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Abstract: The development of cost-effective cellulose fibers by utilizing agricultural residues have
been attracted by the scientific community in the past few years; however, a facile production route
along with minimal processing steps and a significant reduction in harsh chemical use is still lacking.
Here, we report a straightforward ultrasound-assisted method to extract cellulose nanofiber (CNF)
from fibrous waste sugarcane bagasse. X-ray diffraction-based crystallinity calculation showed 25%
increase in the crystallinity of the extracted CNF (61.1%) as compared to raw sugarcane bagasse
(35.1%), which is coherent with Raman studies. Field emission scanning electron microscopy
(FE-SEM) images revealed thread-like CNF structures. Furthermore, we prepared thin films of
the CNF using hot press and solution casting method and compared their mechanical properties.
Our experiments demonstrated that hot press is a more effective way to produce high strength CNF
films; Young’s modulus of the thin films prepared from the hot press was ten times higher than the
solution casting method. Our results suggest that a combination of ultrasound-based extraction and
hot press-based film preparation is an efficient route of producing high strength CNF films.
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1. Introduction

Plant-based biomass consists of lignocellulosic materials such as lignin, hemicellulose, and cellulose.
Among plant-based biomass, agricultural by-products could serve as sustainable, renewable, and
inexpensive raw materials to produce industrial biopolymers [1]. For instance, sugarcane bagasse (SCB),
a residue produced from the sugarcane industry, contains approximately 40 to 50% of cellulose [2];
thus, considered as the potential source of nanocellulose, such as cellulose nanocrystals (CNCs)
and cellulose nanofibers (CNFs). CNCs and CNFs are different in terms of their shape, size,
and composition. CNCs consist of the more crystalline region and have a smaller aspect ratio
than CNFs [3]. CNFs have higher strength and modulus than CNCs at the same concentration of
nanocellulose [4]. Isolated cellulose fibers and their derivatives have attracted attention for their
applications ranging from paper, packaging, sensor, water purification, textile to biomedical devices
and drug delivery, due to their advantageous properties such as low density, high surface area, and
good mechanical strength [5–11].

Although nanocellulose spark excitement due to several significant merits desirable for various
applications, it is often challenging to separate cellulose fibers from plant cells due to its complex
structure. Cellulose fibers are mainly bundled up in hemicellulose and lignin, which have adverse effects
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on the mechanical separation [12]. The pretreatment method is subjected to fiber sources before the
mechanical process to improve the fibrillation. A number of pretreatment methods have been reported
for the delignification of biomass, including physical, biological, chemical (Kraft soda, ionic liquids,
acid, and alkaline hydrolysis) and combined methods (steam and ammonia fiber explosion) [13–19].
Indeed, each method has its advantages and disadvantages; for example, physical pretreatment such
as grinding and milling requires fewer chemicals but consumes high energy, particularly on large scale
production [20], while the biological method selectively degrades lignin and hemicellulose, but the
rate of hydrolysis is slow and takes a longer time (more than a week) [19–21]. The chemical method
is an extensively studied pretreatment technique. For instance, the Kraft process is the most used
method in the paper and pulp industry. However, it produces a large number of harmful chemicals,
such as hydrogen sulfide [22]. Dilute acid pretreatment can efficiently remove hemicellulose but is
corrosive to equipment and creates environmental pollutions [23]. Alkali-based pretreatment is more
amenable to enzymatic hydrolysis because it selectively removes lignin and limits the degradation of
carbohydrates compared to other chemical methods [24]. This alkaline pretreatment method includes
sodium hydroxide, lime, ammonia, and alkaline hydrogen peroxide (AHP) [24,25]. Among alkali-based
pretreatments, hydrogen peroxide is extensively used in the pulp and paper industry to bleach and
enhance the pulp brightness. The use of hydrogen peroxide generates hydroperoxyl anion at alkaline
pH (pH 11.5), which is responsible for dissolving lignin and hemicellulose [26]. Several researchers
have contributed to the development of AHP pretreatment for enhancing enzymatic hydrolysis of
lignocellulose feedstocks [25,27–29]. For example, Su et al. fractionated lignin and hemicellulose from
corncobs with removal ratio of 75.4% and 38.7%, respectively, after 6 h of treatment with AHP [29].
Recently, our team also used AHP hydrolysis and successfully extracted cellulose from various cover
crops [30]. After the pretreatment process, CNCs are usually obtained from acid hydrolysis [31].

CNFs are prepared by mechanical methods such as high-pressure micro fluidization, high-pressure
homogenization, grinding, and high-intensity ultrasonication [32]. Ultrasonication in a liquid
medium can cause both chemical degradation and mechanical disintegration. During the process,
it generates high temperature, pressure, and shear force due to acoustic cavitation, and such an extreme
environment promotes a reduction in substantial particle size [33,34]. Our research teams have
been using the ultrasonication technique to synthesize nanomaterials from various sources such
as CaCO3 nanoparticles from eggshells and developed nanoporous MoS2 nanosheet [34,35]. It is
a facial and versatile synthetic tool for nanomaterials that are often unavailable by conventional
methods [15]. The ultrasonication method is widely used in CNF preparations from plant biomass and
has become a more convenient and emerging approach over the years as a green process [21,36,37].
Feng et al. developed a fine thread-like individual structure of CNFs from pretreated SCB with a steam
explosion and alkali-hydrothermal catalysis in combination with 30% H2O2 and ultrasonication [12].
Similarly, Khawas et al. isolated crystalline CNFs from the banana peel, pretreated in different chemicals
such as NaOH (20%), KOH (5%) NaClO3 (1%) and H2SO4 (1%) followed by ultrasonication [38].
Though above-mentioned studies isolated CNF and also considered the environmentally friendly
ultrasonication-assisted method, further simplification of processing steps with minimal chemical use
is of increasing interest in CNF preparation from plant biomass.

Conversely, film fabrication from CNC/CNF alone is an ongoing challenge due to the lack of
common solvents for its dissolution. Available solvents such as ionic liquids are considered as green
and efficient but expensive [39]. Other solvents such as NaOH/urea, LiOH/urea, and ZnCl2 solutions are
considered facile routes for cellulose dissolution but require further purification steps, which could be
detrimental in public health and environmental condition. For example, Salvaggio et al. demonstrated
that high exposure to ZnCl2 to aquatic organisms (Zebrafish) causes potential teratogenic effects [40].
Contrary, compression-molding in a hot press is an alternative method to develop high-strength
nanocellulose films or sheets from wet cellulose [41,42]. Pintiaux et al. developed a high tensile
strength (~22.4 MPa), smooth, plastic-like surface without any additive from commercial α-cellulose
using compression-molding in a hot press [43]. It is desirable to formulate environmentally friendly
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approaches to utilize and apply cellulose and its derivatives in a wider area. Thus, our study is
targeted to simplify the CNF extraction as well as preparation of high-strength glycerol-modified films
by minimizing the uses of chemicals and operational approaches. Addition of glycerol in cellulose
solution promotes the cellulose-glycerol interaction, reduces brittleness, and increases flexibility [44].
Glycerol is approved for human consumption and also used as a cross-linker for biopolymers [45].

We report here a straightforward, two-step process, yet an effective and environmentally friendly
cavitation-based method to extract CNF from agro-residue sugarcane bagasse and develop CNF films.
This study was designed to extract CNF in two simple steps: alkaline hydrogen peroxide (AHP)
pretreatment, followed by ultrasonication. We used a lower limit of ultrasound frequency (20 kHz)
to disintegrate pretreated cellulose into CNF under different degrees of ultrasonication, 1 h, 2 h,
and 3 h, herein referred to as CNF-US1, CNF-US2, and CNF-US3, respectively, and determine optimum
ultrasonication time. As-obtained CNF suspension was directly used to fabricate glycerol-modified
CNF film using hot press and solution casting methods without using harsh chemicals. Furthermore,
the properties of extracted CNF and the developed films were evaluated. The characteristics of the
extracted CNF was also compared with commercially available nanocellulose.

2. Materials and Methods

2.1. Materials

The sugarcane bagasse (SCB) was obtained from George Washington Carver Agricultural
Experimental Station, Tuskegee University, Tuskegee, AL. Obtained SCB was washed thoroughly with
deionized water and dried in an oven at 60 ◦C for 24 h. The bagasse was then cut into small pieces of
1 to 2 cm, pulverized into a fine powder (Supplementary Materials, Figure S1), sieved through 250 µm
diameter mesh, and then stored in a desiccator for further use. Ethanol (99.5%), hydrogen peroxide
(ACS reagent 30% containing inhibitors), and sodium hydroxide were purchased from Sigma-Aldrich
Co., St. Louis, USA. Two types of commercial nanocellulose (cellulose nanofibers (CNF) spray
dry (Lot#U37), and cellulose nanocrystal (CNC) spray dry-sodium form (Lot#2015-FPL-CNC-077))
were purchased from University of Maine, Process Development Center, Maine, USA. Commercial
nanocellulose was used in this study to track and compare the structural properties of our isolated
cellulose fiber. Alkaline hydrogen peroxide (AHP) solution was prepared by adding 1 N NaOH in 3%
H2O2 solution and adjusted to a pH of 11.5.

2.2. Alkaline Hydrogen Peroxide (AHP Hydrolysis)

The AHP hydrolysis was performed to remove hemicellulose and lignin from SCB with a slight
modification of the method described by Sun et al. [2]. In this process, the pulverized dry powder was
continuously stirred in AHP solution in a water bath using a magnetic stirrer at 150 rpm at ~40 ◦C
for 4 h. Throughout the AHP hydrolysis, the pH of the solution was periodically adjusted (~11.5).
It is because H2O2 dissociates into reactive radicals and dissolves lignin of the reaction mixture [26].
The final liquid-to-sample ratio was 150 mL/g. After the pulping process, the pH of the mixture was
adjusted neutral with the addition of 2 N H2SO4. The insoluble residue was collected under vacuum
filtration and washed with deionized water (3 times) to remove all the soluble materials. The remaining
white cellulose pulp residue was dried and labeled as “cellulose”.

2.3. Extraction of CNF Using Ultrasonication

The AHP-hydrolyzed cellulose (0.5% W/V) was ultrasonically irradiated at 1 h, 2 h, and 3 h
in 1% H2O2 solution with a low-frequency (20 kHz) ultrasound processor (Sonics and Materials
Inc., Vibra Cell, VC-750, USA) in an ice bath support in order to avoid overheating of the samples.
Hydrogen peroxide was used to dissolve residual lignin and hemicellulose. The processor was
equipped with a cylindrical titanium alloy probe tip of diameter 13 mm. Other conditions of the
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processor were the output power, 750 W, and an amplitude of 70% with 15 s on and 5 s off cycle.
The actual energy dissipated into the liquid was calculated from the following equation:

W = mCp (∆T/dt) (1)

where W is power, m is the mass of the solution taken in ‘kg’, Cp is the specific heat of liquid at
constant pressure (4.180 J/kg/ K), ∆T is the change in initial and final temperature in ‘K’, and dt
is the reaction time in ‘S’ [46]. The temperature difference during the course of the reaction was
observed ~30 K and the corresponding power disseminated was ~2.1 W. After completion of sonication
times, few drops of 2 N H2SO4 were added to the suspension (pH 5.0) and vigorously mixed using
vortex for 2 min to prevent the agglomeration of disintegrated fibers. The addition of H2SO4 after
ultrasonication prevents possible corrosion of the equipment. Obtained colloidal suspensions were
labeled as CNF-US1, CNF-US2, and CNF-US3 for cellulose sonicated at 1 h, 2 h, and 3 h, respectively.
A set of the sonicated samples were freeze-dried (SP Scientific, VirTis Bench Top Pro, USA) at −78 ◦C
for 72 h to determine structural properties, while another set was directly used as a suspension for
film preparation and evaluated physical and chemical properties of the films. The sample processing
steps and obtained results in each stage of treatment are available in supporting files (Supplementary
Materials, Figure S1). Fiber samples from each stage of CNF extractions were analyzed using the
following characterization techniques.

2.4. X-ray Diffraction (XRD)

The X-ray diffraction (XRD) patterns were recorded with a wide-angle X-ray diffractometer
(Rigaku DMAX 2100, containing monochromatic CuK α radiation (λ = 0.15418 nm). The accelerating
voltage was 40 kV, the current was 30 mA, and the scanning range between 5◦ and 50◦ angle with the
scan rate of 2◦/min. The crystallinity intensity was determined by the peak height method. The XRD
data were analyzed using MDI JADE software (Version 7.8.1,©MDI). In conjunction, the crystallinity
of the samples was compared with the Raman spectroscopy.

2.5. Raman Spectroscopy

Raman spectroscopy (DXR, Thermo Scientific, MA, USA) equipped with 780 nm (3.0 mW power)
wavelength laser was used to understand the change in the chemical structure of the samples after
each successive treatment. The data acquisition was carried out in a range of 25–3500 cm−1 using
OMNIC software. The intensity ratio (I380/I1096) was determined, and Raman crystallinity (index of
crystallinity—IC) was calculated using the following equation [47].

IC = [(
I380

I1096
) − 0.0286]/0.0065 (2)

2.6. Field-Emission Scanning Electron Microscopy (FE-SEM)

Surface morphology was evaluated using a field emission-scanning electron microscope
(a JEM-JSM-7200F, Japan). During the process, samples were mounted on conductive adhesive
carbon tape and sputtered with gold/palladium target for 5 min, and plasma discharge current was
maintained below 10 milliamperes [48].

2.7. Thermal Gravimetric Analysis (TGA)

The thermal property was evaluated using a thermal gravimetric analyzer (TGA Q500 series,
TA instrument, DE, USA). Samples were analyzed under a nitrogen atmosphere to prevent
thermoxidative process from 30 to 600 ◦C at the constant heating rate of 5 ◦C/min.
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2.8. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The chemical properties of the CNF films were determined using attenuated total reflectance-FTIR
(Nicolet, Nexus model 670/870, Thermo Electron Corporation, WI, USA) at room temperature.
The spectra were recorded between 650 and 4000 cm−1 with a resolution of 4 cm−1, and total scans were
32 per sample. Initial background spectra were taken and subtracted from the sample measurement.

2.9. CNF Films Preparation

Obtained gel-like suspension of CNFs from ultrasonication was used to prepare films using two
methods without further purification: 1. hot press and 2. solution casting. In both methods, consistent
volume (40 mL of 0.5% W/V) of CNF suspension was used. In the hot press, CNF suspensions were
vacuum filtered using Whatman filter paper, sandwiched in the layer of a hydrogel in filter papers,
and conditioned in the oven for 1 h at 100 ± 5 ◦C to evaporate excess water. The films were gently
peeled and sandwiched in new set of filter paper and hot pressed (CARVER®, model number 4386,
Carver, Inc., IN, USA) using ~10,000 to 12,000 lbs pressure at 105 ◦C for 15 min. Whereas, in the
solution casting method, CNF suspension was first centrifuged at 5000 rpm for 10 min, decanted water
andresuspended into ethanol (100%) to decrease the evaporation time of films, and centrifuged again at
1000 rpm for 1 min to avoid air bubbles. Native cellulose film is brittle; therefore, cellulose was modified
with the addition of glycerol (30% of the dry weight of CNF) into CNF suspension. The modified CNF
solution was gently poured onto a polyethylene Petri dish (90 mm diameter) and left for atmospheric
evaporation at room temperature for ~48 h. All the CNF films were conditioned before characterization
in an environmental chamber at 30 ◦C and 55% relative humidity for 24 h.

2.10. Mechanical Properties Testing

The mechanical properties of CNF films were analyzed using a texture analyzer (TA-HD plus,
Stable Micro Systems, UK) with 50 kg load cell. The tensile test was performed according to ASTM
D882-02. The tests were conducted with an extension rate of 10 mm/min at room temperature.
The initial gap of the sample and grip was 40 mm (sample size: thickness 0.12 to 0.16 mm, width 10 mm,
and length 75 mm), five specimens from each sample were tested. The Young’s modulus of the films was
determined from the linear fitted trend line to the initial steep sections of the typical stress-strain curve.

3. Results and Discussion

3.1. Effects of AHP Hydrolysis and Ultrasonication on Cellulose

CNFs were extracted from SCB using a two-step method as shown in Figure 1. The first step
involves alkaline hydrogen peroxide (AHP) hydrolysis, and this process changed brown sugarcane
bagasse-raw into the cellulose-rich creamy white pulp. Alkaline conditions break the intermolecular
ester bond between lignin and carbohydrate [49]. The highly reactive -OH radicals formed during the
degradation of H2O2 reacts rapidly with lignin into low-molecular-weight water-soluble oxidation
products responsible for lignin dissolution [26]. The second step involves the ultrasonication of the
cellulose. This step was performed to optimize the ultrasonication time varying from 1 h to 3 h and its
effect on the composition and structural properties of the fibers. Composition analysis and quantification
were performed using the NREL method [50]. Sugarcane bagasse-raw contents cellulose, hemicellulose,
and lignin, approximately 39%, 20%, and 33%, respectively. Cellulose (glucan) concentration found
from cellulose, 1 h, 2 h, and 3 h was approximately 67%, 86.1%, 92.5%, and 92.7%, respectively.
Lignin concentration was approximately 13%, 3.5%, 1.5%, and 1.4%, respectively. The hemicellulose
was not detected (xylan) or there was a very low amount after AHP treatments; these results are
underway and will be published shortly (Supplementary Materials, Table S1). The above results
indicated that the concentration of cellulose is increased while the concentration of lignin is decreased
after the ultrasonic-assisted method. It indicated that the applied methods removed non-cellulosic
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contents. It might be due to the disruption of ether bonds between lignin and hemicellulose [51].
However, there was not much difference in lignocellulosic composition values at 2 h compared to 3 h.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 15 

 229 

Figure 1. The two-step extraction process of cellulose nanofibers from sugarcane bagasse (top) with 230 
gel-like cellulose suspension after ultrasonication, and schematic illustration showing progressive 231 
removal of non-cellulosic constituents and formation cellulose nanofibers during the process 232 
(bottom). 233 

Hence, the ultrasonication time of 2 h was considered as an optimum time for cellulose 234 
extraction. Ultrasonication of cellulose was observed to disintegrate bulk cellulose into gel-like 235 
suspension and most likely to be CNFs (see Figure 1). Ultrasound dissociated H2O2 into -hydroxyl 236 
radicals through chain reactions; these react with lignin and convert them into simple phenol [52]. In 237 
conjunction, ultrasonication produces cavitation bubbles, which acts as a local hotspot, as the bubbles 238 
collapse, produce strong shock waves creating exceptionally high temperatures, pressures, and 239 
massive shear force, upon strike on bulk materials disintegrated into nanoparticles [34]. Thus, the 240 
synergistic effects of H2O2 and the ultrasonication process at low temperatures might be an effective 241 
alternative to generate CNF. In the schematic illustration showing progressive removal of majority 242 
of the non-cellulosic components, there might be a small amount of lignin and hemicellulose even 243 
after AHP pretreatment (see Figure 1). The presence of lignin and hemicellulose was also detected by 244 
FTIR in our study after the pretreatment (Supplementary Materials, Figure S2). It is difficult to 245 
completely remove lignin and hemicellulose from the plant biomass by alkaline pretreatment due to 246 
its complex structure of plant biomass. Our results are consistent with other researches. The alkaline 247 
or organic solvent pretreatment method removed 91% lignin, and 89.1% of the hemicellulose from 248 
pine sawdust where AHP pretreatment delignified more than 80% from corn stover [25,53]. Next, we 249 
characterized as-obtained gel-like cellulose suspensions and analyzed its structural, morphological, 250 
chemical, thermal, and mechanical properties, which is discussed below. 251 

3.2. Structural Characterization of Extracted Cellulose and CNF 252 
XRD pattern of SCB-raw (sugarcane bagasse-raw), cellulose, ultrasonicated cellulose, and 253 

commercial cellulose is shown in Figure 2. The crystalline index (CrI) of samples was calculated by 254 
Segal method [54], and the results are tabulated in Supplementary Materials, Table S2. The 255 
percentage of the CrI of SCB-raw, cellulose (AHP-hydrolyzed), ultrasonication at 1 h, 2 h, 3 h, 256 
commercial CNF, and commercial CNC were 35.1%, 45.4%, 52.7%, 57.7%, 61.6%, 66.7%, and 55.9%, 257 
respectively. The intensity and peaks were more defined and sharpened with the increase of 258 
ultrasonication time. The fiber crystallinity of 2 h and 3 h were slightly different, but we selected 2 h 259 
as an optimum time for CNF production in our study. The main 2θ diffractions were close to 16.5°, 260 
and 22.2° and are associated with the crystalline cellulose. The XRD data indicated that the crystalline 261 
morphology of cellulose did not change during treatment, but the crystallinity of the fiber was 262 
improved. Fiber crystallinity from 3 h ultrasonication was ~61.6%, which represents over 30% of that 263 
of SCB-raw. Our results are similar to the findings reported by Kumar et al. from acid-treated 264 
sugarcane bagasse, in which sugarcane bagasse, purified cellulose, and cellulose nanocrystal were 265 
35.6%, 63.5%, and 72.5%, respectively [16]. 266 

Figure 1. The two-step extraction process of cellulose nanofibers from sugarcane bagasse (top) with
gel-like cellulose suspension after ultrasonication, and schematic illustration showing progressive
removal of non-cellulosic constituents and formation cellulose nanofibers during the process (bottom).

Hence, the ultrasonication time of 2 h was considered as an optimum time for cellulose extraction.
Ultrasonication of cellulose was observed to disintegrate bulk cellulose into gel-like suspension and
most likely to be CNFs (see Figure 1). Ultrasound dissociated H2O2 into -hydroxyl radicals through
chain reactions; these react with lignin and convert them into simple phenol [52]. In conjunction,
ultrasonication produces cavitation bubbles, which acts as a local hotspot, as the bubbles collapse,
produce strong shock waves creating exceptionally high temperatures, pressures, and massive shear
force, upon strike on bulk materials disintegrated into nanoparticles [34]. Thus, the synergistic effects of
H2O2 and the ultrasonication process at low temperatures might be an effective alternative to generate
CNF. In the schematic illustration showing progressive removal of majority of the non-cellulosic
components, there might be a small amount of lignin and hemicellulose even after AHP pretreatment
(see Figure 1). The presence of lignin and hemicellulose was also detected by FTIR in our study after
the pretreatment (Supplementary Materials, Figure S2). It is difficult to completely remove lignin
and hemicellulose from the plant biomass by alkaline pretreatment due to its complex structure of
plant biomass. Our results are consistent with other researches. The alkaline or organic solvent
pretreatment method removed 91% lignin, and 89.1% of the hemicellulose from pine sawdust where
AHP pretreatment delignified more than 80% from corn stover [25,53]. Next, we characterized
as-obtained gel-like cellulose suspensions and analyzed its structural, morphological, chemical,
thermal, and mechanical properties, which is discussed below.

3.2. Structural Characterization of Extracted Cellulose and CNF

XRD pattern of SCB-raw (sugarcane bagasse-raw), cellulose, ultrasonicated cellulose,
and commercial cellulose is shown in Figure 2. The crystalline index (CrI) of samples was calculated by
Segal method [54], and the results are tabulated in Supplementary Materials, Table S2. The percentage
of the CrI of SCB-raw, cellulose (AHP-hydrolyzed), ultrasonication at 1 h, 2 h, 3 h, commercial CNF, and
commercial CNC were 35.1%, 45.4%, 52.7%, 57.7%, 61.6%, 66.7%, and 55.9%, respectively. The intensity
and peaks were more defined and sharpened with the increase of ultrasonication time. The fiber
crystallinity of 2 h and 3 h were slightly different, but we selected 2 h as an optimum time for CNF
production in our study. The main 2θ diffractions were close to 16.5◦, and 22.2◦ and are associated
with the crystalline cellulose. The XRD data indicated that the crystalline morphology of cellulose did
not change during treatment, but the crystallinity of the fiber was improved. Fiber crystallinity from
3 h ultrasonication was ~61.6%, which represents over 30% of that of SCB-raw. Our results are similar
to the findings reported by Kumar et al. from acid-treated sugarcane bagasse, in which sugarcane
bagasse, purified cellulose, and cellulose nanocrystal were 35.6%, 63.5%, and 72.5%, respectively [16].
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Figure 2. X-ray diffraction patterns of sugarcane bagasse-raw (SCB-raw), AHP-treated (cellulose),
ultrasonication for 1 h, 2 h, and 3 h (CNF-US1, CNF-US2, and CNF-US3), and commercial celluloses
(CNF and CNC).

A comparison of the Raman spectra of samples is shown in Figure 3. The calculated crystallinity
indices from the ratio of I380 and I1096 were obtained from sugarcane bagasse-raw (SCB-raw), CNF-US2,
commercial CNF, and commercial CNC at 38.1%, 61.2%, 55.3%, and 76.6%, respectively. In terms of
crystallinity, observed results from the Raman analysis are coherent with the XRD results. The peaks are
sharper in commercial CNC as compared to commercial CNF as well as ultrasonicated CNF (CNF-US2)
from sugarcane. This observation could be due to the higher percentage of crystallinity in CNC.
Raman spectroscopy provides information on structural orientation and investigates the chemical
mapping of lignocellulosic biomass [55]. In conjunction, the crystallinity of the extracted cellulose
can be estimated and compared with XRD [56]. Therefore, Raman spectroscopy was conducted as
a supplementary method for XRD in our study.

Prominent peaks from commercial and ultrasonicated samples were observed at 380, 900, 1061,
1121, 1380, 1460, and 2890 cm−1. The assigned Raman peaks for cellulose in our study are in agreement
with the previously reported peaks for cellulose from biomass [57,58]. Additionally, there were no,
or only minor peaks recorded between 1500 and 2800 cm−1 spectral range both in commercial and
ultrasonicated samples, which could be due to the removal of lignin. The dominant peaks for lignin
in the plant biomass samples were suggested at around 1600 cm−1 [56,59]. The high-intensity peaks
were recorded at 1602 and 1631 cm−1 only in SCB-raw. These results strongly indicated that the lignin
was successfully removed from sugarcane bagasse. These findings were further supported by FTIR
results (Supplementary Materials, Figure S3). Ultrasound-treated samples followed a similar pattern
with commercial cellulose nanofiber (CNF); therefore, only CNF were compared in thermal analysis.
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3.3. Morphological Characterization of the Raw SCB and CNFs

FE-SEM was conducted to analyze the changes in surface morphology of CNF due to
ultrasonication. Figure 4a–d show FE-SEM images of different samples, SCB-raw, and ultrasonication
at 1 h, 2 h, and 3 h. A definite change in the morphological structure of the cellulose fibers occurred
upon ultrasonication. Figure 4a shows the surface morphology of SCB-raw fibers regularly arranged,
covered with residual materials, and bound tightly together in a bundle, which could be due to the
presence of the waxy layer and intact lignocelluloses components [60,61]. A remarkable effect on
the fiber morphology has occurred in ultrasonicated samples compared to SCB-raw. For example,
fibers are detached from the bundle and produced an entangled structure with a fiber diameter less
than 100 nm (see Figure 4b–d). It might be due to the synergistic effects of H2O2 and ultrasonication.
Cellulose nanofibers consist of a bundle of stretched cellulose chain molecules with long, web-like,
and highly entangled nanofibers of approximately 6–100 nm size generally produced by mechanical
pressure [4]. The intertwined fiber structure might be due to ultrasonication that increases the surface
area of fibers and leads to strengthening intermolecular hydrogen bonding and hydrophilic interaction
between cellulose molecules [12,16].
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Finally, the thermal stability of the samples was compared, as shown in Figure 5a,b (Supplementary
Materials, Table S3). All samples showed a slight weight loss (<0.5%) at lower temperatures starting
around 35 ◦C; it is due to evaporation of loosely bound water. The initial weight loss at around 100 to
120 ◦C was around 10%; it is ascribed to the vaporization of water because of the hydrophilic character
of cellulose fiber. In this temperature range, intermolecular H-bonded water and absorbed water is
evaporated [16]. There was no remarkable weight changed around 150 ◦C except SCB-raw; it may
be due to the absence of volatile and low molecular weight compounds in ultrasonicated samples.
However, the onset temperature of ultrasonicated samples was initiated at a lower temperature
(~190 ◦C) compared to raw (225 ◦C) and commercial CNF (205 ◦C). Increase in onset temperature in the
SCB-raw sample could be linked to its chemical composition and cross-linked with a heavy molecular
weight of lignin, which facilitated to improve thermal stability and thus difficult to decompose at
a lower temperature [62]. Higher crystallinity produces a fast heat transferability and decomposes
earlier [63]. However, in our study, onset temperature was increased with increased crystallinity.
Lower onset temperature in the ultrasonicated samples might be due to short cellulose chain and small
particle size. The high surface area of CNF results in the formation of free-end-chains on the surface,
which facilitated to decompose quickly at the lower temperature [2,34]. The high surface area plays
a significant role in diminishing thermal stability due to the increased exposure to heat surface [63].

The onset and decomposition temperature of all the analyzed samples are presented in Table 1
The DTG curve (Figure 5b) revealed that there were differences in the decomposition temperature
among samples. Interestingly, significant weight loss of ~35% was observed from 300 to 350 ◦C with
an SCB-raw, whereas only ~10% weight loss was observed with ultrasonicated samples in the same
temperature range. It might be due to the presence of lignin and hemicellulose in the SCB-raw sample.
This result was further supported by a prominent shoulder around 290 ◦C along with a broad peak from
200 to 500 ◦C in the DTG’s curve (See Figure 5b), indicating that the raw sample contained lignin and
hemicellulose. The aromatic ring structure of lignin resulted in its wide degradation temperature range
of 250 to 700 ◦C [12]. However, with AHP hydrolysis followed by ultrasonication, DTG curves showed
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sharper peaks in the temperature range between 250 and 300 ◦C without a shoulder. It might be due to
the removal of lignin and hemicellulose and also might be due to an increase in the crystallinity of the
fibers, as evidenced by XRD measurements. Therefore, the percentage of weight loss in CNF-US2 and
CNF-US3 was less (<5%), in the temperature range of 300 to 350 ◦C.
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Table 1. Onset and maximum decomposition temperature of SCB-raw, AHP-treated (cellulose),
ultrasonication at 1 h, 2 h, and 3 h (CNF-US1, CNF-US2, CNF-US3), and commercial cellulose
nanofibers (CNF).

Temp. (◦C) SCB-raw Cellulose CNF-US1 CNF-US2 CNF-US3 CNF

Onset 225 195 190 195 205 220
Max. dec. 325 290 255 265 280 280

3.4. CNF Film Preparation and Mechanical Property Analysis

A representative stress-strain curve of CNF films using hot press and solution casting is shown
in Figure 6, and film preparation process including digital images of as produced films are shown
in Figure S3 (see Supplementary Materials, Figure S3). Table 2 shows Young’s modulus, tensile strength,
and elongation at break of CNF films. Regardless of the film’s fabrication methods, the tensile strength
was increased with increasing ultrasonication time. Young’s modulus was increased more than ten
times in all film produced from the hot press as compared to solution casting. Tensile strength also
increased in films produced from the hot press; maximum improvement in tensile strength in hot press
compared to solution casting was exhibited by films produced from CNF-US2, and the strength value
(25 MPa) was eight-fold higher than value (3.5 MPa) from solution casting method (see Table 2).
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Table 2. Mechanical properties of the CNF film produce from the suspension of CNF-US1, CNF-US2,
and CNF-US 1, by hot press and solution casting.

Young’s Modulus (GPa) Tensile Strength (MPa) Elongation (%)

Hot Press (HP)

CNF-US1 1.7 ± 0.7 15.4 ± 3 1.7 ± 0.7
CNF-US2 1.7 ± 0.5 25.0 ± 2 1.7 ± 0.5
CNF-US3 2.3 ± 0.5 31.0 ± 3 2.0 ± 0.7

Solution Casting (SC)

CNF-US1 0.1 ± 0.03 2.5 ± 0.5 3.3 ± 0.3
CNF-US2 0.1 ± 0.02 3.5 ± 0.1 6.7 ± 1
CNF-US3 0.2 ± 0.04 10.2 ± 2 6 ± 1.5

Improvement in tensile property might be the result of enhanced contact area between nanoscale
CNF building blocks that facilitated: homogeneous dispersion, higher packaging density, and more
overlapping between neighboring fibers. The mechanical properties of the cellulose films have a strong
dependence on the size of the CNF. The smaller size of CNF could result in high strength films [64].
In our study, the mechanical properties of the films were increased with increasing ultrasonication time.
It could be due to decrease in the size of the cellulose fibers during ultrasonication. Reduction in size
increases the surface area that leads to an increase in hydrogen bonding [12]. Ghaderi et al. reported
a similar result in which tensile strength is increased in almost twelve folds by converting bagasse
fiber into nanofiber using a hot press [65]. Increased tensile strength of films in our study might
be due to hydroxyl group interaction between glycerol and CNF. Plasticizer might have caused the
formation of new hydrogen bonds networks; thus, changing the properties of the films [31]. Besides,
the crystallinity of the fibers increased with ultrasonication; this might be another factor responsible
for increasing the strength of films. It is reported that crystallinity is directly proportional to the
stiffness and rigidity of the materials [66]. Similarly, the mechanical properties of the cellulose films are
influenced by the moisture content. The hot press was operated at temperature (~105 ◦C); thus, it could
have resulted in less moisture in between the CNF matrix than the solution casting method. The water
can weaken the average hydrogen bonding in the cellulose structure by the process of exchange from
cellulose/cellulose to cellulose/water hydrogen bonds. An increase in water content has been reported
to decrease tensile strength and Young’s modulus [67]. In our study, films produced by hot press
increased the mechanical properties of the films in a short time (15 min) compared to solution casting
(48 h). Thus, it is assumed that the ultrasonically extracted CNF modified with glycerol could be
developed into sustainable and environmentally friendly high-strength cellulose film by hot press.

We also performed ATR-FTIR measurements on CNF films to understand the effect of sonicated
time and film preparation method (hot press and solution casting) on the inter and intra-molecular
interaction (See Figure 7). With an increase in ultrasonic time, spectrum intensity is increased, and the
shift of the -OH group has occurred, especially at 1061 cm−1 (See Figure 7). These shifts indicate
that the decrease in the degree of free O-H might have resulted from better dispersion of CNFs and
subsequent increase in interfacial adhesive bonding. It is because ultrasonication increases the surface
area of fibers by reducing the size that leads to an increase in hydrogen bonding. The crystalline
structure of cellulose is due to hydrogen bond interaction and Vander Walls force to the adjacent
molecules [68]. Crystallinity is directly proportional to the stiffness and rigidity of the materials [69].
Therefore, crystallinity and the size of the cellulose play an essential role in the mechanical strength of
the films. The dominant broad peaks around 3000 to 3500 cm−1 were due to O-H and C-H stretching
of the OH- and CH- group in cellulose molecules, and a sharp band at 2900 cm−1 represents C-H
stretching [69]. A peak at 1645 cm−1 on spectra of CNF-US1 (HP) represents the vibration of acetyl and
uronic ester groups of hemicelluloses or ester linkage of the carboxylic group of ferulic and p-coumaric
acids of lignin, and this peak was not observed or there was low intensity with increased ultrasonic
time (See Figure 7). The most significant absorption band at 1061 cm−1 associated with the β-glycosidic
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linkages between glucose units in cellulose, which was increased progressively with increase in the
ultrasonication time; a similar peak was reported by Gierlinger et al. [70]. The spectral profiles and
relative intensities of the bands were similar in both hot pressed and solution cast films, indicating
similar chemical structures. Therefore, only representative sample CNF-US2 (SC) from solution casting
was presented in Figure 7.
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4. Conclusions

We report extraction of CNF from agricultural waste sugarcane bagasse using a low-frequency
ultrasonication method. This straightforward method was able to produce highly crystalline cellulose
fibers, and the properties of our CNF were found similar to those of commercial CNF. Further,
we fabricated films of CNF in an organic solvent-free medium. Our results demonstrated that hot press
is a more prevailing method to produce high strength CNF films than solution casting. The elasticity
of the films was reduced, but extracted CNF could be used as a potential polymer reinforcement for
composite materials. We note that our method for extracting CNF and making films, by its simplicity,
could be an efficient approach in broad applications such as a hydrogel, gas sensors, and packaging
materials development, which will be the subject of future studies. Finally, the availability of abundant
agricultural residues could be the competent feedstocks to generate sustainable and value-added
biopolymers, such as nanoscale cellulose and dissolving pulp, for industrial applications to overcome
excessive dependence on synthetic polymers.
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with a pulverized fine powder, 2. AHP-hydrolyzed pulp cellulose (below) and dried powder (above) and
3. Ultrasonication gel-like CNF at 1 to 3 h (below) and freeze-dried fibers (above), Figure S2: FTIR spectrum:
a. A comparative spectrum of SCB-raw, CNF obtained at 1 h, 2 h and 3 h sonic (CNF-US1, CNF-US2, and CNF-US3),
and commercial cellulose (CNF), b. Magnified spectrum of all the samples and highlighted (light yellow) box
indicates lignin or hemicellulose region, SCB-raw (black spectra) have prominent peaks, Table S1: Composition
analysis of sugarcane bagasse, cellulose, and ultrasonicated fibers at 1 h, 2 h, and 3 h, Table S2: Crystallinity
property of raw (SCB-raw), AHP-treated (cellulose), ultrasonication at 1 h, 2 h, and 3 h (CNF-US1, CNF-US2 and
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