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Abstract: Agaricus bisporus is a rich source of biologically active compounds with functional properties
that have a positive effect on human health. White and brown A. bisporus mushrooms were grown
both organically and conventionally. This study aimed to analyze chemical composition of the
mushrooms, their electrochemical properties, and the composition of volatile compounds. The
relationships between cultivation practices and the basic chemical composition, electrochemical
properties, and aroma compounds of A. bisporus were examined. The results reveal that ecologically
grown mushrooms accumulated higher amounts of ascorbic acid while conventionally grown
mushrooms accumulated more crude protein and zinc. More substantial amounts of dry matter,
crude protein, and crude ash were found in the brown mushrooms. The white mushrooms had a
higher content of ascorbic acid, crude fat, and dietary fiber. Ten volatile compounds were tentatively
identified in analyzed mushrooms, including five aldehydes, two esters, two alcohols, and one terpene.
Conventionally grown mushrooms had a higher pH value, but eco mushrooms had significantly lower
redox potential. White mushrooms had lower p-values than brown mushrooms. Eco mushrooms
could not be distinguished by their qualitative characteristics. The chemical composition of white and
brown mushrooms was somewhat different, and only the electrochemical properties of mushrooms
differed significantly.
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1. Introduction

In the EU, organic farming is a successful way to address multiple challenges. The organic
agriculture movement highlights the role that organic food and farming can play in achieving more
sustainable food systems, pointing to the fact that the organic market is growing quickly, proving
that European citizens demand high-quality food that also delivers a range of societal benefits [1].
Consumer demand for organic production grows by double-digits every year [2], and as the range of
organic products is expanding, sales of ecologically grown mushrooms are on the rise.

Nowadays, interest in mushrooms has increased all over the world due to their nutritional and
medical properties [3]. Agaricus bisporus is an edible mushroom native to grasslands in Europe and
North America and is cultivated commercially in large quantities on composted substrate. A. bisporus
mushrooms are considered to be nutraceuticals and functional foods because they contain large amounts
of bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids, and minerals,
and have both beneficial and nutritional effects on one or more functions of the body, improving health,
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well-being, and lowering the risk of illness [4–7]. The high nutritional value of edible mushrooms
depends on high protein, high fiber, and low-fat levels [3]. Mushrooms produce a large number of
proteins and peptides (such as lectins, fungal immunomodulatory proteins, ribosome-inactivating
proteins, antimicrobial proteins, ribonucleases, and laccases) with important biological activities [8].
Some investigators have even contended that the amino acid composition of mushrooms is comparable
to animal proteins [9]. They are very useful for vegetarian diets because they provide all the essential
amino acids for adult requirements; in addition, mushrooms have a higher protein content than
most vegetables, improving the dietary diversity without adding many calories [3,6]. Mushrooms
are a rich source of some novel dietary fiber. Mushroom cell walls contain a mixture of fibrillar and
matrix components, which include chitin and polysaccharides, such as β-D-glucans and mannans,
respectively [10]. Results of tests on rats suggest that the inclusion of A. bisporus mushrooms in the
daily diet may have beneficial effects on age-related deficits in cognitive and motor function [11].
A. bisporus white button mushrooms constitute the bulk of all mushrooms consumed and contain
bioactive compounds that exhibit immunomodulating and anticancer properties [12,13]. The A. bisporus
white mushroom is rich in acidic polysaccharides and antioxidants, including vitamin C, riboflavin,
niacin, folate, vitamins B12 and D, polyphenol, and flavonoids [5,9,14]. It is known that mushrooms
accumulate substrate-related minerals that are either extremely important for the human body (sodium,
potassium, calcium, magnesium, and phosphorus) or used for their own antioxidant protection (copper,
zinc, manganese, and selenium) [15]. The bioactive compound content depends upon species, nutritive
substrate type, pedoclimatic conditions, age of mycelium, processing, and preservation conditions. All
these factors lead to wide variability in the biological potential [15].

Mushrooms are also appreciated by cooks and chefs for their texture, flavor, and versatility.
Flavor is one of the most important quality attributes contributing to the widespread consumption
of cultivated mushrooms. A. bisporus mushrooms are considered a valuable food, not just because
of their abundance of bioactive components, but also their delicious taste [16]. The typical flavor of
mushrooms consists of non-volatile components, such as free amino acids, 50 nucleotides, organic
acids, soluble sugars, and polyols [16], and volatile compounds [17]. Agaricus mushrooms possess
a highly intense umami taste, and this might explain why they have long been used as a food or
food-flavoring material [16]. More than 80 different volatile compounds of commercial mushrooms
have been identified by electronic nose and gas chromatography-mass spectrometry and classified
into several categories such as alcohols, aldehydes, ketones, alkenes, terpenes, acids, esters, sulfur,
aromatic compounds, and others [17].

The growing interest in organic production requires methods that can simply identify differences
in food quality between organically and conventionally grown products [18]. Electrochemical
investigations provide additional information about metabolism and physiological processes. Scientists
suggest using the measurement of plant redox potential and pH to rapidly assess the impact of cropping
practices on plant health and relate it to soil health [19,20]. Life processes in plants can be described
as chains of electrochemical or redox reactions [21]. Three factors: pH, redox potential (rH in mV),
and resistivity (R in Ω), make up the basis of electrochemical tests, which translate into P-value
electrochemical parameters of product quality [22]. P-value is being tested as an integrative holistic
method of product quality assessment. According to the Bioelectric Vincent method, better product
quality or recovered products are attained by low redox potential and P-value, but higher resistivity [23].
These investigations are carried out on live organisms without the destruction of cells and reflect
the processes taking place in nature. Application of electrochemical research methods provides the
possibility of evaluating vitality of systems and of increasing knowledge about plant suitability for
food [22]. Research suggests a new quality concept in which vitality, structure, and coherence are
inextricably linked to the life processes of the plant and assumes that processes during the development
of the crop are reflected in the properties of the final product [23].

The aim of the research was to compare the chemical composition of A. bisporus white and brown
mushrooms grown ecologically and conventionally, using chemical and electrochemical methods.
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2. Materials and Methods

2.1. Proximate Composition Analysis

Ecologically and conventionally grown young A. bisporus mushroom specimens with a closed
30–40-cm diameter cap (3 developmental stage [24]), white and light brown, uniform, clean, and fresh
in sealed 250 g packs were purchased from a Lithuanian producer. Ecologically grown mushrooms
were certified with the ecolabels EU organic products label and LT-EKO-001. These mushrooms
were grown in a modern farm on the producer own organic mushroom substrate made exclusively
from natural ingredients. Conventional mushrooms were grown on the non-organic substrate. All
mushrooms were carefully selected and picked by hand. Before analysis, 6 samples of each species
(4 species of 1.5 kg each) were stored in packs in a refrigerator at a temperature of 5 ◦C. Chemical
composition of the mushrooms was analyzed by standard methods. Dry matter (DM) content was
assessed by drying the samples to constant mass at 105 ◦C; and ascorbic acid (AA) was determined
by titration with 2.6-dichlorphenol-indophenol sodium salt dihydrate. The amount of crude protein
(CP) was estimated by the Kjeldahl method [25]. The crude fat (CF) was determined by extracting
a sample with diethyl ether in a Soxhlet apparatus SOXTHERM® (C. Gerhardt GMBH & CO. KG,
Königswinter, Germany) [26]. The amount of crude ash (CA) was determined by dry burning samples
at a temperature of 500 ◦C. The quantity of macroelements was determined from the dry mass (DM) of
the mushrooms. The ash samples obtained from the dry-ashing procedure at 500 ◦C were dissolved in
nitric acid (HNO3) and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The
amount of dietary fiber (DF) was determined using a modified version of the Henneberg–Stohmann
method [27].

Chemicals used in this study were of analytical grade. Chemical analyses were performed in
three replications.

2.2. Electronic Nose Analysis of Volatile Compounds

The Heracles II e-nose (AlphaMOS, Toulouse, France), based on ultrafast gas chromatography,
was used to analyze the volatile compounds in organically and conventionally grown A. bisporus
white and brown mushrooms. The equipment consists of automatic sampling and detector systems.
E-nose is equipped with two columns working in parallel mode: a non-polar column MXT-5 and a
slightly polar column MXT-1701, 10 m length and 180 µm diameter each, connected with two flame
ionization detectors (FID). The researchers placed 2 g of each lyophilized mushroom sample in a 20 mL
headspace vial and sealed it with a Teflon-faced silicone rubber cap. The vials were placed in the
Heracles’ auto-sampler, and each vial was incubated at 55 ◦C for 6 min and shaken at 500 rpm. Then,
a syringe was used to pierce the silicone rubber cap, sample 3.5 mL of the headspace, and inject it
into a gas chromatograph where the injector temperature was 200 ◦C. The carrier gas (H2) flowed at
1 mL min−1 through it to concentrate the analytes and to remove excess air and moisture. The oven
temperature was 55 ◦C, and the two flame ionization detectors were at 270 ◦C [28]. The injection of
each sample was carried out on 5 replicates. For calibration, an alkane solution (from n-hexane to
n-hexadecane) was used to convert retention time into Kovats retention indices and to identify the
volatile compounds using AroChemBase (AlphaMOS).

2.3. Analysis of Electrochemical Parameters

Electrochemical parameters were measured in homogenized fresh mushroom samples. The pH
and redox potential (rH) were measured by a 781 pH/Ion Meter (Metrohm AG, Herisau, Switzerland),
and electrical conductivity (electrical conductivity is the reciprocal of electrical resistivity) by a
laboratory conductivity meter inoLab® Cond 7310 (Xylem Inc., WTW, Weilheim, Germany). P-value
as a combined parameter of the three mentioned parameters was calculated according to the formula:

P = [29.07 (rH − 2pH)]2
·rHo−1 (µW)
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where; rH is the redox potential (mV); pH is the hydrogen-ion activity; and rHo is the recalculated
specific electrical conductivity (µS cm−1) [29].

2.4. Statistical Analysis

Data analysis was carried out with STATISTICA version 7 software (TIBCO Software, Palo Alto,
CA, USA). The results were analyzed using one-way analysis of variance (ANOVA). The differences
between all the kinds of mushrooms under test were analyzed. Arithmetical means and standard
deviations of the experimental data were calculated. Fisher’s Least-Significant-Difference test (LSD)
was applied to the experimental results to assess significant differences between mean values at the
significance level of p < 0.05.

3. Results and Discussion

3.1. Chemical Composition of A. bisporus White and Brown Mushrooms

The content of biologically active compounds in mushrooms may vary greatly. Biologically active
compounds are affected by differences in strain, substrate, cultivation, and fruiting conditions, the
developmental stage of the mushroom, and the age of the fresh mushroom sample [9,30,31]. Some
researchers maintain that the DM content of A. bisporus is 7.84% (with a standard error of 0.70), with
small or no differences between flushes and crops, while others state it can vary in the range of
9.37–9.62% [32,33].

In our case, the DM content of A. bisporus mushrooms varied from 7.34% in the white to 8.85% in
the brown (Figure 1). The DM content of white eco mushrooms was significantly more than that in
conventionally grown white mushrooms. No significant differences between the two types of brown
mushrooms were found. According to researchers, high DM content is always associated with first
flush mushrooms and with low watering level and frequency [30]. Under identical growing conditions,
DM content varies from one strain to the other; large white and small brown mushrooms have a more
substantial DM content than others.
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Cultivated mushrooms contain small amounts of AA. According to published articles, there is a
high variation in AA content in A. bisporus mushrooms, which have been reported to contain 2.1–5.5
mg 100 g−1 FW (fresh weight) [4].

The amount of AA in the mushrooms analyzed in this study was similar, 31.92–48.06 mg kg−1 FW
(Figure 1). The most significant amount was in the white eco mushrooms. The white mushrooms of
both types accumulated 1.3–1.5-fold more AA content than the brown mushrooms. Different genetic
properties may lead to an increase in the AA content in mushrooms.

Mushrooms are low-calorie foods since they provide relatively low amounts of fat [3]. According
to previous studies, CF content varied 2.53–3.92% [16] and 1.90–3.06% DM [31].

The CF content in the analyzed mushrooms was between 1.43% and 1.81% DM (Figure 1). White
eco mushrooms contained the largest amount of CF.

According to the literature, the CP content of mushrooms may be between 21.3% and 27.0% [16]
or between 18% and 38% DM [34].

Our data confirm these results. The CP content fluctuated from 18.85% in the white eco mushrooms
to 35.52% DM in the brown mushrooms (Figure 1). The brown mushrooms accumulated about 1.4-fold
more CP content. In the eco mushrooms, CP content was lower in comparison with conventionally
grown mushrooms.

The researchers established that the DF content in A. bisporus was 17.7–23.3% DM [16]. In our
study, we found that the amount of DF varied from 12.40% to 14.37% DM (Figure 1). DF content did
not differ significantly between the white and brown eco mushrooms. However, the lowest amount
was found in the white eco mushrooms.

Some researchers stated that white and brown mushrooms produced similar amounts of CA [7].
They found the CA content varied from 7.77% to 11.39% DM [7,16,31].

Our data show CA content in white and brown mushrooms ranged from 10.77% to 11.64% DM
(Figure 1). The CA content was highest in the brown eco mushrooms.

The mineral content of commercially cultivated A. bisporus is undoubtedly affected by the
composition of the growth substrate. This is why values for the mineral composition of A. bisporus
obtained by various investigators are often different [8,29,35]. The main constituents in the ash are
potassium, phosphorus, and magnesium [9], in addition to calcium, copper, iron, and zinc [35].

Our data show a higher average content of mineral elements in the brown mushrooms (Table 1).
The major component of the mushrooms in this study was potassium, and its concentration varied
from 41.03 g kg−1 in the brown eco to 44.08 g kg−1 DM in the white eco. White mushrooms contained
larger amounts of potassium. Our results resemble those of other researchers, who also found greater
amounts of potassium in white mushrooms [9].

Table 1. The mineral contents in analyzed mushrooms Agaricus bisporus (in kg of DM).

White White Eco Brown Brown Eco

K (g) 43.04 ± 0.10 ab,* 44.08 ± 0.10 a 42.10 ± 0.20 ab 41.03 ± 0.10 b

P (g) 10.81 ± 0.01 c 11.80 ± 0.20 a 11.74 ± 0.02 a 11.10 ± 0.01 b

Mg (g) 1.01 ± 0.05 a 1.02 ± 0.05 a 1.10 ± 0.01 a 1.05 ± 0.06 a

Zn (mg) 69.00 ± 0.10 b 61.05 ± 0.10 c 90.80 ± 0.1 a 68.83 ± 0.10 b

* Results are expressed as means plus/minus standard deviation. Means in the raw followed by different letters are
significant different (P < 0.05). a Sensory description from AroChemBase; b KI MXT-5, non polar column Kovats
retention indices; c KI MXT-17, slightly polar column Kovats retention indices.

The analyzed mushrooms contained a considerable concentration of phosphorus, which was
highest in white eco mushrooms, and lowest in conventionally grown white mushrooms. The average
contents of phosphorus in the different mushrooms ranged from 10.81 to 11.80 g kg−1 DM. These
findings are generally in accordance with the original findings by other researchers [33], although
some investigators found a slightly higher content of phosphorus in conventionally grown white and
brown A. bisporus in the range of 12.7–12.9 g kg−1 DM [9].
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Magnesium represented the third major mineral element (after potassium and phosphorus) found
in fungal fruiting bodies [9].

The magnesium content in all analyzed mushrooms did not differ significantly and ranged from
1.01 to 1.10 g kg−1 DM. These findings were in accordance with those of other scientists [9,33].

The mushrooms in the study were quite a good source of zinc, the content of which ranged from
61.05 to 90.80 mg kg−1 DM. The zinc levels match those found by other researchers [9,33]. The significant
highest amount of zinc was found in conventionally grown brown mushrooms. Conventionally grown
mushrooms contained larger amounts of zinc in comparison with conventionally grown mushrooms.

3.2. Volatile Compounds of A. bisporus White and Brown Mushrooms

Odorous compounds in mushrooms vary with the species and growing conditions. However,
each species has a unique odor, and this characteristic can be used to distinguish between different
mushroom species [17].

Ten volatile compounds in all the analyzed mushrooms were tentatively identified (Table 2).
These included five aldehydes, two esters, two alcohols, and one terpene. Seven volatile compounds
were found in white and brown eco mushrooms and six in conventionally grown mushrooms. Only
three compounds, i.e., pentanal and both alcohols (benzyl alcohol and 1-nonanol) were detected in all
four kinds of mushrooms. One compound, n-nonanal, was characteristic of eco mushrooms regardless
of color. Ethyl octanoate was characteristic of brown A. bisporus and p-anisaldehyde of white (Table 2).

Table 2. Characterization of the main tentative volatile compounds identified in the mushrooms
Agaricus bisporus by Kovats retention indices.

Possible Matches
Compounds Odor Description a KI MXT-5 b KI

MXT-17 c White White
Eco Brown Brown

Eco

Aldehydes

Pentanal Almond; green; herbaceous;
malty; pungent; rubber 691 776 + + + +

Furfural Almond; bread; sweet 827 972 + + +

N-nonanal
Chlorine; citrus; fatty; floral;
fruity; gaseous; gravy; green;

lavender; melon; soapy; sweet
1100 1194 + +

Benzeneac
etaldehyde

Floral; grassy; green; hawthorn;
honey; rose; sweet 1043 1188 +

p-Anisaldehyde Anise; minty; sweet 1250 1452 + +

Esters

Ethyl 2-methyl
Butyrate

Apple; blackberry; fruity; green;
strawberry, sweet 849 907 + + +

Ethyl octanoate
Anise; baked fruity; fatty; floral;

fresh; green; leafy; mentholic;
soapy; sweet; waxy

1196 1260 + +

Terpen

Alpha-Phel
landrene Minty; spicy; terpenic; turpentine 1004 1029 +

Alcohols

Benzyl alcohol Aromatic; floral; fruity; sweet 1034 1220 + + + +

1-Nonanol Fatty; floral; fruity; green 1165 1277 + + + +

a Sensory description from AroChemBase; b KI MXT-5, non polar column Kovats retention indices; c KI MXT-17,
slightly polar column Kovats retention indices; + tentatively identified volatile compound.

3.3. Electrochemical Parameters of A. bisporus White and Brown Mushrooms

Researchers state that mean valued of pH and redox potential at plant and organ level can be
good indicators, integrating the various stresses as well as beneficial factors by the whole plant, and
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can bring important information and knowledge on molecular redox processes at the cell [19]. The A.
bisporus mushrooms investigated in this study showed a pH range from 6.64 to 6.81 (Table 3).

Table 3. The mineral contents in analyzed mushrooms Agaricus bisporus (in kg of DM).

White White Eco Brown Brown Eco

pH 6.81 ± 0.03 a,* 6.70 ± 0.40 b 6.70 ± 0.03 b 6.64 ± 0.02 b

Redox potential (mV) 119.33 ± 5.50 b 107.33 ± 3.51 c 170.00 ± 1.00 a 76.67 ± 1.15 d

Electrical conductivity (µS cm−1) 1061.33 ± 1.53 b 1020.67 ± 2.77 c 1149.33 ± 2.52 a 1154.33 ± 1.53 a

P value (µW) 3.18 ± 0.10 c 2.91 ± 0.03 d 3.57 ± 0.18 b 5.19 ± 0.04 a

* Results are expressed as means plus/minus standard deviation. Means in the raw followed by different letters are
significant different (P < 0.05). a Sensory description from AroChemBase; b KI MXT-5, non polar column Kovats
retention indices; c KI MXT-17, slightly polar column Kovats retention indices.

White and brown conventionally grown mushrooms had a higher pH value compared with eco
mushrooms. Several studies with fruit and vegetables have shown that higher pH means lesser vitality
of products [36–38].

The redox potential is of key interest in electrochemical research because it reflects the gradient of
electrons that life processes utilize for their cellular work [21]. Investigator states that, when rH < 28.3,
the systems are reducing and can release electrons to other systems with lower rH; at rH > 28.3, the
systems are oxidant and can accept electrons from systems with higher rH [39].

The values of redox potential for our tested mushroom samples were much higher than 28
mV, thus an oxidative environment dominated (Table 3). The data show that white and brown eco
mushrooms have significantly less redox potential, as do other organic products, such as carrots [21]
and tomato [34]. This means that eco mushroom cells can use free enthalpy for their activities, and the
products are more suitable for human consumption [36].

Electrical conductivity of food material is a function of product characteristics (composition, sugar
and salt content, and pH) and a property that measures a material’s ability to conduct an electric
current. The electrical conductivity of foods has been found to increase with temperature, water, ionic
content, moisture mobility, and physical structure [40].

The electrical conductivity of the tested white and brown mushrooms differed significantly, and
the values for brown mushrooms were found to be higher.

P-value is used to define the vitality of the organism and energy distribution tendencies [23].
The P-values for tested A. bisporus mushrooms were significantly lower than those for plums [38],
carrots [21], pumpkins [36], and tomato [37] (Table 3). White eco mushrooms had the lowest P-values,
and commercially cultivated white mushrooms had the next lowest.

4. Conclusions

Ecologically grown mushrooms were not distinguishable from conventionally grown mushrooms
by their qualitative characteristics. However, quantitative results reveal growing practice influenced
the accumulation of ascorbic acid, crude protein, and zinc.

The chemical composition of white and brown mushrooms was different. Greater amounts of dry
matter, crude protein, and crude ash were found in the brown mushrooms. The white mushrooms had
a higher content of ascorbic acid, crude fat, and dietary fiber. White mushrooms accrued a greater
amount of potassium, and white eco mushrooms accumulated the highest phosphorus content. The
highest levels of magnesium and zinc were found in the brown mushrooms.

Tentative volatile compounds identified in mushrooms depended on growing practice. Organic
production influenced more volatile compounds than conventional and only accumulation of pentanal
and both alcohols (benzyl alcohol and 1-nonanol) was not influenced by growing method.

The electrochemical properties of white and brown mushrooms differed significantly.
Conventionally grown mushrooms had a higher pH value compared with eco mushrooms, but
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eco mushrooms had significantly less redox potential. The lowest P-values were obtained for white
eco mushrooms, and white conventional mushrooms had the next lowest value. Studies of the
electrochemical parameters are presented only as complementary and as requiring further and more
detailed studies.
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