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Abstract: To use calcite mud waste generated from the paper production process, calcite mud was
treated by calcination and then applied as a sorbent agent to remove phosphorus from an aqueous
solution. The pre-treatment muds were characterized by scanning electron microscopy, Fourier
transform infrared spectroscopy, and X-ray diffraction. The effects of calcite mud with different
calcination temperatures on phosphorus removal were investigated. Different sorbent dosages,
contact times, and initial phosphorus concentration conditions were also studied to understand the
phosphorus removal mechanism. The results show that phosphorus removal efficiency was increased
by increasing the calcination temperature of the mud. The phosphorus removal efficiency over
10 min increased by 35%, 82%, 98%, and 100% with 4.5, 6.75, 9.0, and 11.25 mg, respectively, of calcite
mud calcined at 1000 ◦C. However, the efficiency decreased as initial phosphorus concentration
increased. To study the phosphorus removal trend, the pseudo-first-order, pseudo-second-order,
and intraparticle diffusion kinetic models were used. The Langmuir and Freundlich isotherm models
were also used to further investigate the phosphorus adsorption mechanism characteristics of the
calcite mud.

Keywords: calcite mud; calcium oxide; sorption; phosphorus removal

1. Introduction

Phosphorous is an essential component in the global chemical industry, including in the production
of batteries [1], detergent [2], and pharmaceuticals [3]. However, it is a non-renewable natural
mineral resource. The excessive discharge of phosphorous from industrial factories to bodies
of water could lead to eutrophication, water pollution, and severe environmental issues [4–10].
Removal of phosphorous pollution from the wastewater of industrial factories is an important
issue due to the increasing amount of phosphorous discharged. Several studies were conducted
in an effort to develop efficient and economical methods for the removal of phosphorous from
wastewater [11–14]. Several approaches were developed, such as biological-based, crystallized,
and chemical-based approaches [15–17]. The biological-based approach is known as the traditional
approach, but it is not suitable for some kinds of wastewater due to the toxicity to the microorganisms
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within [18]. Hydroxyapatite (Ca10(PO4)6(OH)2) [19,20] and magnesium ammonium phosphate
(MgNH4PO4) [21,22] are two chemicals used in the crystallized approach that can efficiently remove
phosphorus in low and medium concentrations. This method can achieve a removal efficiency of up
to 95.82% [19]. The chemical precipitation technique has attracted attention due to its high removal
efficiency and simple process [23–25]. Other research using mussel shells to remove phosphorus
achieved a high efficiency rate of 99% [25].

Using waste resources, such as calcite mud, in the removal of phosphorus in aqueous solutions has
recently attracted considerable attention. This approach provides high rates of phosphorus removal
and enables the possible use of the waste resources from other industries [25,26]. Calcite mud is a
significant waste resource in the pulp and paper industries. It is discharged in paper production when
converting wood chips into pulp. Approximately 0.47 m3 of calcite mud is produced from every ton of
pulp [27]. The use of calcite mud is currently limited in the industries, with approximately 30% of
the total calcite mud produced being retained, and almost 70% of the remaining calcite mud being
discharged into the environment. Thus, critical environmental issues can arise without the careful
management of calcite mud.

In this paper, we propose an efficient method for the removal of phosphorus in aqueous
solutions using the discharged calcite mud. Calcite mud mostly contains calcium in the form of
calcium oxide (CaO), calcium carbonate (CaCO3), and calcium hydroxide (Ca(OH)2) [28,29]. Calcium
compounds can efficiently remove phosphorus with up to 100% efficiency through the fabrication of
calcium hydroxide nanoparticles with a mass ratio between calcium and phosphorus of over 5.3 [30].
The calcium-based precipitation approach potentially provides high efficiency removal with few
adverse effects. For instance, metal ions (e.g., Al3+, Fe3+) and anions (e.g., SO4

2−, Cl−) are not produced
in this precipitation approach as they are in methods using other metal salts. In an effort to develop a
simple and efficient procedure for using calcite mud, we propose a heat-treatment method to synthesize
CaO from the calcite mud and use it to efficiently precipitate phosphorus in aqueous solutions.

2. Materials and Methods

2.1. Pre-Treatment Calcite Mud

The calcite mud used in this study was gathered from the Moorim paper factory in city, South Korea.
The mud was washed several times with distilled water, followed by drying for 24 h in an oven at 80
◦C. The collected dried mud was calcined in a furnace at 800 or 1000 ◦C for 1 h each. The calcined mud
samples were kept in sealed bottles to keep them from reacting with the oxygen in the air.

2.2. Batch Experiments

The phosphorus removal experiments were conducted using a batch method at room temperature.
A stock solution of phosphorus of 60 mg TP/L (total phosphorus/liter) concentration was prepared
by dissolving potassium dihydrogen orthophosphate salt (KH2PO4) (Daejung Chemicals & Metal
Co., Korea) in distilled water. The solution was then stored in a glass bottle. A lower concentration
phosphorus solution was produced by diluting the stock solution with denionized (DI) water based on
experimental designs.

Different experimental designs are presented in Table 1, outlining the impact of different calcination
temperatures, sorbent dosages, and phosphorus concentrations on efficiency of phosphorus removal.
All experimental phosphorus solution volumes were set at 150 mL in 250 mL glass beakers at room
temperature under a constant 200 rpm magnetic stirring rate. The phosphorus removal efficiency
was recorded at different contact times of 1, 3, 7, 10, 20, and 60 min. After treatment, the solutions
were filtered through a syringe filter (0.45 µm) to separate precipitates. Phosphorus concentration was
analyzed by HS 3300 spectrophotometer (HUMAS, Korea) at a 880 nm wavelength. The phosphorus
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removal efficiency (E) and adsorption capacity (qe) were calculated using Equations (1) and (2),
respectively [30]:

E(%) =
C0 −Ce

C0
× 100 (1)

qe(mg/g) =
V(C0 −Ce)

W
(2)

where Ce (mg TP/L) denotes the equilibrium concentration of the remaining phosphorus after treatment,
C0 (mg TP/L) denotes the initial concentration of total phosphorus, V (L) is the volume of phosphorus
solution, and W (g) is the weight of the calcite mud.

Table 1. Details of the different experimental conditions.

Parameter Value Experiment Conditions

Calcination
temperature

(◦C)

0
Phosphorus concentration =

15 mg TP/L, Sorbent dosage =
10 mg

200 rpm of mixing speed,
room temperature (25 ◦C),

150 mL volume of phosphorus
solution

800

1000

Sorbent dosage
(mg)

4.5

Phosphorus concentration =
15 mg TP/L, Calcite mud calcined

at 1000 ◦C

6.75

9

11.25

Phosphorus
concentration

(mg TP/L)

5

Sorbent dosage = 11.25 mg,
Calcite mud calcined at 1000 ◦C

15

30

60

2.3. Adsorption Kinetics

Adsorption kinetic models can be estimated by the adsorption rate to express the reaction
mechanisms. Pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD)
kinetic models are three kinetic models commonly employed. The linearized form of the PFO, PSO,
and IPD kinetic models are derived in Equations (3)–(5), respectively [31–33]:

log(qe − qt) = −

(
kPFO
2.303

)
t + log(qe) (3)

t
qt

=

(
1
qe

)
t +

1
kPSOq2

e
(4)

qt = kIPDt1/2 + c (5)

where kPFO (min−1), kPSO (g·mg−1
·min−1), and kIDP (mg· g−1

·min−2) are the rate constants of the PFO,
PSO, and IPD models, respectively; and qe (mg/g) and qt (mg/g) are the adsorption capacity at the
equilibrium and at time (t) respectively.

To further investigate the characteristics of phosphorus adsorption of the calcite mud, Langmuir’s
and Freundlich’s isotherm models were used. Langmuir’s and Freundlich’s isotherm models are
expressed in Equations (6) and (7), respectively [31,33]. The experimental data, with a fixed dosage
of calcite mud, W = 11.25 mg, and the initial phosphorus concentration, varied from 5 to 60 mg/g,
were used in the fitting isotherm models:

qe =
qmax × kLang ×Ce

1 + kLang ×Ce
(6)
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qe = kFreu ×Ce
n, n < 1 (7)

where kLang is Langmuir’s constant; qmax (mg/g) and qe (mg/g) are the adsorption capacity at the
maximum and equilibrium, respectively; and kFreu and n are Freundlich’s constants.

2.4. Characterizations

The crystals of the calcite mud waste and calcite mud samples at different calcination temperatures
were observed using X-ray diffraction (XRD, BD2745N, Japan) with a 0.15406 nm Cu Kα source by
ranging 2θ from 20◦ to 80◦. The crystallite size (D) of the calcined muds was estimated by Scherrer’s
equation, D = Kλ/βcosθ, where K denotes Scherrer’s constant, λ denotes the wavelength of the X-ray
radiation, β represents the haft-width of the diffraction peak, and θ stands for the Bragg diffraction
angle. The morphology of the calcite muds was measured by scanning electron microscopy (SEM;
JSM-6380F, Japan) equipment. The characteristic functional group of the muds was recorded by Fourier
transform infrared spectroscopy (FTIR; 6700 FTIR, Thermo Scientific Nicolet, USA) in attenuated total
reflection (ATR) mode with a range of 400–4000 cm−1.

3. Results and Discussion

3.1. Characteristics of Muds

To analyze the crystal structure properties of the calcite mud and the prepared muds, XRD was
investigated. For raw calcite mud, all the diffraction peaks were assigned to calcite (CaCO3), along with
the pattern corresponding to PDF#72-1937, as depicted in Figure 1. The XRD peaks marked by C at
23.03◦, 29.37◦, 35.93◦, 39.36◦, 43.11◦, 47.44◦, 48.45◦, 56.5◦, 57.34◦, 60.6◦, and 64.59◦ 2θ responded to
the (012), (104), (110), (113), (202), (018), (116), (211), (122), (214), and (300) planes of the calcite phase
(PDF#72-1937), respectively [30]. The XRD patterns of the mud calcined at 800 ◦C (blue line) and
1000 ◦C (red line) are also presented in Figure 1. The results showed that the major peaks of the calcined
muds matched very well with the cubic lime crystal phase (calcium oxide) (PDF#82-1690). The peaks
marked by an asterisk at 32.24◦, 37.4◦, 53.92◦, 64.24◦, and 67.46◦ 2θ correspond to the (111), (200), (220),
(311), and (222) planes of the calcium oxide phase (PDF#82-1690), respectively. The XRD peaks of the
calcite mud calcined at 1000 ◦C (intensity = 2530 a.u.) were sharper and stronger in intensity than
the peaks of the mud calcined at 800 ◦C (intensity = 2236 a.u.). The estimated average crystal size of
calcined muds for all planes was about 39.75 nm for mud calcined at 800 ◦C and 41.11 nm for mud
calcined at 1000 ◦C. The results showed that the crystallinity of the calcined mud improved, and the
crystallite size increased with increasing calcination temperature.

Figure 1. XRD results of the raw calcite mud (black line), calcite mud at 800 ◦C (blue line), and calcite
mud at 1000 ◦C (red line).
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Regarding the representative functional groups, FTIR analysis was applied. Figure 2 shows the
FTIR patterns of calcite mud before and after heat treatment. The FTIR analysis of calcite mud showed
sharp and intense vibration peaks at 712, 871, and 1426 cm−1, which are attributed to v4 (in-plane
bending mode), v2 (out-of-plane bending mode), and v3 (antisymmetric stretching mode) of the CO3

2−

group of the calcite, respectively (Figure 2a) [34]. However, after calcination treatment, the FTIR
patterns of the mud were not observed in any carbonated group, as shown in Figure 2b. The wide
band around 500 cm−1 corresponds to the Ca–O bonds in the calcined muds [35,36]. These FTIR results
showed the effect of the adsorption process in the conversion of calcite, CaCO3, to calcium oxide, CaO,
through high-temperature treatment.

Figure 2. FTIR results for (a) the raw calcite mud and (b) the calcite mud calcined at 800 ◦C (blue line),
and at 1000 ◦C (red line).

The SEM images of calcite mud before and after heat treatment are presented in Figure 3. The raw
calcite mud in the micrograph shows agglomerate units, irregular shape, and amorphous-like particles
with a size range of 300 nm−1 µm (Figure 3a). The morphology of calcite mud with the additive
sintered at 1000 ◦C is illustrated in Figure 3b. It was converted to calcium oxide (CaO) when calcinated
at 1000 ◦C because the CO2 gas was removed. The micrograph clearly shows new crystals of calcium
oxide and separated particles. The shape of the CaO particles is irregularly hexagonal, with a size
range of 2–4 µm. The CaO particle size became much larger due to the aggregation of CaO particles,
perhaps due to the influence of the high temperature during the calcination process.

Figure 3. SEM images of (a) raw calcite mud and (b) calcite mud calcined at 1000 ◦C.
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3.2. Phosphorus Removal

The effect of heat treatment on the efficiency of phosphorus removal was investigated. Raw calcite
mud, calcite mud calcined at 800 ◦C, and calcite mud calcined at 1000 ◦C showed phosphorus removal
efficiencies of 0%, 87.2%, and 100% within 60 min, respectively. The results showed that the efficiency of
phosphorus removal increased significantly with increasing calcination temperature due to increasing
calcium oxide quality in the samples. Therefore, the sample of calcite mud calcined at 1000 ◦C was
used for further experiments to check the effect of dosage, contact time, and phosphorus concentration
on the efficiency of phosphorus removal.

To research the effect of adsorbent dosage on the efficiency of phosphorus removal, different
amounts of calcite mud, calcined at 1000 ◦C (4.5, 6.75, 9, and 11.25 mg), were added into a phosphorus
solution of 150 mL with a constant phosphorus concentration of 15 mg TP/L. The phosphorus removal
efficiency depended on the adsorbent dosage, as shown in Figure 4. The efficiency increased from 35.3%
to 100% within 60 min when the calcite mud dosage was raised from 4.5 to 11.25 mg. The efficiency of
phosphorus removal increased with increasing adsorbent dosage. This trend was also observed in
various other studies on phosphorus removal. Torit et al. showed that the efficiency of phosphorus
removal increased from 9% to 25% with increasing eggshell ash from 1 to 5 g [37]. The phosphorus
removal efficiency was increased from 3% to 100% as the weight of lime sludge increased from 0.6 to
4.0 g/L at 75 mg TP/L phosphorus concentration within 30 min [38].

Figure 4. Effect of calcite mud (calcined at 1000 ◦C) dosage on phosphorus removal within 60 min.

Figure 5a shows the effect of contact time on the efficiency of phosphorus removal. These
experiments were performed with different calcite mud (calcined at 1000 ◦C) dosages in a phosphorus
concentration of 15 mg TP/L, and the efficiencies were recorded at different time intervals. The results
showed that the phosphorus removal rate rose very quickly within the initial 7 min of contact time due
to the fresh active sorption sites on the surface of the sorbent, and then slowly increased until reaching
equilibrium in 10 min, suggesting that the phosphorus ions, being full, filled out into the active sites on
the surface of sorbent [30,37]. The phosphorus adsorption rate is presented in Figure 5b. The data
showed that the adsorption capacity increased until chemical equilibrium, and the best adsorption
capacity, 197.4 mg/g, was reached within 3 min at 11.25 mg of calcite mud calcined at 1000 ◦C.
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Figure 5. (a) Effects of contact time on the efficiency of phosphorus removal, (b) kinetic studies of
phosphorus adsorption by 11.25 mg of calcite mud calcined at 1000 ◦C.

The effect of phosphorus concentration on the efficiency of phosphorus removal is presented in
Figure 6. Four initial phosphorus concentration experiments were performed in 150 mL of solution
with a constant dosage 11.25 mg of calcite mud calcined at 1000 ◦C. The efficiency of phosphorus
removal was 100% within 10 min in the initial phosphorus concentrations of 5 mg TP/L and 15 mg
TP/L. However, the efficiency decreased with higher phosphorus concentrations due to there being
more phosphorus ions than sorption sites on the surface of the sorbent.

Figure 6. Effect of phosphorus concentration on the efficiency of phosphorus removal.

The phosphorus removal efficiency decreases when the solid retention time increases due to the
biomass yield rate, according to the United States Environmental Protection Agency report. In this
study, the highest phosphorus removal efficiency (100%) with 11.25 mg of adsorbent was obtained from
3 to 60 min of contact time. After this time, the efficiency of phosphorus decreases due to phosphorus
desorption. The retention time of phosphorus in this study was 60 min.

3.3. Adsorption Kinetics

The linearized forms of the PFO, PSO, and IPD models of the phosphorus adsorption concentration
(Figure 7a), with the initial phosphorus concentrations (Co) of 30 mg/g and calcite mud (W) of 11.25 mg,
are depicted in Figure 7b–d, respectively. Together, these show that the PSO model provides the best
fitting. Thus, the adsorption mechanism was dominated by chemisorption. The fitting parameters of
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the models are shown in Table 2, in which the fitting correlation coefficient, R2, was the highest for the
PSO model, at 0.9995. The R2 for the PFO and IPD models were 0.614 and 0.7837, respectively.

Figure 7. Adsorption capacity (qt) versus time (t) of the phosphorus (a) and linearized kinetic models of
the pseudo-first-order (PFO) (b), pseudo-second-order (PSO) (c), and intraparticle diffusion (IPD) (d).

Table 2. Fitting parameters of linearized kinetic models.

Kinetic Models Fitting Parameters Unit Values

Pseudo-first-order model
(PFO)

qe mg/g 98.79

kPFO min−1 4.234

R2 0.614

Pseudo-second-order model
(PSO)

qe mg/g 342.47

kPSO g·mg−1
·min−1 0.0055

R2 0.9995

Intraparticle diffusion model
(IPD)

c 275.15

kIPD mg· g−1
·min−2 9.751

R2 0.7837

Because the PSO kinetic model provided the best fitting model, we used it to analyze the effect
of initial phosphorus concentrations and the amount of calcite mud on the adsorption capacity.
We changed the initial phosphorus concentration to a range of 5–60 mg TP/L, and the weight of calcite
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mud to a range of 4.5–11.25 mg. The fitting of the PSO model is shown in Figure 8. The fitting
parameters of the models are shown in Table 3. The R2 values of all the fitting lines were very close
to 1.0000, which means the PSO model represents the adsorption capacity of phosphorus very well.
In addition, the estimated adsorption at the equilibriums agreed with the experimental data, with a
normalized root mean square deviation (NRMSD) of 1.25% (7.16 mg).

Figure 8. Linearized form of the PSO kinetic model with variations of the initial phosphorus
concentration, Co, (a) and amount of the calcite mud used, W (b).

Table 3. Fitting parameters of the PSO model on different initial phosphorus concentrations (Co) and
amount of calcite mud used (W).

Experimental
Conditions

qe (Experiment)
(mg/g)

qe
(Model)
(mg/g)

kPSO
(g·mg−1·min−1)

R2

Co = 5 (mg TP/L)

W = 11.25 (mg)

66.67 66.67 0.5625 1.0000

Co = 15 (mg TP/L) 200.00 200.00 0.3125 1.0000

Co = 30 (mg TP/L) 341.33 344.83 0.0057 0.9995

Co = 60 (mg TP/L) 570.67 588.24 0.0006 0.9998

W = 4.50 (mg)

Co = 15 (mg TP/L)

176.67 178.57 0.0128 0.9997

W = 6.75 (mg) 273.33 277.7778 0.0029 0.9974

W = 9.00 (mg) 246.67 250.00 0.0041 1.0000

W = 11.25 (mg) 200.00 200.00 0.3125 1.0000

The results in Table 3 show that the fitting parameters of the PSO kinetic model are different at
the different experimental conditions. Usually, we expect to predict the adsorption capacity (Ce) at
the equilibrium state when designing the experiment conditions;, for instance, the amount of Ce with
a certain Co and W. Further analysis based on the predicted qe of the PSO models was conducted
as shown in Figure 9. Figure 9a shows that the predicted qe had a linear relationship with the Co.
The relationship is described in Equation (8), with the fitting correlation coefficient R2 of 0.9899.
The increase in qe was about nine times the increase in Co, which meant that the proposed adsorption
method was efficient. We think that the increase in qe would reach an equilibrium saturation state
when all the calcite mud was fully reacted. However, qe reaches a peak when increasing the amount of
calcite mud, W, as depicted in Figure 9b. The peak is at about 7 mg of the calcite mud with an initial
phosphorus concentration of 15 mg TP/L. This phenomenon could be explained by the adsorption
capacity achieving the maximum value when all the phosphorus was adsorbed or the adsorption
efficiency of the calcite mud reached the maximum value; qe is inversely proportional to the amount
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of supplied calcite mud. Figure 9 also shows that the predicted qe of the PSO model agreed with the
experimental data, as shown in Table 4.

qe = 9.26×Co + 45.18 (8)

Figure 9. The relationship between adsorption capacity at the equilibrium with the initial phosphorus
concentration, Co (a), and amount of calcite mud used, W (b).

Table 4. Fitting parameters of Langmuir’s and Freundlich’s isotherm models.

Kinetic Models Fitting Parameters Values

Langmuir’s isotherm model

qmax 851.42 mg/g

kLang 0.9820

R2 0.9545

Freundlich’s isotherm model

n 0.57967

kFreu 387.11

R2 0.9474

The fitting graphs in Figure 10 show good fitting by the Langmuir model. The R2 of Langmuir’s
and Freundlich’s models were 0.9545 and 0.9474, respectively. The maximum adsorption capacity
(qmax) could be predicted by Langmuir’s model as 851.42 mg/g. The high adsorption capability of the
mud on the phosphorus was a monolayer, and the major adsorption mechanism was chemisorption.

Figure 10. Fitting of Langmuir’s and Freundlich’s isotherm models of the phosphorus on the
calcium mud.
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In this study, the method efficiently removed 100% of the phosphorus at a concentration of 15 mg
TP/L within 60 min. This is comparable to the crystallized method, with 95.82% efficiency using
hydroxyapatite (Ca10(PO4)6(OH)2) [19], and the chemical precipitation method, with 99% efficiency,
using mussel shells [25]. This method also produced no side effects, whereas the other metal salts
method produce metal ions (e.g., Al3+, Fe3+) and anions (e.g., SO4

2−, Cl−) [39–43]. The results of this
study showed that the employment of pre-treated mud could be effective in removing phosphorus
from wastewater. Another benefit of this method is that it provides a use for the discharged calcite
mud from industrial factories.

4. Conclusions

In this work, a method for phosphorus removal by calcined calcite mud was proposed. We used
a simple heat treatment method to synthesize CaO from the calcite mud, later used for removing
the phosphorous in the wastewater. The calcite mud calcined at 1000 ◦C as a sorbent showed the
most efficient phosphorus removal. The phosphorus removal efficiency increased with increasing
sorbent dosage up to 11.25 mg and decreased with increasing initial phosphorus concentration (higher
than 15 mg TP/L). The phosphorus adsorption capacity was studied with the pseudo-first-order,
pseudo-second-order, and intraparticle diffusion kinetic models. Among the three kinetic models,
the pseudo-second-order model provided the best fitting with the experiment data by a fitting
correlation coefficient (R2) of 0.9995. In addition, Langmuir’s model fitted well with the experimental
results. Therefore, the high adsorption capability of the calcite mud on the phosphorus was a monolayer,
and the major adsorption mechanism was chemisorption.
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