

Article

MDPI

Economic Evaluation of Carbon Capture and Utilization Applying the Technology of Mineral Carbonation at Coal-Fired Power Plant

Bong Jae Lee ^{1,2}, Jeong Il Lee ², Soo Young Yun ², Cheol-Soo Lim ³ and Young-Kwon Park ^{1,*}

- ¹ School of Environmental Engineering, University of Seoul, Seoul 02504, Korea; jae8076@ktr.or.kr
- ² Korea Testing & Research Institute (KTR), Gwacheon 13810, Korea; emjilee@ktr.or.kr (J.I.L.); syy927@ktr.or.kr (S.Y.Y.)
- ³ National Institute of Environmental Research (NIER), Incheon 22689, Korea; lcs6713@korea.kr
- * Correspondence: catalica@uos.ac.kr; Tel.: +82-2-2210-5623; Fax: +82-2-2244-2245

Received: 24 June 2020; Accepted: 27 July 2020; Published: 31 July 2020

Abstract: Based on the operating data of a 40 tCO₂/day (2 megawatt (MW)) class carbon capture and utilization (CCU) pilot plant, the scaled-up 400 tCO₂/day (20 MW) class CCU plant at 500 MW power plant was economically analyzed by applying the levelized cost of energy analysis (LCOE) and CO₂ avoided cost. This study shows that the LCOE and CO₂ avoided cost for 400 tCO₂/day class CCU plant of mineral carbonation technology were 26 USD/MWh and 64 USD/tCO₂, representing low LCOE and CO₂ avoided cost, compared to other carbon capture and storage CCS and CCU plants. Based on the results of this study, the LCOE and CO₂ avoided cost may become lower by the economy of scale, even if the CO₂ treatment capacity of the CCU plant could be extended as much as for similar businesses. Therefore, the CCU technology by mineral carbonation has an economic advantage in energy penalty, power plant construction, and operating cost over other CCS and CCU with other technology.

Keywords: carbon capture and utilization; levelized cost of energy; mineral carbonation; economic evaluation; coal-fired power plant

1. Introduction

Carbon dioxide (CO₂) emissions in the atmosphere from anthropogenic activities continue to grow worldwide [1–3], as CO₂ emissions in the period 2010 to 2014 grew about 31.9 to 35.5 GtCO₂ per year, an average rate of 2.75% per year [4], escalating global warming. Various studies have been made to mitigate carbon emission to hold average global warming below 2 °C above pre-industrial levels [5,6]. Carbon capture and storage (CCS) and carbon capture and utilization (CCU) are evaluated by the International Energy Agency (IEA) and U.S. Energy Information Administration (EIA) as two of the most cost-effective methods for climate change mitigation among various technologies [7]. CCS permanently captures and stores CO₂ to reduce greenhouse gas from coal-fired power plants or cement manufacturing facilities [8]. CCU involves chemical reaction, converting CO₂ into valuable chemical compounds [9].

CCU by mineral carbonation technology, also called CO_2 mineralization, is a less explored method of sequestering CO_2 compared to other CCS methods, such as geological sequestration [10–12], ocean disposal [13–15], and biological fixation [16–18]. Mineral carbonation involves the chemical conversion of CO_2 to solid inorganic carbonates permanently fixing carbon with a negligible risk of return to the atmosphere without having a great impact on the surrounding environment and ecosystems [19,20].

As CCS and CCU are relatively recent technologies, their effectiveness still needs to be analyzed. Large-scale CCS projects were mostly based on enhanced oil recovery, whereby CO_2 is used to obtain the last remains of an oil field by injection of gaseous, liquid, or supercritical CO_2 into subsurface reservoirs inducing the geological storage of CO_2 in porous rocks, which was proved to be effective for cutting the CO_2 emission but still remains to be studied for their cost-effectiveness compared to others technologies [21–23]. Also, IEA has published a research report, "cost and performance of carbon dioxide capture from power generation, IEA, 2011," comparing the economic feasibility of CCS-applied technologies (post-combustion, pre-combustion, oxy-combustion) between the levelized cost of energy analysis (LCOE) and CO_2 avoided cost [24]. The economic evaluation of CCS has been made on the assessment method of the expectation of the energy penalty for applying CCS technology [25], comparing LCOE and CO_2 avoided cost for applied CCS technology (supercritical, ultra-supercritical, integrated gasification combined cycle (IGCC), oxy-combustion, natural gas combined cycle (NGCC)) at power generation on economic aspects [26].

On the other hand, the economic evaluation of CCU focused on sales profit from selling CO₂ compounds produced from applying CCU technology or on the life cycle assessment (LCA) [27]. One analyzed a manufacturing technology of high-valued compounds, sodium bicarbonate (NaHCO₃), through carbon dioxide carbonization, and the result of the internal rate of return for 20 years was 67.2% [28]. Techno-economic assessment of CO₂ utilization was studied by applying LCA of the Canadian emerald energy from a waste facility [29]. LCA conducted for a comprehensive analysis of the climate change mitigation potential of CCU, in applying fields such as fertilizer process [30], CO₂-based polymers used as raw materials for plastics [31], chemical industry [32], and electrocatalytic conversion of CO₂ into commercially-valued products, including carbon monoxide, methane, and methanol [33–35].

Most CCS economic evaluation of power generation uses LCOE and CO₂ avoided cost, with the CCS technology by applying the energy penalty when constructing the power generation plant [36,37]. As mentioned previously, CCU economic evaluation focuses on the sales revenue of the resulting CO₂ compounds from the technology [29,38,39]. LCOE represents the average revenue per unit of electricity generated that would be required to recover the costs of building and operating a generating plant during an assumed financial life and duty cycle, CO₂ captured cost is calculated by comparing a capture plant to any reference plant, and CO₂ avoid cost is derived from the equalization of the net present values of costs of the power plant with and without CCUS technology [40].

Based on the operating data and input cost of a 40 tCO₂/day (2 megawatt (MW)) class CCU pilot plant at a coal-fired power plant, the scaled-up 400 tCO₂/day (20 MW) class CCU plant at 500 MW coal-fired power plant was economically analyzed by applying the LCOE and CO₂ avoided cost, considering the energy penalty. Moreover, the CCU technology in this study, utilizing the resulting compounds as construction ingredients, has insufficient economic evaluation and comparative studies according to applied technology on the economic evaluation results [19,41]. Here, we have calculated the LCOE and CO₂ avoided cost for mineral carbonation, resulting in 26 USD/MWh and 64 USD/tCO₂ each, and conducted comparative studies with other CCS and CCU technologies, which were higher cost for each factor.

To remind, this paper is structured as follows: Section 2 introduces the methods and technology of applied examination, with the detailed explanation of the components and the process; Section 3 gives detailed information on the experiment results with the analysis of LCOE and CO_2 avoided cost; Section 4 shows the comparison of the economic analysis between the applied technology in this study and other CCU technologies, and also include sensitivity analysis; Section 5 addresses the conclusion on the applied CCU technology.

The following subjects were considered to increase the accuracy of this research, and a comparative analysis was conducted between the resulting economic outcomes and other CCS or CCU references.

- 1. Considering the energy penalties resulting from the CCU plant at a 500 MW coal-fired power plant.
- 2. Application of the actual operational data of a 40 t CO_2 /day (2 MW) class pilot plant installed at a 500 MW coal-fired power plant.

- 3. Application of the actual operational data of the captured CO₂ amount collected through a 40 tCO₂/day (2 MW) class continuous-capture-process.
- 4. For the 400 tCO₂/day (20 MW class) CCU plant installed at a 500 MW coal-fired power plant that manages the economic evaluation, apply the estimated price of equipment based on the actual preliminary design.
- 5. By applying the levelized cost of energy analysis (LCOE), compare the "CO₂ avoided cost" and "CO₂ captured cost" in similar businesses.
 - LCOE = Σ ((Investment cost $_t$ + Operation maintenance cost $_t$ + Fuel cost $_t$ + Power plant abolition cost $_t$)×(1 + r)^{-t})/(Σ t(Power generation $_t$ ×(1 + r)^{-t}))
 - CO₂ capture cost [USD/tCO₂] = (LCOE)_{CCS} (LCOE)_{ref}/(tCO₂/MWh)_{captured}
 - CO₂ avoid cost [USD/tCO₂] = (LCOE)_{CCS} (LCOE)_{ref}/(tCO₂/MWh)_{CCS}

2. Materials and Methods

2.1. Applied Technology

Mineral carbonation process can effectively utilize the industrial CO_2 emissions to form various products and carbonate precipitates, as it is a thermodynamically favorable reaction. The mineral carbonation using alkaline solid wastes has merits of low feedstock cost and availability near the source of CO_2 [27]. The utilization process for this study, CCU of mineral carbonation technology, produces construction ingredients from converting the CO_2 -captured compounds to $CaCO_3$ through the direct reaction of CO_2 in the flue gas at the coal-fired power plant.

This technology operates a 40 tCO₂/day (2 MW) class CCU pilot plant at a coal-fired power plant in Korea from November 2017. Inserted partial flue gas, emitted from the power plant duct into the CCU plant, produce CO₂-captured compounds (CaCO₃), and unreacted CO₂ returns to the power plant duct to maintain the CO₂ concentration below 1% in the atmosphere. The applied technology and main equipment configuration are as follows (Figure 1, Table 1):

Figure 1. Principle of carbon capture and utilization (CCU) technology applied in this study.

Table 1. 40 tCO₂/day class CCU pilot plant components.

Classification	Components
Facility name	Direct CO ₂ capture-process pilot plant
Facility capacity	7000 Nm ³ /h
CO ₂ removal amount	40 ton/day
Monitored CO ₂ removal amount	25.94 ton/day
CaCO ₃ production	61.80 ton/day

Table 1. Cont.				
Classification		Components		
Measured CO ₂ content in CaCO ₃ production	38.29% (TGA analysis)			
Measured electric power consumption (Real data)		0.8 MW		
Agent supply system	After storing mineral powder and slag powder, provide a quantitative influx into the reaction agent dissolved tank, and dissolve it for (30–40) min. \rightarrow Mix (30–40) min for all of the CaO to react \rightarrow Transport steam and dust generated from the reaction agent reacting process to the desorption liquid storage tank (no wastewater generation).			
Main equipment	CO ₂ removal process system	The first removal of CO ₂ through reacting agent and gas-liquid contact in the first reaction tower. \rightarrow Discharge after removing residual CO ₂ with the reacting agent in the secondary reaction tower. \rightarrow Supplement from the secondary reaction tower by the CO ₂ -captured transfer pump of the first reaction tower when the chemical agents in the first reaction tower reach below pH 8.5, while reacting with CO ₂ in the emission gas. Real-time monitoring and analysis of CO ₂ concentration by CO ₂ analyzer installed before and after the reaction tower duct. Real-time monitoring and control from the main computer by measuring the temperature, flow rate, flux, and flow pressure.		
-		Some of the generated CO ₂ -captured compounds are used as the ingredient of construction materials (bricks, cements block, and so forth) after the dehydrating		

process in a dehydrator. The remaining undehydrated

supplemented with water. \rightarrow The dehydrated cake is placed in a ton bag for a certain time, and then taken out.

process is used as the full chemical reagent manufacturing water, and the deficiency is

CO₂-captured compounds are used as reagent, such as a desulfurization agent. \rightarrow Effluent from the dehydration

2.2. Applied Scale and Process

The applicable field scale for this study, a 400 tCO₂/day class CCU plant, can be designed by knowing the actual amount of reduced CO₂ from the operating 40 tCO₂/day class CCU pilot plant, and modifying the operational problems from the pilot plant. Based on this scaled-up field scale plant, the economic evaluation was conducted for a 400 tCO₂/day class CCU plant. The scaled-up preliminary design of the 400 tCO₂/day class CCU plant is as follows (Table 2, Figure 2):

Captured CO₂ treatment

system

Clas	sification	Project Outline
Proj	ect name	Preliminary design of a demonstration plant of the 400 tCO ₂ /day class direct CO ₂ capture-removal process
L	ocation	Local power plant, cement or steel manufacturing plant
Facili	ty capacity	60,000 Nm ³ /h
CO ₂ ren	noval amount	400 tCO ₂ /day
	Mechanical field	Preliminary design of machinery, such as ingredients and chemical reagent supply facility, CO ₂ removal reacting facility, CO ₂ -captured treatment facility, and other process facilities.
Task range	Electric measurement and control field	Preliminary design of electric measurement and control field, such as motor control center (MCC) module, electric panel, and process measuring instrument.

Table 2. Preliminary design outline of the 400 tCO₂/day class CCU plant.

Figure 2. Process flow chart of the 400 tCO₂/day class direct CO₂ capture-process.

Therefore, the applied facility and process of this study are as follows (Table 3):

	Table 3. Description of the 400) tCO ₂ /day class CCU plant.
Classification		Contents
Facilit	ty capacity	60,000 Nm ³ /h (15,000 Nm ³ /h \times 4 series)
Opera	ating time	24 h/day, 350 days
Constru	iction period	36 months
Treatment process	Chemical reagent supply facility	Ingredient storage room/ingredient input hopper/ingredient transfer conveyor/ingredient supply conveyor/ingredient supply SILO/ingredient input conveyor/reactant dissolution tank/reactant transfer pump/reactant storage tank/reactant supply pump/liquid catalyst storage tank/liquid catalyst supply pump
	CO ₂ removal reacting facility	Emission gas cooling tower/cooling tower circulation pump/emission gas pressurized blower/reaction tower/reaction tower circulation pump/reaction tower transfer pump of CO ₂ -captured
	CO ₂ -captured treatment facility	CO ₂ -captured settling tank/sediment collector/sediment outlet/sediment transfer pump/supernatant treating tank/supernatant reuse-pump/sediment storage pit/drying bed
		Supernatant storage tank/water storage tank/process

drain pump

liquid supply pump/air compressor/pit pump/bottom

Other facility

Table 3. Descr	iption of the 400	tCO ₂ /day	class CCU	plant.
----------------	-------------------	-----------------------	-----------	--------

Classification	Contents
CO ₂ -captured compounds treatment plan	Precipitate the CO_2 -captured in settling tank, supernatant overflows into the supernatant treating tank, and reuse it as process liquid. The residual sediment is sent to the sediment storage pit, and then stacked on the drying bed by excavator. After the sediments are dried, they are taken out to supply the required site.
Rain water and domestic wastewater treatment plan	Connected treatment of rain water through rain water pipeline into the manufacturing plant rainwater pipeline. Connected treatment of domestic wastewater through wastewater pipeline into the manufacturing plant wastewater pipeline.
Emission gas capture method	Portion of emission gas is captured from the emission gas transfer duct generated during the carbon fuel combustion process.

Table 3. Cont.

3. Results

3.1. Cost Calculation of a 500 MW Coal-Fired Power Plant

To conduct the economic evaluation by demonstration plant of the 400 tCO₂/day class CCU plant, an economic evaluation of a 500 MW coal-fired power plant was first conducted (Table 4). The applying assumptions are based on the applied data of IEA economic evaluation, and the information provided by the actual domestic power generation companies.

500 MW Coal-Fired Thermal Power Plant	Applied Value	Unit	Note
Discount rate	7	%	Assumption (IEA data for reference)
Load factor	85	%	3 year average of Domestic power plant
Plant lifetime	25	Year	Assumption (IEA data for reference)
Capacity	500	MW	Assumption
Annual generated electricity	3,570,000	MWh/year	500 MW \times 85% \times 350 day \times 24 h
Thermal efficiency	40	%	Assumption (IEA data for reference)
Equipment cost	875	USD/kW	Assumption (construction cost of domestic power plant)
Annual fixed cost	4	Construction cost%	Assumption (IEA data for reference)
Annual variable cost	0.5	Construction cost%	Assumption (IEA data for reference)
Fuel cost	0.83	USD/GJ	Assumption (IEA data for reference)
Capex	437.5	M USD	500 MW × 875 USD/kW
Annual operating & maintain cost	19.7	M USD/year	4.5% × 437.5 M USD
Annual fuel cost	26.8	M USD/year	(3,570,000 MWh/40%) × 3.6 GJ/MWh × 0.83 USD/GJ
Capex (present value (PV)	395.7	M USD	3 year (1st year 10%, 2nd year 30%, 3rd year 60%)
Opex (PV)	472.9	M USD	Opex for 25 year
Generated electricity (PV)	36,337,926	MWh	Generated electricity for 25 year

Table 4. Estimated	l cost of the 500 MW	coal-fired power plant.
--------------------	----------------------	-------------------------

3.2. Cost Calculation for the 400 tCO₂/day Class CCU Plant

The additional capex for installing the 400 tCO₂/day class CCU plant at the 500 MW coal-fired power plant is based on the 2018 price level, which was also applied for the preliminary design of the 400 tCO₂/day class CCU plant. The information on additional construction costs is as follows (Table 5):

Construction Cost	Applied Value	Unit	Note
Mechanical construction	6.0	M USD	Preliminary design report
Electric construction	1.6	M USD	Preliminary design report
Civil/architectural construction	10.2	M USD	Preliminary design report
Total construction cost	17.8	M USD	Preliminary design report

Table 5. Construction cost for the demonstration plant of the 400 tCO₂/day class CCU plant.

The additional opex for installing the 400 tCO₂/day class CCU plant at the 500 MW coal-fired power plant is based on the 2018 electric and water cost, which was also applied for the preliminary design of the 400 tCO₂/day class CCU plant. The information on additional operating costs is as follows (Table 6):

Classification	Item	Price Unit	Unit	Usage	Total Amount (USD)
Labor costs	Operator	2500	USD/man month	32 people, 12 months	960,000
Electric power cost	Contract power	8.18	USD/kw/month	60,000	490,500
Electric power cost	Electric power consumption	0.075	USD/kw \times h	22,400,880	1,689,361
Sub	Total				2,179,861
	Calcium hydroxide	75	USD/ton	0	0
Reagent cost	Fly ash	4.17	USD/ton	363,672	1,515,300
	Liquid catalyst	416.7	USD/ton	763	318,000
Sub	Total				1,833,300
TAT (Basic fee	49.2	USD/ton/month	12	590
Water cost	Usage fee	0.78	USD/m ³	385,200	301,740
Sub Total					302,330
Total annual o	operating cost				5,275,491

Table 6. Annual opex for the 400 tCO₂/day class CCU plant.

3.3. Economic Evaluation Method and Cost Calculation of the CCU Plant

3.3.1. Economic Evaluation Method for the 500 MW Coal-Fired Power Plant Including the 400 tCO_2/day Class CCU Plant

Based on Sections 3.1 and 3.2, the following considerations are needed to calculate the cost of the 500 MW coal-fired power plant including a demonstration plant with a 400 tCO₂/day class CCU plant.

- Energy penalty caused by the installation of a CCU facility
- Increase in the construction cost according to the increased facility capacity by the energy penalty

First, to calculate the energy penalty by the installation of a CCU plant, the actual measured electric power consumption of the 40 tCO₂/day class CCU pilot plant was applied. The electric power consumption per hour of the 40 tCO₂/day class CCU pilot plant was 0.8 MW. Accordingly, the power consumption for the 400 tCO₂/day class CCU plant was analyzed to consume 4 MW power by applying the "6–10 power rule." Approximate costs can be obtained if the cost of a similar item of different size or capacity is known. The "6-10 power rule," also called 0.6 rule or six tenth rule, is used for scale-up

of the capacity-cost when analyzing the plant economics. This rule has its origins in the relationship between the increase in equipment cost (C) and the increase in capacity (V) given by $C_1/C_2 = (V_1/V_2)^{\alpha}$, where α denotes the scale coefficient. The value of $\alpha = 0.6$ refers to equipment such as tanks and pipes which give significant economies of scale [42]. The electric power consumption for the basic design of the 400 tCO₂/day class CCU plant was 3.1 MW. The "6–10 power rule" was applied to the relationship between the capacity and the electric power consumption at the 400 tCO₂/day class CCU plant and the electric power consumption for the basic design. In this regard, the cost analysis was conducted by applying 4 MW, a conservative energy penalty.

Therefore, to secure the sufficient capacity of 500 MW coal-fired power plants, it should be designed as 504 MW in consideration of the energy penalty, which is calculated to be $(504 - 500)/504 \times 100 = 0.8\%$.

Additional cost is incurred, as the installation of a 504 MW coal-fired power plant increases the power generation capacity owing to the energy penalty. The additional cost was recalculated according to the "6–10 power rule," which is used for scale-up of the capacity-cost in economic evaluation.

3.3.2. Cost Calculation of the 500 MW Coal-Fired Power Plant Including 400 tCO_2/day Class CCU Plant

The cost of the 500 MW coal-fired power plant including 400 tCO₂/day class CCU plant is presented in Table 7 [43]. Further detailed data can be found in Table S1.

500 MW + CCU Coal-Fired Power Plant	Applied Value	Unit	Note
Discount rate	7	%	Assumption (see IEA data)
Load factor	85	%	Application of 3 year averagefor domestic power companies
Plant lifetime	25	year	Assumption (see IEA data)
Energy penalty	0.8	%	Calculation form 3.3
Capacity (with CCU)	504	MW	Calculation form 3.3
CCU additional capacity	4	MW	Calculation form 3.3
Net capacity	500	MW	-
Annual generated electricity	3,598,560	MWh/year	$504 \text{ MW} \times 85\% \times 350 \text{ days} \times 24 \text{ h}$
Thermal efficiency	40	%	Assumption (see IEA data)
Capital expenditure (CAPEX)	875	USD/kw	Assumption [43]
Annual fixed operating expenditure (OPEX)	4	Construction cost%	Assumption (see IEA data)
Annual variable OPEX	0.5	Construction cost%	Assumption (see IEA data)
Fuel cost	0.83	USD/GJ	Assumption (see IEA data)
CAPEX	439.95	M USD	437.5 M USD × ((504/500)^0.7)
Annual OPEX	19.80	M USD/year	4.5% × 439.95 M USD
Annual fuel cost	27.00	M USD/year	3,598,860 MWh/40% × 3.6 GJ/MWh × USD/GJ
Annual emitted CO ₂	3,400,000	tCO ₂ /year	Actual data of 500 MW domestic coal-fired thermal power plant
Levelized cost of energy analysis (LCOE)	23.90	USD/MWh	Calculation
Only CCU CAPEX	17.75	M USD	Amount statement of the CO ₂ direct capture removal process (400 tCO ₂ /day)
Only CCU OPEX	5.25	M USD/year	Only cost applied among construction design report of the direct CO ₂ capture removal process (400 tCO ₂ /day)
CAPEX including CCU (PV)	413,916,667	USD	3 year (10% for first year, 30% for second year, 60% for third year)
OPEX including CCU (PV)	537,750,000	USD	Including 25 year of operating and disposal costs
Generated electricity(PV)	36,328,630	MWh	Generated electricity for 25 years

Table 7. Cost of the 500 MW coal-fired power plant with 400 tCO₂/day class CCU plant.

3.4. Calculation of CO₂ Captured and Avoided Cost

3.4.1. CO₂ Captured Efficiency and Utilization Rate

The captured efficiency was calculated based on the actual data of a currently running 40 tCO₂/day class CCU pilot plant. The utilization rate was calculated through this captured efficiency. The following data is measured data at the site of the 40 tCO₂/day class CCU pilot plant, and the continuously measured data for more than 20 h in normal operation was applied. The measured data utilized the real-time continuously measured on-site data of flow rate, and CO₂ concentration in the inlet and outlet. The following is the monitoring results from the real-time measuring instrument along the time sequence for every hour from 05/29 14:00 to 05/30 12:00 (Figures 3 and 4).

Figure 3. Monitoring results from the real-time measuring instrument.

Figure 4. Captured CO₂ amount and captured efficiency through monitoring results.

To calculate the utilization rate of the CCU plant, it is necessary to convert the power generating capacity of the 400 tCO_2 /day class CCU plant. Accordingly, by applying the actual data from a domestic

coal-fired power plant, the capacity of the CCU plant was converted based on the captured CO_2 amount that could be treated based on the amount of greenhouse gas emissions at the 500 MW coal-fired power plant. A domestic coal-fired power plant emits 6800 tCO₂ per 1 MW. Moreover, a 400 tCO₂/day class CCU plant captures CO₂ of 20 MW power generation capacity. The captured efficiency was 85.71% and the utilization rate was 4% for a 400 tCO₂/day class CCU plant among the 500 MW coal-fired power plant emitted CO₂. As a result, the captured CO₂ utilization rate by a CCU plant was calculated to be 3.43%.

3.4.2. Calculation of the CO₂ Avoided Cost

The "CO₂ avoided" was calculated using the analyzed data from Section 3.4.1. The CO₂ avoided is the amount of avoided (reduced) CO₂ by operating the CCU plant. The following are the CO₂ avoided value (Table 8):

Calculation of CO ₂ Avoided	Applied Value	Unit	Note		
	Coal-f	ired power plar	nt without CCU		
Capacity	500	MW			
Annual generated electricity	3,570,000	MWh/year	$500 \text{ MW} \times 85\% \times 350 \text{ day} \times 24 \text{ h}$		
Annual emitted CO ₂	3,400,000	tCO ₂ /year	Actual data of 500 MW domestic coal-fired thermal power plant		
CO ₂ emission factor	0.9524	tCO2/MWh	CO ₂ emission/generated electricity		
Coal-fired power plant with CCU					
Energy penalty	0.8	%	Calculated in Section 3.3.		
Capacity (with CCU)	504	MW			
Annual emitted CO ₂	3,598,560	MWh/year	$500 \text{ MW} \times 85\% \times 350 \text{ day} \times 24 \text{ h}$		
CO_2 emission factor	0.9524	tCO2/MWh			
CO ₂ captured and utilization rate	3.43	%	CO ₂ captured efficiency (85.71%) \times (20 MW/500 MW)		
CO_2 emission	3,427,200	tCO ₂ /year	Generated electricity \times CO ₂ emission factor (Korea)		
CO ₂ captured and utilization amount	117,504	tCO ₂ /year	CO_2 emission $\times\text{CO}_2$ captured and utilization rate		
CO ₂ emission without CCU	3,400,000	tCO ₂ /year	Actual data of 500 MW domestic coal-fired power plant		
Net CO ₂ emission	3,309,696	tCO ₂ /year	CO ₂ emission–CO ₂ capture and utilization amount		
CO ₂ avoided	90,304	tCO ₂ /year	CO ₂ emission without CCU–net CO ₂ emission		

Table 8. CO₂ avoided of the 400 tonCO₂/day class CCU plant.

As calculated in the above table, the CO_2 avoided was calculated to be 90,304 t CO_2 /year compared to the former coal-fired power plant by the introduction of a 20 MW CCU plant, which can process 400 t CO_2 /day (Table 9):

Table 9.	CO_2	avoided	cost	and	LCOE.
----------	--------	---------	------	-----	-------

Classification	Applied Value	Unit	Note						
Coal-fired plant without CCU									
Current construction cost	395.67	M USD							
Current operation cost	472.92	M USD	On a 25 year basis						
Current electric power generation cost	36,337,926	MWh	On a 25 year basis						
LCOE	23.90	USD/MWh	·						
Coal-fired plant with CCU									
Current construction cost	413.92	M USD							
Current operation cost	537.75	M USD	On a 25 year basis						
Current electric power generation cost	36,628,630	MWh	On a 25 year basis						
LCOE	25.98	USD/MWh	-						
CO ₂ avoided cost	63.67	USD/tCO ₂							

4. Discussion

4.1. Comparative Analysis with Other Studies

To sum up, the economic analysis results show that when CO_2 content is 3.43% of captured and utilization, the captured and recovery emission is 117,504 t CO_2 /year, LCOE as 26 USD/MWh, and CO_2 avoided cost as 64 USD/t CO_2 .

Table 10 compares the economic analysis of this study and other CCS or CCU technology. Different CCS technologies at coal-fired power plants such as IGCC + CCS, NGCC + CCS, PC supercritical, etc., which can capture and utilize 90% of CO₂, as compared to have higher LCOE and CO₂ avoided cost, considering the cost for the processes like CO₂ compression, refinement, transport, and storage. Among CCU technologies in Table 10, the Coal-fired power plant (500 MW, 2010, recovery by dry sorbent), Coal-fired power plant (2010, US), and Aluminum production (2013, Norway) were calculated to have smaller LCOE and CO₂ avoided cost than the studied mineral carbonation because they only included the refinement and compression process of CO₂ and did not consider the CO₂ utilization cost. By comparing with a similar study, Coal powered (UK, 600 MW, mineral carbonation), our study resulted to be more economic.

Table 10. Comparison of avoidance cost of CO₂ and similar businesses.

Emitting Source		Generated Emissions [tCO ₂ /year]	CO ₂ Captured and Utilization Rate [%]	Captured, Recovery Emissions [tCO ₂ /year]	LCOE [USD/MWh]	CO ₂ Avoided Cost [USD/tCO ₂]
Coal-fired thermal power plant, Republic of Korea (mineral carbonation of this study)		3,427,200	3.43	117,504 (Captured efficiency 85.71%)	26	64
000	IGCC + CCS, US, 2015, FOAK [11]	4,245,600	90	3,819,360	141	97
CCS	NGCC + CCS, US, 2015, FOAK [11]	1,971,000	90	1,769,520	78	89
	PC supercritical. CCS, US, 2015, FOAK [11]	4,677,840	90	4,204,800	124–133	74–83
CCU	Coal-fired power plant (500 MW, 2010, recovery by dry sorbent) [20]	4,090,625	80	3,272,500	32.46	Capture cost 28.15
	Coal-fired power plant (2010, US) [9]	-	85–100	-	Included in avoidance cost	Capture cost 43–58
	Aluminum production (2013, Norway) [21]	-	-	Capture rate of 85%	-	Capture cost 80–105
	Coal powered (UK, 600 MW, mineral carbonation) [22]	Approx. 4,000,000	85%	3,400,000	-	86–140

Additionally, for precise comparison, they should be compared with the same capacity and CO_2 captured efficiency. However, this study shows the economic analysis results of a 20 MW CCU facility, handling 400 tCO₂/day based on the operating CCU plant. Therefore, the reliability lowering assumption, such as capacity expansion, and capture amount increase, was not included.

4.2. Sensitivity Analysis

The sensitivity of LCOE and CO_2 avoided cost, which were results from the economic analysis, was analyzed as the initial conditions changed (Figure 5). The sensitivity of LCOE was analyzed according to the alternation of capital expenditure (CAPEX) and operating expenditure (OPEX) cost and the sensitivity of CO_2 avoided cost was analyzed according to the change in CO_2 captured

and utilization rate, and energy penalty (Figure 5a). Figure 5b illustrates when CAPEX was altered $\pm 10\%$, LCOE was $\pm 6.55\%$ altered, and the $\pm 10\%$ OPEX alternation resulted in $\pm 5.65\%$ alternation of LCOE. $\pm 10\%$ change of energy penalty and CO₂ captured and utilization rate resulted $\pm 0.71\%$ and $-9.09\sim11.11\%$ alternation of CO₂ avoided cost each. LCOE was most affected by the CAPEX and the OPEX also effected the LCOE as it is linked with CAPEX. CO₂ captured and utilization rate affected the CO₂ avoided cost the most, showing greater sensitivity than by the effect of energy penalty alternation.

Figure 5. Sensitivity analysis according to the increment. (a) LCOE (b) CO₂ avoided cost.

The sensitivity analysis represented that the CO_2 avoided cost of the mineral carbonation technology in this study, was greatly affected by the CO_2 captured and utilization rate; however, owing to the low energy penalty of this study, the energy penalty had little impact.

5. Conclusions

Using LCOE and CO₂ avoided cost, the economic assessment was conducted for the mineral carbonation CCU technology at the coal-fired thermal power plant, which produces CaCO₃ through direct reaction with CaO without refinement or compression process for CO_2 in the flue gas. In order to increase the accuracy and reliability of this analysis, based on the actual operating data of the $40 \text{ tCO}_2/\text{day}$ class CCU pilot plant, the scaled-up 400 tCO₂/day CCU plant factors were used. Furthermore, the additionally generated power capacity from the CCU facility energy penalty was also considered for the economic analysis including coal-fired power plant construction and operating cost. The utilization rate for the CO₂ capture of the CCU plant in this study is 3.43%, which represents a lower capacity of CCU compared to similar businesses and the CO₂ avoided cost for the 400 tCO₂/day class CCU plant applying mineral carbonation technology was 64 USD/tCO₂, representing low avoided cost, compared to similar scaled CCS and other CCU plant. However, according to the sensitivity analysis, LCOE was greatly affected by CAPEX, showing 6.55% variation, and CO₂ captured and utilization rate was the biggest effect to cause variation to the CO₂ avoided cost. Based on this study, the CO₂ avoided cost may become lower by the economy of scale, even if the CO₂ treatment capacity of the CCU plant could be extended as much as similar businesses. This suggests that CCU technology by mineral carbonation has an economic advantage in energy penalty, power plant construction, and operating cost over other CCS and CCU with other technology.

Also, this economic analysis is based on the actual operation data of CCU plant and has a relatively small CCU plant capacity compared to other studies. Therefore, there is a limitation that CO2 captured and utilization rate is low. However, with further research, we plan to conduct economic analysis on actual large scaled CCU plant and plan to contribute to commercialization of CCU technology.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/15/6175/s1, Table S1: Economic evaluation of the 500 MW coal-fired power plant installed 400 tCO₂/day class CCU plant.

Author Contributions: Conceptualization, B.J.L. and J.I.L.; methodology, B.J.L.; validation, C.-S.L.; formal analysis, B.J.L. and S.Y.Y.; writing—original draft preparation, B.J.L. and S.Y.Y.; writing—review and editing, Y.-K.P.; project administration, J.I.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported and funded by the research project "Development of CO₂ Capturing and Mass-Application Storage Technology via Direct Reaction of Power Generation Emission Gas" (project number: 20152010201850) from Korea Energy Technology Evaluation and Planning (KETEP) and the National Institute of Environmental Research as the project "NIER-2019-03-02-0002."

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Yang, S.; Lei, L.; Zeng, Z.; He, Z.; Zhong, H. An Assessment of Anthropogenic CO₂ Emissions by Satellite-Based Observations in China. *Sensors* **2019**, *19*, 1118. [CrossRef]
- Pasricha, N.S. Chapter Six—Conservation Agriculture Effects on Dynamics of Soil C and N under Climate Change Scenario. In *Advances in Agronomy*; Sparks, D.L., Ed.; Academic Press: Cambridge, UK, 2017; Volume 145, pp. 269–312.
- 3. Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. *Clim. Change* **2014**, 122, 229–241. [CrossRef]
- 4. Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO₂ capture and utilization in mitigating climate change. *Nat. Clim. Change* **2017**, *7*, 243–249. [CrossRef]
- 5. Mengis, N.; Matthews, H.D. Non-CO₂ forcing changes will likely decrease the remaining carbon budget for 1.5 °C. *NPJ Clim. Atmos. Sci.* **2020**, *3*, 19. [CrossRef]
- 6. Lu, L.; Guest, J.S.; Peters, C.A.; Zhu, X.; Rau, G.H.; Ren, Z.J. Wastewater treatment for carbon capture and utilization. *Nat. Sustain.* **2018**, *1*, 750–758. [CrossRef]
- 7. Budinis, S.; Krevor, S.; Dowell, N.M.; Brandon, N.; Hawkes, A. An assessment of CCS costs, barriers and potential. *Energy Strategy Rev.* **2018**, 22, 61–81. [CrossRef]
- 8. Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. *Nat. Rev. Earth Environ.* **2020**, *1*, 90–102. [CrossRef]
- 9. Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. *J. CO*₂ *Util.* **2015**, *9*, 82–102.
- 10. Nguyen, D.N. Carbon Dioxide Geological Sequestration: Technical and Economic Reviews. In *SPE/EPA/DOE Exploration and Production Environmental Conference;* Society of Petroleum Engineers: San Antonio, TX, USA, 2003; p. 6.
- 11. Holloway, S. Underground sequestration of carbon dioxide—A viable greenhouse gas mitigation option. *Energy* **2005**, *30*, 2318–2333. [CrossRef]
- 12. Hadi Mosleh, M.; Sedighi, M.; Babaei, M.; Turner, M. 16—Geological sequestration of carbon dioxide. In *Managing Global Warming*; Letcher, T.M., Ed.; Academic Press: Cambridge, UK, 2019; pp. 487–500.
- 13. Wilson, T.R.S. The deep ocean disposal of carbon dioxide. *Energy Convers. Manag.* **1992**, 33, 627–633. [CrossRef]
- 14. Palmgren, C.R.; Morgan, M.G.; Bruine de Bruin, W.; Keith, D.W. Initial Public Perceptions of Deep Geological and Oceanic Disposal of Carbon Dioxide. *Environ. Sci. Technol.* **2004**, *38*, 6441–6450. [CrossRef] [PubMed]
- 15. Strand, S.E.; Benford, G. Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments. *Environ. Sci. Technol.* **2009**, *43*, 1000–1007. [CrossRef] [PubMed]
- 16. Maheshwari, N.; Krishna, P.K.; Thakur, I.S.; Srivastava, S. Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water. *Environ. Sci. Pollut. Res.* **2020**, *27*, 27319–27329. [CrossRef] [PubMed]
- 17. Michiki, H. Biological CO₂ fixation and utilization project. *Energy Convers. Manag.* **1995**, *36*, 701–705. [CrossRef]
- 18. Schwander, T.; Schada von Borzyskowski, L.; Burgener, S.; Cortina, N.S.; Erb, T.J. A synthetic pathway for the fixation of carbon dioxide in vitro. *Science* **2016**, *354*, 900–904. [CrossRef]
- 19. Azadi, M.; Edraki, M.; Farhang, F.; Ahn, J. Opportunities for Mineral Carbonation in Australia's Mining Industry. *Sustainability* **2019**, *11*, 1250. [CrossRef]
- 20. Geerlings, H.; Zevenhoven, R. CO₂ mineralization-bridge between storage and utilization of CO₂. *Annu. Rev. Chem. Biomol. Eng.* **2013**, *4*, 103–117. [CrossRef]
- 21. Global CCS Institute. The Global Status of CCS 2018; Global CCS Institute: Melbourne, Australia, 2018.

- Alcalde, J.; Flude, S.; Wilkinson, M.; Johnson, G.; Edlmann, K.; Bond, C.E.; Scott, V.; Gilfillan, S.M.V.; Ogaya, X.; Haszeldine, R.S. Estimating geological CO₂ storage security to deliver on climate mitigation. *Nat. Commun.* 2018, *9*, 2201. [CrossRef]
- 23. Intergovernmental Panel on Climate Change. *IPCC Special Report on Carbon Dioxide Capture and Storage;* Intergovernmental Panel on Climate Change: Washington, DC, USA, 2005.
- 24. Finkenrath, M. *Cost and Performance of Carbon Dioxide Capture from Power Generation;* no.2011/05; International Energy Agency: Paris, France, 2011.
- 25. House, K.Z.; Harvey, C.F.; Aziz, M.J.; Schrag, D.P. The energy penalty of post-combustion CO₂ capture & storage and its implications for retrofitting the U.S. installed base. *Energy Environ. Sci.* **2009**, *2*, 193–205.
- 26. Irlam, L. Global Costs of Carbon Capture and Storage. Available online: https://www.globalccsinstitute.com/ archive/hub/publications/201688/global-ccs-cost-updatev4.pdf (accessed on 4 June 2017).
- 27. Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. *Renew. Sustain. Energy Rev.* **2020**, *125*, 109799. [CrossRef]
- Lee, J.H.; Lee, D.W.; Gyu, J.S.; Kwak, N.-S.; Lee, I.Y.; Jang, K.R.; Choi, J.S.; Shim, J.-G. Economic Evaluation for the Carbon Dioxide-involved Production of High-value Chemicals. *Korean Chem. Eng. Res.* 2014, 52, 347–354. [CrossRef]
- 29. McCord, S.A.; Zaragoza, A.V.; Sanderson, P.; Armstrong, K.; Styring, P.; Hills, C.; Carey, P.; Osbourne, M.; Müller, L.; Bardow, A. Global CO₂ Initiative Complete Mineralization Study 2018. *Environ. Sci.* **2019**. [CrossRef]
- 30. Zaragoza, A.V.; McCord, S.; Styring, P.; Cremonese, L.; Strunge, T.; Sick, V. *Interpretation of LCA Results: A Worked Example on a CO*₂ to *Fertilizer Process*; Technische Universität Berlin: Berlin, Germany, 2020.
- 31. Yadav, N.; Seidi, F.; Crespy, D.; D'Elia, V. Polymers Based on Cyclic Carbonates as Trait d'Union Between Polymer Chemistry and Sustainable CO₂ Utilization. *ChemSusChem* **2019**, *12*, 724–754. [CrossRef] [PubMed]
- 32. Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 11187–11194. [CrossRef]
- 33. Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. A Local Proton Source Enhances CO₂ Electroreduction to CO by a Molecular Fe Catalyst. *Science* **2012**, *338*, 90–94. [CrossRef]
- 34. Peterson, A.A.; Nørskov, J.K. Activity Descriptors for CO₂ Electroreduction to Methane on Transition-Metal Catalysts. *J. Phys. Chem. Lett.* **2012**, *3*, 251–258. [CrossRef]
- 35. Back, S.; Kim, H.; Jung, Y. Selective Heterogeneous CO₂ Electroreduction to Methanol. *ACS Catal.* **2015**, *5*, 965–971. [CrossRef]
- Fan, J.-L.; Wei, S.; Yang, L.; Wang, H.; Zhong, P.; Zhang, X. Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China. *Energy* 2019, 176, 143–155. [CrossRef]
- 37. Aliyon, K.; Hajinezhad, A.; Mehrpooya, M. Energy assessment of coal-fired steam power plant, carbon capture, and carbon liquefaction process chain as a whole. *Energy Convers. Manag.* **2019**, *199*, 111994. [CrossRef]
- 38. Sick, V.; Armstrong, K.; Cooney, G.; Cremonese, L.; Eggleston, A.; Faber, G.; Hackett, G.; Kätelhön, A.; Keoleian, G.; Marano, J.; et al. The Need for and Path to Harmonized Life Cycle Assessment and Techno-Economic Assessment for Carbon Dioxide Capture and Utilization. *Energy Technol.* 2019, 1901034. [CrossRef]
- 39. Chrysostomou, C.; Kylili, A.; Nicolaides, D.; Fokaides, P.A. Life Cycle Assessment of concrete manufacturing in small isolated states: The case of Cyprus. *Int. J. Sustain. Energy* **2017**, *36*, 825–839. [CrossRef]
- 40. Energy Information Administration. *Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook* 2020; USA Energy Information Administration: Washington, DC, USA, 2020.
- Yeo, T.Y.; Bu, J. Mineral Carbonation for Carbon Capture and Utilization. In *An Economy Based on Carbon Dioxide and Water: Potential of Large Scale Carbon Dioxide Utilization*; Aresta, M., Karimi, I., Kawi, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–153.
- 42. Tribe, M.A.; Alpine, R.L.W. Scale economies and the "0.6 rule". *Eng. Costs Prod. Econ.* **1986**, *10*, 271–278. [CrossRef]
- 43. Kang, K.K.; Kim, J.W. *Environmental Impact and Economic Analysis for Expanding Young-Heung Power Plants;* Korea Environment Institute: Sejong, Korea, 2012; pp. 1–86.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).