributes measure success of objectives by quantifying criteria
for “low hazard risk” and “high serviceability”. The criteria, and how global datasets are transformed
to measure them, are detailed in Table 1. Suitable alternatives are selected based on their performance
on the objectives. User preferences can be utilized to weight criteria and objectives. The goal is achieved
based on the definition of “optimal” through the location-allocation analysis. During this stage, decision
rule is executed to select from the suitable alternatives to solve the problem presented. The goal of this
hierarchy is open-ended to allow for decision-maker customization based on their limitations.
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Figure 2. Decision-making hierarchy for spatial multi-criteria decision analysis (SMCDA) process,
where blue arrows represent Stage 1 (site suitability) and red represent Stage 2 (site selection).

The tool is demonstrated through a simulated scenario. The scenario-specific goal, to optimize
shelter locations, is achieved through the following problem statement: Minimize the number of
facilities required, and maximize demand met by vulnerable populations in Haiti while limiting refugee
driving time to 60 min. The decision-maker preferences used in this scenario are meant to represent
the aggregated inputs of a group of hypothetical stakeholders that reflect their collective priorities.
Spatial inputs are used to identify low risk areas (Objective 1) and areas of high serviceability and safety
(Objective 2). Various attributes are considered for each objective. Landslide, earthquake, and flood
susceptibility were examined to characterize hazard risk, while for serviceability and safety, landcover
suitability, accessibility by vehicle, and accessibility of healthcare were considered. These results were
then used to spatially identify vulnerable populations and suitable shelter locations, to ultimately
select the most optimal shelter sites.
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Table 1. Processing of source datasets into attribute layers for each criterion.

Criteria Source Global
Dataset Processing Performed

Attribute Raster
(Metric of

Criteria Success)

Standardized
Attribute Raster

(Metric of
Objective Success)

Minimize hazard risk
by minimizing

landslide susceptibility

Landslide
Susceptibility,

30” discrete raster [49]

Project coordinate
system and

resample resolution

Landslide
susceptibility Landslide risk

Minimize hazard risk
by minimizing

susceptibility to
earthquake damage

30 m Shear Wave
Velocity (VS,30) [50],

30” continuous raster,
Peak Ground
Acceleration
(PGA) [51]

3′ continuous raster

Project coordinate
system, resample

resolution, reclassify
and perform

weighted overlay

Seismic site
conditions overlaid

with expected
ground

acceleration

Earthquake
damage risk

Minimize hazard risk
by minimizing

susceptibility to
fluvial flooding

Rivers,
Vector polyline [52]

Euclidean distance tool
to estimate floodplains Distance to rivers Fluvial flood risk

Maximize
serviceability by

maximizing
accessibility by vehicle

Roads,
Vector polyline [53]

Weighted road density
by road type
classification,
discounting

insignificant types
such as footpaths

Density of roads Accessibility by
transportation

Maximize
serviceability by

maximizing proximity
to healthcare

Healthcare Facilities,
Vector point [53]

Weighted point density
of permanent

healthcare facilities
and field hospitals

Density of
healthcare facilities

Accessibility to
healthcare

Maximize
serviceability by

maximizing suitability
of land cover

Land Cover,
500 m discrete

raster [53]

Project coordinate
system and

resample resolution
Land cover

Suitability of land
cover for

shelter site

Each attribute is defined to evaluate the criteria to achieve each objective. These criteria are
detailed in Table 1 with an overview of the pre-processing completed to transform primary data
into attribute layers that serve as a metric of success for their objective. The objectives are weighted,
based on decision-maker preference, to optimize the overarching goal. For the development of the
framework, only three attributes were selected to measure each objective. The attributes to measure
serviceability were selected in accordance with the United Nations High Commissioner for Refugees
(UNHCR) Emergency Handbook guidelines [1]. Susceptibilities to common hazards known to affect
the area of interest in the demonstrated scenario were assigned as attributes to measure hazard risk.
The framework was designed to be adaptable with evolution of data availability and accessibility;
in other words, the source global open datasets used in this demonstration of the tool can be easily
swapped out as more accurate, comprehensive data is published.

This procedure was automated through ArcMap Model Builder so that this analysis can be
completed for any given area of interest. The full workflow is presented in Figure S1a. Details on the
components of the Model Builder tool are shown in Figure S1b–f.

2.1. Identifying Suitable Shelter Locations

Attributes and objectives are integrated through the weighted linear combination (WLC) model
in Esri ArcGIS 10.7.1 software. It consists of value functions by which each attribute is standardized
onto a universal scale, and criteria weights by which stakeholder preferences are accounted for [26].
For this study, a discrete value function of 1–3 was assigned. For the hazard class of attributes,
a value of 1 represents low risk, while a value of 3 represents high risk. For the serviceability class
of attributes, a value of 1 represents most suitable infrastructure while a value of 3 represents least
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suitable infrastructure. Overall, the success of the objectives is optimized by low values on this scale.
Figure 3 and Appendix A, Table A1 detail this process for addressing Objective 1, and Figure 4 and
Table A2 detail the process for addressing Objective 2. Figures 3 and 4 represent the bottom level of the
hierarchy in Figure 2.
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(a) Reclassified road density to accessibility by vehicle transport; (b) reclassified healthcare facility
density to accessibility to healthcare; (c) reclassified land cover to suitability/serviceability of site land cover.

Landslide classes were estimated from NASA’s predetermined susceptibility classes, which were
established considering topography (slope), seismicity (distance to faults and geological classification),
presence of roads, and forest loss [49]. The original global landslide susceptibility map was classified
using fuzzy logic to develop a 1–5 scale of very low to very high susceptibility. This was standardized
to be conservative of risk, the result shown in Figure 3a.

Earthquake susceptibility was estimated considering site conditions and expected ground
accelerations. A global slope-based 30 m shear wave velocity profile (VS,30) was used as a proxy
for seismic site conditions [50]. VS,30 was standardized onto a scale of 1 to 5, where 1 is lowest risk
and 5 is highest risk, based on typical shear wave velocities for site classes from hard rock to soft
clay accepted by the American Society of Civil Engineers (ASCE) in design code ASCE 7-16 [54].
Rock, as opposed to soft soils, minimizes amplifications of shear waves from seismic activity that
can cause large ground deformations and infrastructure damage [55]. Shear wave velocity does not
consider the probability of seismic activity or its magnitude; it serves to predict how a site may respond
in the event of an earthquake. Peak ground acceleration (PGA) at a 2% probability in 50 years is
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used as a metric for expected ground acceleration [51,56]. This data is specific to Haiti, but may
be replaced with global models as spatial data is made available for download, such as the Global
Earthquake Hazard Model [57]. PGA was standardized onto the same scale as VS,30, where the lowest
accelerations correspond to low standardized values and very weak ground movement, while high
values correspond to high standardized values and violent ground movement [56]. The PGA data is
representative only of firm-rock site condition, and considers a 30 m averaged VS,30 of 760 m/s [51].
For this reason, PGA was considered with VS,30 to account for site-specific seismic response. These two
metrics were aggregated to create an earthquake susceptibility map that was standardized onto the
1–3 risk scale, shown in Figure 3b.

Flood susceptibility classes were estimated from distance to rivers, seen in Figure 3c.
Floodplain delineation is a complex process that requires a high resolution digital elevation
model (DEM) to determine the geometry of the river and the surrounding land [58]. Commonly in
developing and data-sparse regions, a coarse global DEM is relied on for hydraulic modeling [58].
Distance to river is used here as a proxy and can be replaced with more comprehensive spatial flood
susceptibility data when it becomes available.

Accessibility by vehicle transportation was measured by density of the road network. This attribute
serves to maximize accessibility during evacuation and supply delivery. UNHCR recommends that
refugees should only be expected to walk short distances [1]. Therefore, an alternative with a high
road density should require very little walking from the road, assuming vehicle transportation is
available in this scenario. The density values were weighted to give greater priority to major roads.
The standardization is shown in Figure 4a.

Healthcare density is used to measure accessibility to healthcare. This criterion is important in
minimizing casualties and thus maximizing safety, because disasters often result in injury, as well as
illness from contaminated and compromised water sources, for example [59]. Serviceability classes
were estimated with judgement based on the range of values in the area of interest for modeling
purposes, seen in Figure 4b. Major hospitals were given greater weight than smaller, specialized
facilities for standardization.

Land cover classes were based on UNHCR guidelines for ideal shelter sites, seen in Figure 4c [1].
NoData represents a constraint, or a value for a given attribute that disqualifies a location from being
suitable. In this case, land covers of inland water and wetlands were assigned as constraints, because
those locations are unsuitable for shelter construction.

Through the WLC method, an AHP employs a global method for constructing a priority rating [26].
The WLC model relies on the assumption that attributes are mutually preference independent.
Even though this assumption can be problematic in complex spatial problems, this method is generally
well accepted in practice [60,61]. It allows for consideration of preferences of multiple decision-makers,
which is beneficial because it creates a platform for collaboration between different stakeholders that
do not always share political or social initiative. Engaging with stakeholders is important to ensure
that disaster planning considers the needs of all affected and relevant parties, including members
of vulnerable populations, experts, and governments [5,16,62]. Through the WLC method, criteria
are weighted by pairwise comparison. Each pair is compared on a scale of 1 to 9 (Figure 5, Table A)
in which the user ranks their preference of one, k, over the other, p [38,63]. A value of 1 signifies
equal preference and 9 signifies that criterion k is of extremely greater importance than criterion p.
The pairwise comparison values are organized into a matrix where the value ckp, the preference of
k over p, is the reciprocal of cpk, the preference of p over k. The user-defined pairwise comparison
matrices for this scenario are shown in Table B and C of Figure 5. For example, the value of 2 (see
highlighted in Figure 5, Table C) means that, according to the decision-maker, maximizing accessibility
by vehicle transportation at a shelter location is slightly more important than maximizing access to
healthcare facilities. The highlighted value of 1/5 means that maximizing accessibility by transportation,
attribute p, has strong importance over maximizing land cover utility, attribute k, at a shelter location.
For that reason, the value of ckp is less than one, calculated as the reciprocal of the preference value
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given to p over k, or cpk. In this scenario, all three hazards in consideration are assigned equal weight,
represented by values of 1 in the matrix. This was chosen to show the conservative scenario that must
meet equal risk requirements for each hazard in consideration. This process is performed separately to
compare criteria for each objective, and then the criteria themselves are weighted against one another,
in accordance with the hierarchy. The values in Table B and C (Figure 5) are standardized according to
the equation shown for c∗kp. The standardized values for this scenario are displayed in Table D and E of
Figure 5. The weight given to criterion k is calculated according to the equation shown for wk, where n
is the number of criteria. The scenario-based criteria weights, wk, are applied to the value function of
each attribute k as the combination rule (Figure 5, Table F and G). These weighted value functions
measure the success of their corresponding objective at each alternative site; the result corresponds to
the second level from the bottom of the hierarchy in Figure 2. The same process is applied to those
results, as displayed in Table H, I, and J, to evaluate overall suitability at each alternative. Like the
criteria, the objectives are weighted according to decision-maker preference and aggregated. The result
corresponds to the box titled “Select Suitable Sites” in Figure 2. In this scenario, minimizing hazard
risk is slightly more important to the user than maximizing serviceability at shelter sites, signified
by a value of 2 for ckp, where k is Objective 1, and p is Objective 2. The AHP structure combined
with the WLC incorporation of user preference allows decision-makers to adjust to their limitations:
For example, if funding and resources are no issue, the decision-maker may give strong preference to
the “minimize hazard risk” objective because they are confident in the ability to build field hospitals,
provide alternate forms of transportation for displaced persons, and supply imports.

2.2. Site Selection Optimization

The final step in the spatial multi-criteria decision analysis is the decision rule through which the
goal is achieved. In this framework, the final alternatives are selected through a location-allocation
network analysis. Candidate shelters are identified from the suitable alternatives based on the
user-specific goal—one could investigate all suitable alternatives in the area of interest, or the ten
most suitable in each geographic region, for example. In this scenario, the most suiTable 10% of
alternatives were analyzed as candidate shelter locations. Hazard exposure is used as an indicator of
vulnerability: Population centers that fall within or close to areas experiencing moderate to high risk of
all the hazards under consideration are characterized as demand points. Demand points, derived from
population density, are used to represent populations to be accommodated by the shelter locations
chosen [2,64]. The candidate shelters and demand points become inputs to the location-allocation
analysis. The shelter sites are selected from the candidate locations and vulnerable populations are
allocated to the sites from the demand points.

Optimal site selection is controlled by the AHP scenario-based, stakeholder-specific goal to
“identify optimal shelter locations”. However, the rules for optimization must be defined by the
decision-maker. ESRI ArcGIS Pro location-allocation tool was used to select optimal locations. The tool
can solve a range of optimization problems, including minimizing impedance from demand points or
allocating shelters to meet all demand. The problem type is defined based on limitations such as budget,
shelter capacity, transportation, or local law and policy. For example, decision makers could allocate two
shelters that meet maximum demand, minimize the number of shelters to meet all demand, or allocate
one shelter per region that minimizes impedance. This depends on the decision maker preference and
available resources. These considerations are typically country/community/organization specific and
therefore are regarded as planning decisions that must be specified for this tool rather than universal
parameters. In anticipation of long-term recovery and rehabilitation, decision-makers may limit
shelters to a maximum distance from the community center so that members may eventually return
to their schools, place of work, etc. In the scenario being demonstrated, the goal is to minimize the
number of facilities needed while maximizing demand met within 60 min of driving from vulnerable
population points. This scenario assumes that the shelters have no capacity limit for design and that
there is access to vehicle transportation.
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3. Results

3.1. Tool Outputs

The result of the WLC, the first stage, is a suitability map for shelter site location, which is
the representative measure of success of the objectives at each alternative. The suitability for the
demonstrated scenario is shown in Figure 6.Sustainability 2020, 12, x 12 of 19 
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Figure 8 shows the results of the second stage, location-allocation analysis for the demonstrated
scenario: The recommended shelter sites and allocation of vulnerable populations to the shelter sites.
Thirty shelters were selected, serving 97.5% of the demand. This scenario was country-wide and
focused on major shelter location.
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3.2. Sensitivity

A sensitivity analysis was conducted to investigate the impact of decision-maker priority regarding
the hazards under consideration on the resulting suitability of the alternatives. The goal was to explore
the effect of stakeholder preference with regard to the hazards, over which they have no control,
and speculate on the degree to which planning decisions should be informed by technical knowledge
where risk is concerned. It is important for stakeholders to understand the impact of their preferences
to use the tool effectively. The hazards were initially given equal weights, so for this analysis, each
hazard was adjusted to have “strong importance” over the remaining hazards according to the scale in
Table A of Figure 5, then that preference was inverted. This is essentially increasing and decreasing
the importance of a single hazard with respect to the other hazard criteria. Increasing the priority of
earthquake or landslide risk decreases suitable area, while decreasing their priority increases suitable
area. As seen in Table 2, decreasing priority of landslide risk increased suitable area by a greater
magnitude than decreasing the priority of earthquake risk. Increasing and decreasing the priority of
flood risk with respect to the other hazards appears to have the most significant impact on the suitability
results. It is important to note, however, that this model is a placeholder for a more comprehensive flood
model. These results show that giving high priority to flood risk may yield misleadingly optimistic
suitability results.
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Table 2. Sensitivity of suitability to weights of hazard criteria.

Scenario % Suitable Area 1 % Change in
Suitable Area

Original: All hazards equal importance 38.0 N/A
Earthquake strong importance over flood and landslide 2 24.7 −35
Flood and landslide strong importance over earthquake 46.8 23
Landslide strong importance over flood and earthquake 25.1 −34
Flood and earthquake strong importance over landslide 53.2 40
Flood strong importance over earthquake and landslide 82.8 118
Earthquake and landslide strong importance over flood 18.4 −52
1 Percent of suitable area with a standardized suitability value < 2 on the scale of 1–3. 2 Strong importance as
defined by Table A of Figure 5.

A brief sensitivity analysis was also conducted on the site selection stage of the decision process
to further explore the effect of stakeholder preferences on the resulting decision for shelter location and
allocation. The maximum driving time for allocation of vulnerable population to a shelter site was
adjusted from 60 to 30 min. The results are shown in Table 3.

Table 3. Results of analysis of sensitivity to impedance cutoff.

Max. Impedance
(Driving Minutes)

Number of
Candidate Shelters

Number of
Shelters Chosen

% of Demand
Allocated

30 552 73 85.4
60 552 30 97.5

On a scale of this size, increasing the tolerance for impedance made a significant impact on
allocation results—less than half of the number of shelters were required, and almost all the demand
was met. This poses the question: What is the maximum distance that a refugee should have to travel in
a disaster? Further investigation into the results at other analysis scales may be required to understand
the impact of maximum impedance in driving time on the location and allocation of shelters. When the
threshold was set to 30 min, many demand points were not allocated. When this is the case, tolerance
may need to be adjusted for impedance, criteria weights, or other components of the analysis that are
specified by decision-makers.

4. Discussion

The framework developed in this study takes a deterministic approach to the shelter site location
problem, with implications for disaster planning in the context of international development. It is
adaptable to regions and scenarios around the world, and was designed to be adjustable to new
datasets and risk models as they are published. The purpose of this work is to demonstrate a process
that is feasible and accessible to decision makers anywhere in order to make resilience more equitable
and empower low-income communities through a disaster shelter planning tool. The framework
developed here seeks to address the limitations of top-down, segmented, single-hazard approaches to
disaster risk management through the integration of data on multiple hazards, and the possibility to
integrate input from stakeholders in multiple sectors and areas of expertise, including community
members. The framework is applicable using global open data, but has the benefit of being able to
implement or substitute local information that may provide higher resolution or stakeholder insight
and information that is not represented spatially. The framework was applied in a case study of Haiti,
a country susceptible to frequent and diverse natural hazards. The scenario demonstrated in this study
was achieved through the optimized allocation of shelters to serve 97.5% of vulnerable population in
Haiti. This outcome would vary in another scenario depending on stakeholder preferences, policy
constraints, and assumptions on what it means to meet the needs of affected people, but through this
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demonstration, the framework was shown to be effective in allocating shelter to serve vulnerable
populations under the hypothetical guidelines.

This study is constrained by data availability to characterize both risk and vulnerability, as well as
its limited focus on only natural hazards that does not allow consideration of the potential amplification
of natural hazards by anthropogenic hazards or the causation of anthropogenic hazards from a natural
hazard event. Restrictions in global open data availability prevent this study from considering social
or infrastructural dimensions of vulnerability. The ability to account for uncertainty is restricted
by the deterministic nature of the framework [21,26]. In addition, there is uncertainty in human
decision-making and interpretation. This limitation is addressed in this study through a sensitivity
analysis that investigates the impact of variation in stakeholder input on the model output.

In future development, the framework criteria can be expanded to better characterize the
complexity of disasters and the associated decision-making. One major limitation is in the data
available to characterize risk at a global scale. Data to characterize the infrastructure at a site must
be detailed, and it is currently infeasible to collect this information on a global scale. Many of these
datasets are not yet available locally in low-resource communities. A wider range of attributes is
necessary to encompass the complexity of shelter site selection in disaster planning: Tsunami, coastal
flood, and soil liquefaction risk to measure the objective to minimize hazard risk, and sanitation,
electric utilities, and land ownership to measure the objective to maximize serviceability. Water source
cannot yet be determined at a global scale due to potential water-quality issues, so this methodology
assumes that a clean water source may be imported to shelters in the absence of local data availability.
Risk exposure is used to represent vulnerability of the physical environment in this study, and should
be integrated with a global indicator of social vulnerability in future work. Social vulnerability paired
with the risk exposure used in this study to identify shelter demand could better predict populations
in need of shelter following a disaster event.

Further sensitivity analyses will be needed to evaluate the impact of user preferences on the
resulting suitable alternatives. If there is high sensitivity, the weighted linear combination process may
need to be altered to account for bias and varying interpretation of the comparison scale. The discrete
nature of classification used in this framework poses a limitation by not allowing it to account for the
uncertainty and ambiguity associated with natural hazards and disaster risk management processes, as
well as uncertainty associated with the influence of a human stakeholder and varying interpretations
of the priority ranking scale. A potential solution to this limitation is the implementation of fuzzy
logic [26].

Based on current open global data availability, this framework is more suitable for the allocation
of emergency shelters, but has implications for long-term recovery. As more global data is made
available, it can be adapted to better address criteria for post-disaster recovery shelter across multiple
sectors, particularly those associated with livelihood [66]. In future studies, the research will expand
to examine additional scenarios and locations in order to understand the framework’s sensitivity to
different factors and promote reliable adaptation to communities around the world. In addition, this
framework has potential for future application in post-disaster reconnaissance missions to enable users
to focus on areas of potential significant damage and their accessibility.

5. Conclusions

There have been many studies utilizing SMCDA for shelter allocation in recent years [33–35,41],
but these are all single-hazard studies. They do not address the reality that disasters are not always
isolated incidents or the implications of a multi-hazard approach for resolving issues with the
traditional segmented approach to disaster risk management. A multi-hazard approach to disaster
risk management is promoted by the United Nations [4], and in recent years, this has been reflected
in research [38–40]. Through this study, we applied a multi-hazard approach to the disaster risk
management task of shelter site selection. The framework described here was designed to facilitate the
allocation of emergency shelters with long term post-disaster shelter in consideration, particularly safety
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from multiple hazards. As a result, this framework has the potential to promote resilience. The novel
use of global open data can make that resilience equitable to low-income communities everywhere.

The framework developed in this study leverages advancements of global data for disaster
risk management, but while creating a platform for integrating critical local information through
stakeholder participation and collaboration. The framework strengthens resilience by addressing the
issues of top-down, segmented, single-hazard approaches to disaster risk management. While the
framework was applied to case study, the scenario analyzed in Haiti demonstrated the feasibility and
broad applicability of this global, multi-hazard approach to the spatial multi-criteria method for shelter
site selection. Ultimately, the goal of the framework developed in this study is to empower community
members and aid stakeholders in making disaster planning decisions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/15/6252/s1,
Figure S1: Automated AHP. (a) Model Builder tool; (b) corresponding hierarchy components; (c) detail of Model
Builder section A; (d) detail of Model Builder section B; (e) detail of Model Builder section C; (f) detail of Model
Builder section D.
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Appendix A

Table A1. Standardization of attributes for the objective to minimize risk.

Attribute
Standardized Value Standardized

Attribute Meaning1 = Low Risk 2 =Moderate Risk 3 = High Risk

Landslide susceptibility 1 1 2, 3 4, 5 Landslide risk
Earthquake susceptibility 2 2–5 6–7 7–10 Earthquake risk

Distance to river 3 >500 150–500 <150 Fluvial flood risk
1 Unitless susceptibility value, 1 being very low and 5 being very high. 2 Unitless susceptibility value established in
preprocessing, 2 being very low and 10 being very high. 3 Units = meters.

Table A2. Standardization of attributes for the objective to maximize serviceability.

Attribute

Standardized Value
Standardized

Attribute Meaning1 = High
Serviceability

2 =Moderate
Serviceability

3 = Low
Serviceability

Unsuitable
(NoData)

Road density 1 >2 0.5–2 <0.5 N/A Accessibility by
vehicle transportation

Healthcare
facility density 2 >0.5 0.1–0.5 <0.1 N/A Accessibility to

healthcare

Land cover 3
Grassland,

Non/sparsely-
vegetated

Cropland,
Agriculture Forest

Wetland,
In-land water,

Ocean

Serviceability of
land cover

1 Units = kilometers of road per square km. 2 Units = facilities per square km. 3 Land use class.

http://www.mdpi.com/2071-1050/12/15/6252/s1
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