

Supporting Information

Figure S1. The transformation process of sugarcane bagasse to cellulose nanofiber: 1. Sugarcane bagasse- raw with a pulverized fine powder, 2. AHP hydrolyzed pulp cellulose (Below) and dried powder (Above) and 3. Ultrasonication gel-like CNF at 1 to 3 h (Below) and Freeze-dried fibers (Above).

Table S1. Composition analysis of sugarcane bagasse, cellulose and ultrasonicated fibers at 1 h, 2 h, and 3 h

	Concentration (%)						
Sample	Cellulose		Lignin				
-	Glu	Xyl	Gal	Ara	Man	AS+AIL	
SCB-Raw	38.7	11.4	4.5	1.3	4.3	33.4	
Cellulose	67.2	0.1	3.0	1.3	3.4	13.4	
CNF-US1	86.1	-	2.0	1.3	2.0	3.5	
CNF-US2	92.5	-	2.0	1.2	2.1	1.5	
CNF-US3	92.7	-	1.2	1.2	2.2	1.4	

Table S2. Crystallinity property of raw (SCB-Raw), AHP treated (cellulose), ultrasonication at 1 h, 2 h, and 3 h(CNF-US1, CNF-US2 and CNF-US3) and commercial cellulose (CNC and CNF).

	Angle							
Sample	(20)	d(nm)	Height	Height%	Area	Area%	FWHM	CI(%)
	16.0	0.6	11.7	0.2	5.0	0.5	0.368°	
SCP	20.8	0.4	66.2	1.0	9.5	1.0	0.122°	
SCD-	22.2	0.4	54.7	0.8	7.7	0.8	0.119°	35.1
Kaw	22.5	0.4	51.3	0.8	5.7	0.6	0.094°	
	35.0	0.3	9.9	0.1	4.3	0.5	0.380°	
	16.3	0.5	146.6	0.5	302.2	0.5	1.753°	
Colluloco	18.4	0.5	92.0	0.3	29.4	0.1	0.271°	45.4
Cellulose	20.8	0.4	205.6	0.8	469.3	0.8	1.940°	
	22.6	0.4	261.3	1.0	553.9	0.9	1.802°	
CNE	15.7	0.6	56.7	0.2	45.3	0.1	0.679°	
LIC1	21.0	0.4	131.2	0.5	312.1	0.5	2.023°	52.7
031	22.0	0.4	246.6	1.0	672.7	1.0	2.319°	52.7
	22.5	0.4	257.4	1.0	660.3	1.0	2.181°	
CNE	16.4	0.5	118.3	0.3	114.9	0.1	0.827°	
LIS2	20.9	0.4	226.3	0.6	424.1	0.4	1.594°	577
0.32	21.7	0.4	407.9	1.0	986.8	1.0	2.057°	57.7
	22.3	0.4	406.6	1.0	1003.1	1.0	2.098°	

Sustainability 2020, 12, 6015; doi: 10.3390/su12156015

www.mdpi.com/journal/sustainability

	34.4	0.3	32.4	0.1	11.0	0.0	0.290°	
CNF- US3	16.6 21.4 22.1 22.2	0.5 0.4 0.4 0.4	149.1 277.3 404.7 408.4	0.4 0.7 1.0 1.0	342.2 534.3 890.6 890.0	0.4 0.6 1.0 1.0	1.951° 1.638° 1.871° 1.853°	61.6
CNC	35.4 16.4 19.8 22.0 22.4 34.5	0.3 0.5 0.4 0.4 0.4 0.3	39.4 62.9 278.6 463.1 460.6 80.2	0.1 0.6 0.5 1.0 0.2	26.2 55.5 346.0 249.0 770.9 57.2	0.0 0.1 0.4 0.3 1.0 0.1	0.565° 0.751° 1.056° 1.017° 1.423° 0.607°	67.7
CNF	15.7 22.5 34.5	0.6 0.4 0.3	141.4 425.7 68.7	0.3 1.0 0.2	381.5 865.2 49.9	0.4 1.0 0.1	2.294° 1.728° 0.617°	55.9

FTIR analysis

FTIR spectroscopy was used to investigate changes on the surface of the cellulose fibers throughout the pretreatment to find the changes in lignocellulosic composition. The spectrum of SCB-Raw was compared to the spectra for ultrasonic treated and commercial CNF samples. FTIR spectra of SCB-Raw, cellulose, and ultrasonication at different times are shown in Figure 2a, b. The dominant peaks around 3340 to 3350 cm-1 in the spectra of all the fibers samples corresponded to the O-H and C-H stretching of the OH- and CH- group, respectively [1]. A sharp band at 2900 cm-1 represents C-H stretching of methyl and methylene group; a similar peak was reported [2]. Another sharp peak at 1730 cm-1 on spectra of SCB-Raw represents the vibration of acetyl and uronic ester groups of hemicelluloses [3], and this peak was not observed in ultrasonicated samples. Similarly, peaks at 1604 and 1505 cm-1 on spectra of SCB-Raw represent aromatic C=C vibration in lignin [4,5], and these peaks were also not observed in ultrasonication. The peak observed in all samples at 1031 cm-1 is due to the C-O-C pyranose ring stretching vibration and absorption band at 902 cm-1 associated with the β -glycosidic linkages between glucose units in cellulose [6].

Figure S2. FTIR spectrum: a. A comparative spectrum of SCB-Raw, CNF obtained at 1 h, 2 h and 3 h sonic (CNF-US1, CNF-US2, and CNF-US3), and commercial cellulose (CNF), b Magnified spectrum of all the samples and highlighted (light yellow) box indicates lignin or hemicellulose region, SCB-Raw (black spectra) have prominent peaks.

Table S3. Percentage residue (% weight loss) at different temperatures for raw (SCB-Raw), AHP treated (cellulose), ultrasonication at 1 h, 2 h, and 3 h (CNF-US1, CNF-US2, and CNF-US3) and commercial cellulose (CNF).

Tomporaturo	Weight loss (%)							
(C)	SCB-	Callulana	CNF-	CNF-	CNF-	CNE		
(°C)	Raw	Cellulose	US1	US2	US3	CINF		
200	5.70	10.10	17.41	15.64	10.23	5.23		
250	11.92	16.97	45.42	26.8	27.85	7.23		
300	38.08	66.3	67.27	72.82	72.46	55.78		
350	75.6	75.45	70.68	76.48	76.44	65.06		
550	86.18	85.64	80.12	83.14	81.2	77.36		

Figure S3. CNF-film fabrication process: a. CNF-suspension from ultrasonication, b. film developed by hot press and solution casting and c. CNFs- films from 1 h, 2 h and 3 h ultrasonication.

Reference:

- Jonoobi, M.; Khazaeian, A.; Tahir, P. M.; Azry, S. S.; Oksman, K. Characteristics of Cellulose Nanofibers Isolated from Rubberwood and Empty Fruit Bunches of Oil Palm Using Chemo-Mechanical Process. Cellulose 2011, 18 (4), 1085–1095. https://doi.org/10.1007/s10570-011-9546-7.
- Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3 (1), 10. https://doi.org/10.1186/1754-6834-3-10.
- Sun, J. X.; Sun, X. F.; Sun, R. C.; Su, Y. Q. Fractional Extraction and Structural Characterization of Sugarcane Bagasse Hemicelluloses. Carbohydr. Polym. 2004, 56 (2), 195–204. https://doi.org/10.1016/j.carbpol.2004.02.002.
- Tu, W. C.; Weigand, L.; Hummel, M.; Sixta, H.; Brandt-Talbot, A.; Hallett, J. P. Characterisation of Cellulose Pulps Isolated from Miscanthus Using a Low-Cost Acidic Ionic Liquid. Cellulose 2020, 27 (8), 4745–4761. https://doi.org/10.1007/s10570-020-03073-1.
- Feng, Y. H.; Cheng, T. Y.; Yang, W. G.; Ma, P. T.; He, H. Z.; Yin, X. C.; Yu, X. X. Characteristics and Environmentally Friendly Extraction of Cellulose Nanofibrils from Sugarcane Bagasse. Ind. Crops Prod. 2018, 111 (October 2017), 285–291. https://doi.org/10.1016/j.indcrop.2017.10.041.

 Gierlinger, N.; Keplinger, T.; Harrington, M.; Schwanninger, M. Raman Imaging of Lignocellulosic Feedstock. Cellul. - Biomass Convers. 2013. https://doi.org/10.5772/50878.