
sustainability

Article

Examining Fractional Vegetation Cover Dynamics in
Response to Climate from 1982 to 2015 in the Amur
River Basin for SDG 13

Ran Yang 1,2, Xiaoyan Li 1,*, Dehua Mao 2 , Zongming Wang 2,3 , Yanlin Tian 2 and
Yulin Dong 2

1 College of Earth Sciences, Jilin University, Changchun 130012, China; ranyang19@mails.jlu.edu.cn
2 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,

Chinese Academy of Sciences, Changchun 130102, China; maodehua@iga.ac.cn (D.M.);
zongmingwang@iga.ac.cn (Z.W.); tianyanlin@iga.ac.cn (Y.T.); dongyulin@iga.ac.cn (Y.D.)

3 National Earth System Science Data Center, Beijing 100101, China
* Correspondence: lxyan@jlu.edu.cn; Tel.: +86-0431-8850-2065

Received: 1 July 2020; Accepted: 19 July 2020; Published: 21 July 2020
����������
�������

Abstract: The impacts of climate and the need to improve resilience to current and possible future
climate are highlighted in the UN’s Sustainable Development Goal (SDG) 13. Vegetation in the Amur
River Basin (ARB), lying in the middle and high latitudes and being one of the 10 largest basins
worldwide, plays an important role in the regional carbon cycle but is vulnerable to climate change.
Based on GIMMS NDVI3g and CRU TS4.01 climate data, this study investigated the spatiotemporal
patterns of fractional vegetation cover (FVC) in the ARB and their relationships with climatic changes
from 1982 to 2015 varying over different seasons, vegetation types, geographical gradients, and
countries. The results reveal that the FVC presented significant increasing trends (P < 0.05) in growing
season (May to September) and autumn (September to October), but insignificant increasing trends in
spring (April to May) and summer (June to August), with the largest annual FVC increase occurring
in autumn. However, some areas showed significant decreases of FVC in growing season, mainly
located on the China side of the ARB, such as the Changbai mountainous area, the Sanjiang plain,
and the Lesser Khingan mountainous area. The FVC changes and their relationships varied among
different vegetation types in various seasons. Specifically, grassland FVC experienced the largest
increase in growing season, spring, and summer, while woodland FVC changed more dramatically
in autumn. FVC correlated positively with air temperature in spring, especially for grassland, and
correlated negatively with precipitation, especially for woodland. The correlations between FVC
and climatic factors in growing season were zonal in latitude and longitude, while 120◦ E and 50◦ N
were the approximate boundaries at which the values of mean correlation coefficients changed from
positive to negative, respectively. These findings are beneficial to a better understanding the responses
of vegetation in the middle and high latitudes to climate change and could provide fundamental
information for sustainable ecosystem management in the ARB and the northern hemisphere.

Keywords: fractional vegetation cover; climate change; spatiotemporal patterns; sustainable
development goal (SDG) 13; Amur River Basin

1. Introduction

Climate change is an urgent challenge that humans must face, and it has direct and indirect
influences on terrestrial ecosystems. Thus, the Sustainable Development Goals (SDGs) concern
‘urgent action to combat climate change and its impacts’ (SDG 13). Due to biophysical responses
of plant photosynthesis and respiration, vegetation dynamics are a sensitive indicator that reacts to
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changes of climate [1,2]. Meanwhile, vegetation changes have feedback to climate, such as surface
temperature and rainfall [3–5]. Therefore, understanding vegetation changes and their relationships
with climatic changes will support the implementation of SDGs in navigating towards realizing
ecosystem sustainability.

Multiple remotely sensed indicators can characterize the vegetation dynamic and its response to
climate change in large scales for a long time series. Based on the normalized difference vegetation
index (NDVI), de Jong et al. [6] found that global greening showed a slowing down trend from 1982 to
2008, and greening trend was stronger in the northern hemisphere. Regions with obvious vegetation
change were identified at the middle and high latitudes in the northern hemisphere and were seriously
influenced by temperature and precipitation [7]. By applying the net primary production (NPP), Piao et
al. observed that the vegetation changes varying over different vegetation types in the Qinghai-Xizang
Plateau from 1982 to 1999 and alpine meadows experienced the most obvious change [8]. Using the
leaf area index (LAI), Chen et al. indicated that the vegetation activities enhanced in the 74.2% of the
global land surface from 1981 to 2016, with combined effects of various drivers, such as CO2, climate [9].
Fractional vegetation cover (FVC) can represent the density of vegetation and the area of photosynthesis
of plants and characterize the quality and change of terrestrial vegetation. Therefore, FVC plays
an important role in presenting the change of ecosystem and environment [10], and documenting
vegetation response to climatic changes. In addition, FVC calculated from NDVI can solve the problem
of NDVI reaching saturation in dense vegetation canopies and effectively extend the range of the
remote sensing data source to the surface information [11,12]. FVC is a promising indicator to explore
vegetation changes in response to climate changes on a broad scale.

The Amur River Basin (ARB) is one of the 10 largest basins worldwide, with an area of
approximately 2.1 million km2. The ARB also transits from the middle to high latitudes in the
northern hemisphere where vegetation is sensitive to climate change [2]. Therefore, examining
relationships of vegetation dynamics with climatic changes in the ARB and analyzing the heterogeneity
of relationships are critical to sustainable ecosystem management. However, studies focusing on the
vegetation changes and their relationships were scarce, and this limited the understanding regional
ecosystem management for sustainability. Only Chu et al. [13] investigated the NDVI variations in
response to climatic changes for the entire ARB, considering different vegetation types and seasons.
Nevertheless, the study lacks the treatment of NDVI saturation and details on the heterogeneity
of relationships between vegetation and climatic changes varied among geographic gradients and
countries in the ARB. Thus, exploration of the response of FVC dynamics in the ARB to climatic changes,
considering different seasons, vegetation types, geographic gradients, and countries, is beneficial to
better understanding vegetation responses in the ARB in the context of the SDGs.

In this study, we examined the response of FVC dynamics from 1982 to 2015 to climatic changes
in the ARB. Specifically, the objectives were to (1) document the spatiotemporal changes of FVC,
mean annual temperature, and precipitation in different seasons during 1982-2015, (2) identify the
relationships of FVC with climatic factors, and (3) explore the heterogeneity of the relationships varied
among different seasons, vegetation types, geographic gradients, and countries in the ARB.

2. Materials and Methods

2.1. Study Area

The ARB extends from 107◦31′ E to 141◦14′ E and from 41◦42′ N to 55◦56′ N. The elevations of the
ARB have obvious spatial variations, while the higher values are in the west and the lower values in the
east (Figure 1A). The ARB is a transboundary region that is composed of the Russian far east (50% of the
total ARB area), the northeast of China (41%), and the northeast of Mongolia (9%). There are obvious
differences in vegetation types, social and economic development, and population distributions in
the ARB. The main topographic types of this region are mountains and plains. The ARB has a high
vegetation coverage, including woodland, grassland, cropland, and wetland (Figure 1B). Woodland
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dominated by coniferous forest, broadleaved forest, and mixed forest occupied 45.7% of the basin and
was mainly observed in the northern and eastern ARB. Grassland covering 22.8% of the ARB was
found primarily in western ARB. China’s northeastern plains are the major cropland distribution areas
where corn, rice, and soybean are the dominant crop types. Moreover, wetland dominated with marsh,
8.1% of the ARB, plays an important role in regional carbon cycle and biodiversity conservation [14].
The temperate humid monsoon has wide influence on the eastern ARB in summer, but the monsoon
from Siberia makes the ARB cold and dry in winter [13].
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Figure 1. Geographical features of the Amur River Basin (ARB). (A) Location of ARB and spatial terrain
pattern; (B) the distribution of different land covers. The pie chart illustrates the area percentage of
different land covers.

2.2. Data Source

The GIMMS NDVI 3g dataset was used in the present study, which can be freely downloaded
from NASA (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1). This dataset has a spatial resolution
of 8 km and 15-day intervals from 1982 to 2015 and has been widely utilized in research on monitoring
vegetation dynamics responding to climatic changes [15–18]. To reduce the interference of water vapor
in the atmosphere and enhance the accuracy of this NDVI dataset, we obtained the monthly NDVI
dataset from 1982 to 2015 using the Maximum Value Composite (MVC) method [19,20].

We selected two climatic factors (air temperature and precipitation) that have been regarded as
the important drivers for vegetation changes. In this study, the Climatic Research Unit Time Series
4.01 (CRU TS4.01, available at http://date.ceada.ac.uk/badc/cru/data/) meteorological dataset with
a spatial resolution of 0.5◦ was applied to obtain the monthly air temperature (TMP) and monthly
precipitation (PRE) datasets from 1982 to 2015 for the ARB. The CRU dataset was produced by the
Climate Research Unit, University of East Anglia, and has been used in a number of studies on climate
change or vegetation growth [13,21,22]. The spatial resolution of temperature and precipitation data
was resampled to 8 km using the nearest neighbor method when we explored the effects of climatic
factors on FVC.

The land cover data were classified from Landsat data provided by the United States Geological
Survey (USGS, http://glovis.usgs.gov/). In this study, we focused mainly on four vegetation types
(Figure 1B): woodland (WO), grassland (GR), wetland (WE), and cropland (CR). We extracted areas
with unchanged vegetation types from 1982 to 2015 in the ARB when we analyzed the trend of FVC
and examined their relationships with climatic factors. The land cover data were also resampled to 8
km to match the spatial resolution of the NDVI dataset in ArcGIS 10.3 software.

The future air temperature and precipitation data produced by the CNRM-ESM2-1 model were
used in this study to predict the trend of FVC changes in future under the influence of the climatic
changes from 2016 to 2050 (available at https://esgf-node.llnl.gov/search/cmip6/). The CNRM-ESM2-1
model participated the 6th Phase of the Coupled Model Intercomparison Project (CMIP6), and its
outputs were widely used in researches on future climate–vegetation interaction [23,24]. Moreover,
some researchers found the outputs’ temporal behavior for Earth System Models (ESMs, including

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1
http://date.ceada.ac.uk/badc/cru/data/
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CNRM-ESM2-1) in CMIP6 was consistent with MODIS data [25]. In CMIP6, there are five main
scenarios, and the sustainability scenario (SSP1) is the only scenario that can produce the future climatic
data to support the policy goal that keeps global warming within 2 ◦C by 2100 [26]. Therefore, we
exhibited the trends of mean annual air temperature and mean annual precipitation for growing season
from 2016 to 2050 in the ARB in Figure 8, based on CNRM-ESM2-1 model and the sustainability scenario.

2.3. Methods

2.3.1. Pixel Dichotomy Model

The pixel dichotomy model, widely used for calculating FVC from the NDVI [20,27], was chosen
for this study. In this model, each image pixel was regarded as a mixed pixel composed of two parts
(vegetation and soil), so FVC can be obtained as:

FVC =
NDVI −NDVIsoil

NDVIveg −NDVIsoil
(1)

where NDVI represents all information of the mixed pixel, NDVIveg represents vegetation contribution
information, and NDVIsoil represents the soil contribution information.

Determining the value of NDVIveg and NDVIsoil is the key to obtaining accurate FVC. The values of
NDVIveg and NDVIsoil should theoretically be 1 and close to 0, respectively. Previous studies confirmed
that NDVIveg and NDVIsoil cannot be defined as the fixed value, as they changed with time and space
for the influence of meteorological and vegetation type [28]. In this study, an approximate substitution
method was applied to determine the values of NDVIveg and NDVIsoil [27]. Specifically, we obtained
the NDVI values in remote sensing images and constructed the NDVI cumulative frequency table
from 1982 to 2015. Then, the NDVIveg was represented by the mean 0.5% highest NDVI value and
the NDVIsoil was represented by the mean 0.5% lowest NDVI value. Lastly, we obtained the monthly
FVC dataset from 1982 to 2015 and calculated the mean annual FVC for growing season and different
seasons in the ARB.

2.3.2. Linear Regression Analysis

In this study, we applied a simple linear regression analysis method based on ordinary least
squares (OLS) [22,29] to detect the trend of mean annual FVC, temperature, and precipitation for
growing season and the different seasons at the basin or pixel scale from 1982 to 2015. The expression
of the slope is:

Slope =
n×

∑n
i=1 i× Pi −

∑n
i=1 i

∑n
i=1 Pi

n×
∑n

i=1 i2 −
(∑n

i=1 i
)2 (2)

where Pi is the value of parameter (FVC or climatic factors) in the year i, and n represents the number
of years. If the Slope > 0, it means the parameter exhibits an upward trend. Otherwise, if the Slope <

0, it means the parameter exhibits a downward trend. In addition, the T-test method was applied to
indicate whether the trend of the parameter was significant at the basin or pixel scale. However, it
should be noted that the results of T-test only represent the confidence level of the parameter’s trend
and are not related to the trend’s velocity [30].

2.3.3. Correlation Analysis

Based on the method of Pearson correlation analysis [31], the correlation coefficients between
the mean annual FVC and mean precipitation or mean temperature from 1982 to 2015 for growing
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season and the different seasons were calculated to present their relationships at basin or pixel scales.
The equation is as follows:

RAB =

∑n
i=1

(
Ai −A

)(
Bi − B

)
√∑n

i=1

(
Ai −A

)2
√∑n

i=1

(
Bi − B

)2
(3)

where n is the number of years, Ai represents the value of variable A in the year i, and Bi represents
the value of variable B in the year i. A and B represent means of the two respective variables. RAB
represents the correlation coefficient between A and B ranging from −1 to 1. If the RAB > 0, it indicates
variables A and B have a positive correlation. On the contrary, if the RAB < 0, it indicates variables A
and B have a negative correlation. In addition, if the absolute value of RAB is closer to 1, the correlation
between variable A and variable B is stronger.

2.3.4. Data Analysis

To present seasonal changes of FVC, we defined the growing season as May to September, spring
from April to May, summer from June to August, and autumn from September to October [32].
We conducted three contrastive analyses to further explore the spatial heterogeneity vegetation
dynamics in the ARB in response to climate change for different vegetation types (woodland, grassland,
wetland, and cropland), different nations (China, Russia, and Mongolia), and different longitudinal
and latitudinal zones (with 1◦ gradients).

3. Results

3.1. Spatiotemporal Patterns of FVC and Climatic Factors

At the basin scale, the mean annual FVC showed increasing trends in growing season, spring,
summer, and autumn from 1982 to 2015 (Figure 2), and the increasing trends in growing season and
autumn were significant (P < 0.05). Growing season and summer FVC had lower values in 2003.

Significant increase in air temperature was found in growing season (0.0347 ◦C yr−1, P < 0.01),
summer (0.0364 ◦C yr−1, P < 0.01), and autumn (0.0370 ◦C yr−1, P < 0.01). However, the warming trend
was insignificant in spring, with a rate of 0.0188 ◦C yr−1 (P = 0.20). Insignificant dryer trends were
observed in growing season, summer, and autumn, and the largest rate of this precipitation decline
was in summer (−0.4004 mm yr−1, P = 0.08). On the contrary, there was a slightly wetter trend in
spring, with an annual precipitation increase of 0.1559 mm (P = 0.25).

At pixel scale, there were more pixels presenting FVC increase than decrease in growing season,
spring, summer, and autumn from 1982 to 2015 in the ARB (Figure 3A–D). The variations of FVC trends
were characterized as three types, namely significant increase (slope > 0, P < 0.05), significant decrease
(slope < 0, P < 0.05), and insignificant change (P < 0.05), by combining the results of FVC trends and
significance tests (Figure 3E–H). The majority of pixels with increasing and decreasing FVC were in
autumn (90.3%, with a significant increase in 56.2%) and summer (42.1%, with a significant decrease
in 15.0%). We also found the 67.0% of the entire area had growing season FVC increase, while 30.5%
of the basin had significant increase detected mainly in the Songnen plain, northern mountainous
areas, and the western ARB. Of the total pixels, 9.8% experienced significant FVC decreases in growing
season, which were detected mainly in the Changbai mountainous area, the Sanjiang plain, and the
Lesser Khingan mountainous area. In spring, the pixels with increased FVC accounted for 63.2% of the
whole study area, while 26.3% of the ARB exhibited significant increasing trends aggregated mainly in
the Greater Khingan mountainous area and the northern and western ARB. The spring FVC presented
a significant decrease in the Songnen and Sanjiang plains.
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season (A,E), spring (B,F), summer (C,G), and autumn (D,H).

For different vegetation types, the FVC values of woodland, grassland, and wetland presented
increases in growing season, spring, summer, and autumn from 1982 to 2015 (Table 1), and the largest
increase occurred in autumn for all vegetation types. Grassland FVC showed the largest increase of all
vegetation types in growing season, spring, and summer. Areas with significant increase (P < 0.05) for
grassland FVC in growing season, spring, and summer (Figure 4) accounted for 40.8%, 53.9%, and
31.1% of the total grassland area, respectively. Woodland had the largest areal proportion of significant
FVC increases in autumn (60.3%) among all vegetation types.
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Table 1. The trends of FVC (yr−1), temperature (TMP, ◦C yr−1), and precipitation (PRE, mm yr−1) and
Pearson correlation coefficients between FVC and mean temperature (RFVC-TMP) and mean precipitation
(RFVC-PRE) for different vegetation types in growing season and other three seasonal periods.

Vegetation Types Periods
Trends Pearson Correlation Coefficients

FVC TMP PRE RFVC-TMP RFVC-PRE

Woodland

Growing
season 0.0004 0.032 ** −0.209 0.240 −0.236

Spring 0.0004 0.017 0.151 0.330 −0.208
Summer 0.0001 0.035 ** −0.360 0.244 −0.270
Autumn 0.0016 ** 0.034 ** −0.153 0.234 −0.400 *

Grassland

Growing
season 0.0010 ** 0.045 ** −0.348 * 0.150 0.284

Spring 0.0011 ** 0.029 0.131 0.448 ** 0.199
Summer 0.0008 * 0.049 ** −0.561 * 0.049 0.300
Autumn 0.0015 ** 0.038 ** −0.156 0.363* −0.127

Wetland

Growing
season 0.0004 0.030 ** −0.128 0.263 −0.156

Spring 0.0001 0.013 0.186 0.336 −0.225
Summer 0.0001 0.029 ** −0.214 0.290 −0.137
Autumn 0.0015 ** 0.038 ** −0.249 0.224 −0.323

Cropland

Growing
season 0.0001 0.032 ** −0.301 −0.221 0.164

Spring −0.0004 0.016 0.210 0.103 −0.249
Summer 0.0001 0.030 ** −0.437 0.054 0.080
Autumn 0.0016 ** 0.044 ** −0.280 0.211 −0.088

* and ** represent significance at the 0.05 level and the 0.01 level, respectively.
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Figure 4. The percentage (%) of FVC change types for different vegetation types and nations in growing
season (A), spring (B), summer (C), and autumn (D). WO: Woodland; GR: Grassland; WE: Wetland;
CR: Cropland; CH: China; RU: Russia; MO: Mongolia.

The FVC showed significant increases (P < 0.05) in autumn in the three territories of China, Russia,
and Mongolia, which was in accordance with the pattern of FVC for various vegetation types (Table 2).
FVC in Mongolia also showed significant increasing trends in growing season, spring, and summer.
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Besides, 80.9% of FVC in Mongolia presented significant increase trends in spring (Figure 4B). China
had the smallest increase in FVC and the largest area percentage of significant FVC decrease in spring,
summer, and growing season compared with Russia and Mongolia.

Table 2. The trends of FVC (yr−1), temperature (TMP, ◦C yr−1), and precipitation (PRE, mm yr−1) and
Pearson correlation coefficients between FVC and mean temperature (RFVC-TMP) and mean precipitation
(RFVC-PRE) for different nations in growing season and other three seasonal periods.

Nations Periods
Trends Pearson Correlation Coefficients

FVC TMP PRE RFVC-TMP RFVC-PRE

China

Growing
season 0.0001 0.034 ** −0.325 −0.152 0.049

Spring 0.0001 0.018 0.181 0.222 −0.254
Summer −0.0001 0.034 ** −0.478 0.079 −0.008
Autumn 0.0016 ** 0.041 ** −0.277 0.246 −0.247

Russia

Growing
season 0.0007 * 0.032 ** −0.137 0.413 * −0.202

Spring 0.0005 0.017 0.136 0.376 * −0.214
Summer 0.0004 0.034 ** −0.277 0.305 −0.159
Autumn 0.0015 ** 0.038 ** −0.249 0.224 −0.323

Mongolia

Growing
season 0.0012 * 0.057 ** −0.486 * −0.158 0.493 **

Spring 0.0014 ** 0.036 ** 0.202 * 0.448 ** 0.366 *
Summer 0.0012 0.017 ** −0.751 * −0.226 0.460 **
Autumn 0.0015 ** 0.040 ** −0.250 * 0.243 0.082

* and ** represent significance at the 0.05 level and the 0.01 level, respectively.

3.2. Spatiotemporal Patterns of the Correlations between FVC and Climatic Factors

The correlation coefficients between the FVC and air temperature (RFVC-TMP) and precipitation
(RFVC-PRE) in growing season, spring, summer, and autumn were calculated using the Pearson
correlation method at basin (Table 3) and pixel scales (Figure 5), respectively, to clarify the relationships
of FVC with climatic changes from 1982 to 2015 in the ARB. FVC had a positive correlation with mean
annual air temperature in growing season and the other three seasons (Table 3) at the basin scale.
The largest Pearson correlation coefficient with a value of 0.329 between FVC and temperature was
observed for spring. FVC had a negative correlation with precipitation in growing season and the
other three seasons, and this negative correlation was the strongest in autumn with a value of −0.314.

Table 3. Correlations between mean FVC and mean temperature (RFVC-TMP) and mean precipitation
(RFVC-PRE) in growing season and the other three seasons at the basin scale.

Periods RFVC-TMP p RFVC-PRE p

Growing season 0.204 0.247 −0.039 0.828
Spring 0.329• 0.057 −0.135 0.445

Summer 0.231 0.188 −0.053 0.766
Autumn 0.300• 0.085 −0.314• 0.070

• represents significance at the 0.1 level.

There were more pixels exhibiting positive than negative correlation between FVC and temperature
for growing season, spring, summer, and autumn in the ARB from 1982 to 2015 (Figure 5A–D).
In growing season, the positive correlation between FVC and temperature was presented in 61.4% of
the ARB. Significant positive correlation (P < 0.05) accounted for 16.1% of entire study area and mainly
aggregated in the Greater Khingan mountainous area, northern mountainous areas, and the northwest
of the ARB. Of the total pixels, 8.4% showed significant negative correlations between growing season
FVC and temperature, and these were mainly located in the Songnen plain and the southwest of the
ARB. In spring, FVC exhibited positive correlations with temperature in 88.0% of the entire basin.
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Significant positive correlations between spring FVC and temperature were present in 27.1% of the
total pixels, which were located mainly in the eastern and western ARB. In summer, FVC showed
negative correlations with temperature in 41.0% of the ARB, but only 5.7% of the basin presented
significant positive correlations between FVC and temperature.Sustainability 2020, xx, x FOR PEER REVIEW 11 of 18 
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Figure 5. Spatial patterns of the correlation between FVC and temperature (TMP) and precipitation
(PRE) for growing season (A,E), spring (B,F), summer (C,G), and autumn (D,H). The pie charts illustrate
the area percentage of different spatial patterns of the correlations.

There were more pixels with negative correlation than that with positive correlation between
FVC and precipitation in growing season, spring, summer, and autumn. The area showing significant
negative correlation accounted for 10.5% of the ARB in autumn, larger than the area in growing season
(9.4%), summer (8.7%), and spring (7.9%). In growing season and summer, pixels presenting significant
negative correlation (P < 0.05) were identified mainly in Greater Khingan mountainous areas and
northern mountainous areas of the ARB. Significant negative correlations in spring were situated
mainly in the northeastern ARB. The positive correlation between FVC and precipitation in growing
season and the other three seasons mainly occurred in the western ARB where the grassland was the
dominant vegetation type (Figure 5E–H).

We examined the relationships of spring FVC with winter temperature and winter precipitation,
and summer FVC with spring temperature and spring precipitation (Figure 6). Spring FVC showed
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a positive correlation with winter temperature in 68.0% of the ARB, while spring FVC presented a
negative relationship with winter precipitation in 63.9% of the ARB. Furthermore, the significant
negative correlation between spring FVC and winter precipitation occurred mainly in Sanjiang and
Songnen plains where cropland is the dominant landscape type. Summer FVC showed positive
correlations with spring precipitation in most areas (76.5% of the ARB), with significant positive
correlation in 13.1% of the whole basin, and significant positive correlation coefficients were distributed
mainly in the western ARB.Sustainability 2020, xx, x FOR PEER REVIEW 12 of 18 

 

Figure 6. Spatial pattern of correlation between spring FVC and (A) winter temperature and (B) 

winter precipitation, summer FVC and (C) spring temperature and (D) spring precipitation. The pie 

charts illustrate the area percentage of different spatial patterns of the correlations. 

3.3. Variations in the Relationship of FVC with Climatic Factors among Different Vegetation Types, Nations, 

and Geographic Gradients 

Except for cropland in growing season, the FVC of all vegetation types positively correlated with 

temperature in growing season and the other three seasons. Grassland FVC showed the most 

significant positive correlation (0.448) with temperature in spring (Table 1). The relationships of FVC 

with precipitation were more variable than temperature for different vegetation types. The FVC of 

woodland and wetland were negatively correlated with precipitation in growing season and the 

other three seasons, with woodland FVC exhibiting the strongest significant negative correlation with 

precipitation in autumn (−0.400). Grassland FVC was positively affected by precipitation in growing 

season, spring, and summer but negatively affected by precipitation in autumn. 

The FVC in Russia presented significant positive correlations (p < 0.05) with temperature in 

growing season (0.448) and spring (0.376) but negative correlations with precipitation in growing 

season and the other three seasons (Table 2). The FVC in Mongolia showed the strongest positive 

correlation with temperature in spring (0.448) and significant positive correlations with precipitation 

in growing season (0.493), spring (0.366), and summer (0.460). However, we found the growing 

season FVC in China exhibited negative correlation with temperature and positive correlation with 

precipitation. 

To further document the spatial heterogeneity of the FVC relationships with climatic factors, we 

calculated the mean correlation coefficients for each 1° longitudinal zone and each 1° latitudinal zone 

in growing season (Figure 7). Mean correlation coefficients showed obviously longitudinal and 

latitudinal zonalities. Specifically, the values of mean correlation coefficient between FVC and 

temperature (RFVC-TMP) increased clearly from negative to positive along with the increase of longitude 

and latitude. The mean correlation coefficients between FVC and precipitation (RFVC-PRE) presented a 

significant decreasing trend. Interestingly, 120° E and 50° N were the approximate boundaries 

between positive and negative values of mean correlation coefficients. 
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illustrate the area percentage of different spatial patterns of the correlations.

3.3. Variations in the Relationship of FVC with Climatic Factors among Different Vegetation Types, Nations,
and Geographic Gradients

Except for cropland in growing season, the FVC of all vegetation types positively correlated
with temperature in growing season and the other three seasons. Grassland FVC showed the most
significant positive correlation (0.448) with temperature in spring (Table 1). The relationships of FVC
with precipitation were more variable than temperature for different vegetation types. The FVC
of woodland and wetland were negatively correlated with precipitation in growing season and the
other three seasons, with woodland FVC exhibiting the strongest significant negative correlation with
precipitation in autumn (−0.400). Grassland FVC was positively affected by precipitation in growing
season, spring, and summer but negatively affected by precipitation in autumn.

The FVC in Russia presented significant positive correlations (p < 0.05) with temperature in
growing season (0.448) and spring (0.376) but negative correlations with precipitation in growing season
and the other three seasons (Table 2). The FVC in Mongolia showed the strongest positive correlation
with temperature in spring (0.448) and significant positive correlations with precipitation in growing
season (0.493), spring (0.366), and summer (0.460). However, we found the growing season FVC in
China exhibited negative correlation with temperature and positive correlation with precipitation.

To further document the spatial heterogeneity of the FVC relationships with climatic factors,
we calculated the mean correlation coefficients for each 1◦ longitudinal zone and each 1◦ latitudinal
zone in growing season (Figure 7). Mean correlation coefficients showed obviously longitudinal
and latitudinal zonalities. Specifically, the values of mean correlation coefficient between FVC and
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temperature (RFVC-TMP) increased clearly from negative to positive along with the increase of longitude
and latitude. The mean correlation coefficients between FVC and precipitation (RFVC-PRE) presented a
significant decreasing trend. Interestingly, 120◦ E and 50◦ N were the approximate boundaries between
positive and negative values of mean correlation coefficients.Sustainability 2020, xx, x FOR PEER REVIEW 13 of 18 
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4. Discussion

4.1. FVC Dynamics and Its Relationship with Climatic Factors

At the basin scale, we found an increasing trend of growing season FVC with an annual rate
of 0.0005 from 1982 to 2015, which could be attributed to increased temperature in the ARB [33,34].
Previous studies reveal that increased temperature enhanced photosynthetic intensity and extended
growing season length for plants [2,29]. However, the increase of growing season FVC was not
continuous, and there was an obvious decrease of FVC in 2003. This degradation phenomenon of
vegetation was also found in another study [13] and can mainly be clarified by forest fires caused
by long-lasting drought [33]. The FVC in spring represented the strongest positive correlation with
temperature, since spring temperature regulated the start of the vegetation’s photosynthetic activity [35].
FVC showed the strongest negative correlation with precipitation in autumn because the increasing
precipitation causes more clouds and less sunshine, which limits photosynthesis. We found that the
correlation coefficient between autumn FVC and summer FVC was 0.340 (P < 0.05) at the river scale,
which indicated autumn FVC was significantly dependent on summer vegetation growth and could
partly explain the reason why autumn FVC had the highest rate of the increased trend.

For FVC in different nations, the trend of growing season FVC in China increased at the lowest
rate and did not pass the T-test at the 0.05 level (Table 2). In fact, varied vegetation types and intensified
human activities may be the reasons for difficultly in drawing a general conclusion on the FVC
dynamics in the Chinese part of the ARB [13,36]. On the one hand, grassland, cropland, wetland,
and woodland had different responses to climate change (Table 1), and all these vegetation types are
present in the Chinese territory (Figure 1B). On the other hand, different human activities and policy
implementations concerning farming and forest protection may have had different effects on FVC
dynamics [37]. For example, the increasing FVC in the Songnen plain could be explained by the “Grain
for Green” project that banned grazing in this region from 2006 [38,39]. In contrast, over-farming may
partly explain the decreased FVC in the Sanjiang plain, the Lesser Khingan mountainous area, and the
Changbai mountainous area [19,40,41]. In summary, the more vegetation types and human activities
in the region, the more difficult it is to draw a general trend of its FVC dynamics. Thus, the increased
trend of FVC in Mongolian territory was the most obvious.
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4.2. Spatial Heterogeneity of Correlations between FVC and Climatic Factors

In this study, we found the obvious spatial heterogeneity of correlations between FVC and
temperature or precipitation. The mean correlation coefficients for growing season presented obvious
zonality of latitude and longitude (Figure 7). In the longitudinal direction, the boundary between
positive and negative values of mean correlation coefficients was approximately consistent with
the boundary between arid and humid areas [42,43]. Due to the influence of the temperate humid
monsoon in summer, the humidity in the ARB presents an increasing trend from the west to east.
In arid areas where precipitation has stronger control over vegetation growth temperature, the
increased precipitation can promote photosynthetic activity [2], but the increased temperature enhances
evaporation and reduces soil water content, which limits the vegetation growth. In humid areas,
since the soil has relatively sufficient moisture, there is less of an effect of precipitation on vegetation
growth, and temperature plays a major role in vegetation growth. Increased precipitation in this region
means a higher probability of flooding and a larger area of open water, which seriously reduces the
FVC [38]. In the latitudinal direction, the boundary between positive and negative values of mean
correlation coefficients were approximately consistent with the boundary between the mid-temperate
zone and the sub-frigid zone [42,44]. At the sub-frigid zone, the increased temperature means more
available nitrogen in soil, which enhances the photosynthesis intensity of vegetation [10], and increased
precipitation means more clouds and less sunshine, which may limit the vegetation growth [19].

Because of spatial differences of climate, the vegetation types across the ARB also showed spatial
heterogeneity (Figure 1B). The woodlands were mainly distributed in the northern and eastern ARB,
and most FVC of woodland in these areas presented significant negative correlation with precipitation
in growing season, spring, summer, and autumn. However, the temperature had an obviously positive
effect on woodland FVC, especially in spring (Figure 5). Actually, forests tend to have deeper roots,
enabling access to deep soil water, which means that forests can sustain photosynthesis under lower
rainfall for longer periods of time and are more resistant to droughts [45,46]. Therefore, woodland
FVC is less dependent on precipitation water supply, and the temperature is the dominant factor for
woodland FVC. Grasslands were distributed in the western ARB, and the FVC of grasslands in these
areas was positively correlated with precipitation in growing season, spring, and summer, which
was the opposite of the relationship of woodland FVC with precipitation. The soil of grasslands has
little water, which causes the grasslands to be immediately and hugely affected by precipitation [47].
In addition, we also found FVC in grasslands had significant positive correlations with pre-season
precipitation (Figure 6). For croplands mainly aggregated in Songnen and Sanjiang plains, we found
that spring FVC showed significant negative correlation with winter precipitation in most of these
areas. The increased precipitation in winter means longer snow cover periods and a later sowing date,
which causes the decrease of cropland FVC in spring.

4.3. Effects of Future Climate Change on Vegetation and Management Implications

Based on the CNRM-ESM2-1 model and sustainability scenario, the climate will become warmer
and dryer in arid areas of the ARB but will become warmer and wetter in humid areas of the ARB
for growing season from 2016 to 2050 (Figure 8). Therefore, on the basis of previous analyses of the
correlations between FVC and climatic factors, we predicted growing season FVC dynamics from 2015
to 2050 in the ARB. For woodlands, due to the increased temperature, the freeze-thaw action will be
aggravated, and the available water for soil will increase, which will cause an increase of FVC in these
regions. However, it should be noted that some woodlands were located in arid areas of the ARB
where the long-term drought will still increase the probability of forest fires that may reduce woodland
FVC suddenly in future. FVC of croplands and wetlands located mainly in humid areas will show
an increasing trend because of the warmer and wetter trend in the future. However, the significant
increasing precipitation in these areas will more possibly cause larger open water areas during the
flood period, which will reduce the FVC of croplands and wetlands in future. For grasslands that were
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distributed mainly in arid area of the ARB, the warmer and dryer trend will lead to lower FVC in
these areas.

Based on the former prediction, we formed three management implications. Firstly, the prevention
work of forest fires should be more concentrated in the northwestern ARB. Secondly, the artificial
irrigation and flood control system should be further developed in China to achieve better protection
and utilization of wetlands and croplands. Thirdly, the grazing behavior in the western ARB should be
restricted to relieve possible grassland degradation in future.
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5. Conclusions

Based on GIMMS NDVI3g and CRU TS climate data, this study investigated the spatiotemporal
patterns of fractional vegetation cover (FVC) in the ARB and their relationships with climatic changes
from 1982 to 2015 varying over different seasons, vegetation types, geographical gradients, and
countries. In the 34-year period, FVC presented significant increasing trends in growing season and
autumn but insignificant increasing trends in spring and summer, with the largest increasing trend rate
of FVC occurring in autumn. However, there were some areas showing significant decrease of FVC in
growing season, which were located mainly in the Chinese territory of the ARB. The FVC dynamics
varied among different vegetation types in various seasons. Grassland FVC experienced the largest
increase in growing season, spring, and summer, while woodland FVC changed more dramatically
in autumn. FVC showed a hugely positive correlation with air temperature in spring, especially for
grassland. In autumn, FVC exhibited the strongest negative correlation with precipitation, especially
for woodland. The correlations between FVC and climatic factors in growing season were zonal in
latitude and longitude, while 120◦ E and 50◦ N were the approximate boundaries at which the values
of mean correlation coefficients changed from positive to negative, respectively. These findings are
beneficial to a better understanding of the responses of vegetation in the middle and high latitudes to
climate changes and could provide fundamental information for sustainable ecosystem management
in the ARB and the northern hemisphere.
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