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Abstract: The drying-wetting cycles caused by operation of the Three Gorges Reservoir have
considerable effect on the deterioration of reservoir bank rock mass, and the degradation of reservoir
rock mass by the drying-wetting cycle is becoming obvious and serious along with the periodic
operation. At present, the strength of the rock prediction research mainly focuses on the uniaxial
strength, and few studies consider the drying-wetting effect and confining pressure. Therefore, in this
paper, typical sandstone from a reservoir bank in the Three Gorges Reservoir area is taken as the
research object, while the drying-wetting cycle test, wave velocity test and strength test are carried
out for the research on the strength prediction of sandstone under the action of the drying-wetting
cycle. The results show that the ultrasonic wave velocity Vp of the sandstone has an exponential
function relation with the drying-wetting cycle number n, and the initial stage of drying-wetting
cycles has the most significant influence on the wave velocity. Under different confining pressures,
the compressive strength of sandstone decreases linearly with the increase of the drying-wetting cycle
numbers, and the plastic deformation increases gradually. The damage variable of the sandstone has
a power function relation with the increase of drying-wetting cycle numbers. A traditional strength
prediction model based on P-wave velocity was established combined with the damage theory and
Lemaitre strain equivalence hypothesis; in view of the defects of the traditional strength prediction
model, a modified model considering both the drying-wetting cycle number and confining pressures
was proposed, where the calculated results of the modified model are closer to the test strength value,
and the prediction error is obviously decreased. This indicated that the modified model considering
the drying-wetting cycle number and confining pressure is reasonable and feasible.

Keywords: hydro-fluctuation belt; drying–wetting cycles; sandstone; rock strength prediction;
wave velocity

1. Introduction

Periodic operation of the Three Gorges Reservoir has changed the geological environment,
which can easily lead to geological disasters, such as landslides, causing huge economic losses and
social impacts. According to relevant statistics, ever since the completion of the Three Gorges Dam,
periodic fluctuation of water level in the reservoir has induced a large number of slope disasters,
of which there are more than 2490 large-scale collapses and landslides [1,2]. The national sustainable
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development strategy encourages joint efforts for great protection rather than disruptive development,
and studying the degradation process of rock in the hydro-fluctuation belt at the reservoir bank.
Thus, to analyze the influences of periodic operation of the reservoir on rock strength in the slope
is an important premise for discussing the slope stability of the reservoir bank in the Three Gorges
Reservoir area.

Due to periodic fluctuation of water levels, rock mass in the hydro-fluctuation belt of the reservoir
bank is alternately dried or wetted for a long time. Such a fatigue load can lead to cumulative damage to
rock mass in the hydro-fluctuation belt of the reservoir bank, aggravating the degradation process [3,4].
In recent years, scholars throughout the world have carried out a lot of researches on effects of
drying–wetting cycles on rock materials and obtained a series of research results. The physical and
mechanical properties of ignimbrites in Central Anatolia under 50 drying-wetting cycles were studied,
and researchers found that the weight, porosity, water, P-wave velocity and uniaxial compressive
strength had varying degrees of change [5]. Creep properties of siltstone under drying–wetting cycles
were investigated and researchers found that with the increase of the number of drying–wetting cycles,
the axial creep strain and axial steady-state creep rate of siltstone non-linearly rise, while instantaneous
deformation modulus decrease logarithmically [6]. The loading and unloading mechanisms of
mudstone in Andes Colombia were studied under drying–wetting cycles [7]. By taking sandstone as a
research object, a series of tests under drying–wetting cycles with acid solution with pH of 7, 5 and 3
were conducted [8], and the results demonstrated that deviatoric stress is positively correlated with
uniaxial compressive strength and cohesion, and also showed a negative correlation with constant
materials and angles of internal friction. The strength characteristics of argillaceous sandstone under
drying–wetting cycles in an acid environment and simulated properties, such as particle contact
and crack distribution of the specimens at peak strength during a triaxial compression test were
researched by utilizing a particle flow code in 2 dimensions (PFC2D) program [9]. By utilizing the
computed tomography (CT) scanning technique, combined with the Brazil disk split tests and uniaxial
compression tests, the macro mesoscopic mechanical parameters under drying–wetting cycles and
the damage mechanisms of strength of sandstones were discussed [10]. Some tested results showed
that the weakening effects of water on soft rock are mainly reflected by the decrease of contact stress
between skeleton particles and clay minerals, as well as the cohesion and angle of internal friction of
clay minerals [11]. The mechanical properties of sandstone under drying–wetting cycles were studied
and a 2-12-1 three-layer neural network model was established by Li [12]. According to [13], a test was
performed on mechanical properties of sandstone under drying–wetting cycles in water environments
with different pH values and [13] then proposed a three-dimensional degradation equation for the
relationships of mechanical parameters with pH values and the number n of drying–wetting cycles.
The creep characteristics of sandstone under coupled stress-water pressure were also studied by
Luo [14].

In the above research, physical and mechanical properties of rock mass under drying–wetting
cycles were analyzed by using test technologies, such as strength testing, electron microscopy and
CT scanning. It is emphasized that the change of the water environment has a fatal impact on the
strength of rocks. Also, different methods were adopted by researchers to build models predicting the
strength of rocks under the action of water. A point load test in different directions was conducted
by Heidari et al. [15] and the uniaxial compressive strength and tensile strength of gypsum rock
were predicted by using a regression analysis method. Based on the geological nature of rock,
the literature [16], using regression analysis and a back-propagation (BP) neural network, predicted the
uniaxial compressive strength of carbonate rock and verified the rationality of the prediction model
through gray correlation analysis. In addition, based on porosity, density, longitudinal wave velocity,
Poisson’s ratio and point load index, the uniaxial strength of carbonate rock was predicted separately
through multivariate linear regression analysis and an artificial neural network [17]. The results showed
that prediction effects of the neural network method are better than those of the regression analysis
method. By using neural networks, machine learning, fuzzy systems and regression analysis [18–20],
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the uniaxial compressive strength and modulus of elasticity in calcareous mudstones were predicted
and researchers found that neuro-fuzzy inference system is more suitable for predicting the uniaxial
compressive strength and modulus of elasticity. In line with [21], Asheghi classified 197 groups of
quarry rocks in Iran by using the index of density, porosity, longitudinal wave velocity, pointing load
index and water absorption rate. Based on this, by combining a generalized feed forward network
(GFFN) with independent component analysis (ICA), they proposed an ICA–GFFN hybrid algorithm
for predicting the uniaxial compressive strength of rocks.

As a kind of non-destructive testing technology, the testing of ultrasonic waves is mainly used
for rock mechanics testing [22,23], and dynamic warnings of rockburst [24,25], and some scholars
also conducted research on the prediction of rock strength by using ultrasonic waves. For example,
by considering rebound value and longitudinal wave velocity, the uniaxial compressive strength of
sandstone was predicted through a linear regression method [26–32], but the research on prediction
of rock strength mainly considers the uniaxial compressive strength of rock, while the rock strength
is rarely predicted by taking drying–wetting cycles and confining pressure into account. Therefore,
by taking the typical sandstone as a research object and using a damage theory, a modified model for
predicting strength based on wave velocity under the combined effects of drying–wetting cycles and
confining pressures through the tests was developed. The results demonstrate that the modified model
is better and more reasonable for predicting strength.

2. Experiment

2.1. Test Materials

The typical sandstone in the slope on the bank of the Three Gorges Reservoir Region was used
in the test. The rock blocks taken from the same region were processed into standard cylindrical
samples with a size of 50 mm in diameter and 100 mm in length strictly in the laboratory in line with
the published Specifications for Rock Tests in Water Conservancy and Hydroelectric Engineering [33].
After drying for the first time and cooling to room temperature, longitudinal wave velocity of the rock
samples was tested to screen and exclude the samples with obvious defects and large discreteness.
Through X-ray diffraction measurement and analysis, the main components of the rock samples were
found to be quartz (48%), feldspar (25%), calcite (9%), mica (12%), kaolinite (4%) and hematite (2%).
The X-ray diffraction pattern is shown in Figure 1.
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2.2. Test Scheme

By sampling in the slope with the typical sandstone, the ultrasonic waves were tested after
preparing the rock into the standard samples according to test specification in the laboratory, so as to
preliminarily screen the samples with small levels of discreteness. After that, the test of drying–wetting
cycles and macro-mechanical test were performed. The specific test process was as follows:

(1) The screened rock samples were put in a drying oven at the constant temperature 105 ◦C for
24 h. After the samples cooled down to the room temperature and we weighed the samples,
we could get the mass m1 for each sample. We dried the samples for another 24 h and weighed
them, then we could get the mass m2. We could not stop drying until (m1 − m2)/m2 ≤ 0.001.
The process to get the mass of samples m1 and m2 is called the successive measurements process.
After that, the initial drying state was obtained. Then, the wave velocity was also measured with
the RSM-SY5 ultrasonic testing analyzer.

(2) The rock samples from after the initial drying were vacuumized and saturated by using a vacuum
saturator to keep the reading of vacuum pressure at 100 kPa. The measurement started from the
time when no bubbles escaped. The samples were vacuumized and saturated for 4 h and rested
for 24 h. After saturation, water on the surface of the rock samples was dried off and the mass
was measured and recorded.

(3) After measuring mass and wave velocity of the saturated samples, the rock samples were dried
again in a drying oven at a constant temperature of 105 ◦C. The drying was repeated until the mass
change between two successive measurements was no larger than 0.1% of the last measurement,
which indicated that one drying–wetting cycle was finished. The drying-wetting process is shown
in Figure 2.

(4) After determining mass and wave velocity of the dried samples, a test of drying–wetting cycles
was conducted according to the above process. After reaching the preset times (0, 4, 8, 12, 16,
20), confining pressures were set to be 0, 5, 10 and 15 MPa for the compressive test with the
displacement-control model. The displacement rate was controlled at 0.005 mm/s, considering
the effect of the displacement rate on the failure mode and peak strength of the rock, according to
the Specifications for Rock Tests in Water Conservancy and Hydroelectric Engineering.
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The RMT-150C rock test system adopts automatic servo control technology, it integrates electronic,
sensor, mechanical and computer technology and an automatic control system and can complete a
variety of rock tests. The test data from the system are saved automatically when the test is finished.
The main technical parameters of the RMT-150C rock test system are shown in Table 1.

Table 1. The main technical parameters of the RMT-150C rock test system.

Parameters Value

Vertical maximum output 1000 kN, 100 kN (2 levels)
Horizontal maximum output 500 kN, 100 kN (2 levels)

Vertical piston stroke 50 mm
Horizontal piston stroke 50 mm

Range of confining pressure 0–50 MPa
Range of deformation rate 0.0001–1.0 mm/s (13 levels)

Loading rate 0.01–100.0 kN/s (13 levels)
Confining pressure rate 0.001–1.0 MPa/s (10 levels)

Fatigue frequency 0.001–1.0 Hz (10 levels)
Frame stiffness 5000 kN/mm

The whole test procedure is demonstrated in Figure 3.
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3. Results

3.1. Ultrasonic Characteristics

The wave velocity test was conducted on the rock samples subjected to different drying–wetting
cycles. The relationship between average wave velocity and the number of drying–wetting cycles is
shown in Figure 4.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18 
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The Figure 4 shows that as the drying–wetting cycle number rose, the wave velocity decreased
non-linearly and its change trend could be expressed by the exponential function as Equation (1) shows,
with fitting coefficient of 0.934. It could be seen from the blue line which reflects the derivative of
the black line that with the increase of the drying–wetting cycle number, the ultrasonic wave velocity
increased with a negative rate. Furthermore, the increase rate reduced with the rise of drying–wetting
cycle number, while the initial drying-wetting cycle stage has the greatest influence on the rock sample
wave velocity. As the wave velocity reflects the overall integrity and compactness degree of the rock
samples, the results show that the drying-wetting cycle reduces the compactness degree, and the
integrity of the sample is damaged to some extent.

Vn = 1439.95 + 927.49× 0.925n (1)

3.2. Strength Characteristics

After the compression test was completed, through data sorting and analysis, stress-strain curves
of sandstone samples under different drying-wetting cycles and different confining pressure were
obtained, and are shown in Figure 5. It can be seen that under the same drying-wetting cycle number,
as shown in Figure 5a, the strength of sandstone sample increases with the rising of confining pressure,
and the axial strain gradually increases when it reaches the peak strength. It can also be seen that
under the same confining pressure (such as 15 MPa), with the increase of the drying-wetting cycle
number, the strain range at the yield stage of the stress-strain curves of the sandstone sample gradually
increases, indicating that with the increase of the drying-wetting cycle number, the sandstone shows
obvious ductile deformation characteristics.
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Figure 5. The stress-strain curves undergoing drying-wetting cycles: (a) 0 cycle; (b) 4th cycle; (c) 8th
cycle; (d) 12th cycle; (e) 16th cycle; (f) 20th cycle.

The stress-strain curve in Figure 5 can be used to obtain the peak compressive strength of
the sandstone samples under different confining pressures and drying-wetting cycles, as shown in
Figure 6. It can be seen that under the same confining pressure, the peak strength of sandstone
decreases gradually with the increase of the drying-wetting cycle number, and the peak strength
σ f (x,n) of sandstone under different confining pressures is linearly related to the number n of the
drying-wetting cycle, which can be fitted with the linear Equation (2), Equation (3), Equation (4) and
Equation (5), respectively, where the x of σ f (x,n) is the confining pressure (MPa), and the n is the
drying-wetting cycle number. It is also not difficult to find that under the same drying-wetting cycle
number, with the increase of the confining pressure, the reduction rate of peak strength decreases
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gradually. The relationship between the reduction rate of peak strength ∆σ and confining pressure σ3

can be expressed by linear Equation (6), with a fitting degree of 0.8696, as shown in Figure 7.

σ f (0,n) = −0.8100× n + 49.459 (2)

σ f (5,n) = −0.8002× n + 76.109 (3)

σ f (10,n) = −0.7065× n + 99.827 (4)

σ f (15,n) = −0.5406× n + 114.33 (5)

∆σ = −0.018× σ3 + 0.8496 (6)
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Figure 6. Peak strength of samples undergoing different drying-wetting cycles under different
confining pressures.
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Figure 7. Relationship of the reduction rate of peak strength and confining pressure.

The peak strength of sandstone under the drying–wetting cycle was affected by both the
drying–wetting cycle number n and confining pressure σ3. The drying–wetting cycle leads to
the development and expansion of the micro-cracks in the rock samples, resulting in the reduction
of its peak strength. However, the increase of confining pressure, to some extent, inhibited the
expansion of the micro-cracks, and even closed the locally opened cracks. Under low confining
pressure, the decrement of peak strength of the rock samples resulting from the rise of drying–wetting
cycle number was greater than the increment attributed to the rising confining pressure, showing
that the influence of the drying–wetting cycle is dominant. In the case of high confining pressure,
the increment of peak strength of the rock samples induced by the rise of confining pressure was
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greater than the decrement of peak strength due to the increase of the drying–wetting cycle number,
indicating that it is mainly affected by confining pressure. It is the gradual increase of confining
pressure that weakens the effect of drying–wetting cycle, which is manifested as the gradual reduction
of the decrease rate of the peak strength.

4. Models for Predicting Rock Strength Based on Wave Velocity

4.1. Traditional Model for Predicting Strength Based on Wave Velocity

When characterizing the degree of strength degradation of rock mass, the damage variable D is
generally used and the calculation formula of D is shown as Equation (7) [34]

D = 1− (Vp/V f )
2 (7)

where D represents the damage variable of the rock mass. D = 0 indicates that rock mass is intact and
not damaged; D = 1 suggests that damage of rock mass reaches the limit value, namely the crushing
state. Vp and Vf denote the wave velocities of the damaged and intact rock masses, respectively.

Formula (8) shows the rock damage constitutive relationship based on the hypothesis of strain
equivalence of Lemaitre [35]. By replacing Dpn in Equation (8) with D in Equation (7), the traditional
strength predicting model for rock based on wave velocity after the nth drying–wetting cycle (Vpn) can
be obtained, namely Equation (9)

σpn = σo × (1−Dpn) (8)

σpn = σo × (Vpn/V f )
2 (9)

where Dpn indicates the damage variable of the rock mass after the nth drying–wetting cycle calculated
according to the ultrasonic wave velocity; σpn represents the compressive strength of rock under the
nth drying–wetting cycle calculated by Dpn; Vpn denotes the ultrasonic wave velocity of sandstone
after the nth drying–wetting cycle.

4.2. Error Analysis of Traditional Prediction Model

The peak strength of sandstone under drying–wetting cycles was predicted through the traditional
strength predicting model. Also, by using the wave velocity of the initial rock samples (without
undergoing the drying–wetting cycle) as wave velocity Vf, data of wave velocity of sandstones after
multiple drying–wetting cycles were substituted into Equation (10) to calculate the damage variable of
the rock samples. It could be found that damage variable Dpn of the rock samples was the function
of the drying–wetting cycle number n, which could be fitted by the power function and the variance
R2 = 0.864, as shown in Figure 8.

The damage variable Dpn of sandstones calculated based on wave velocity under the
drying–wetting cycles showed the largest increase rate in the initial stage of a drying–wetting
cycle. With the increase of the drying–wetting cycle number, the increase rate of damage variable
gradually slowed down and finally tended to be stable. The influence of the wet and dry cycle on
sandstone is obvious in the early experiment stage, but weakens gradually in the later stage. Also,
the physical significance of n is related to the operation cycle of the Three Gorges reservoir, and directly
affects the strength of the rock. So n would not go to infinity for practical reasons.

Dpn = 0.115× n0.515 (10)

By substituting the wave velocity values of the rock samples undergoing different drying–wetting
cycles into Equation (9), the strengths of sandstone predicted by the traditional strength predicting
model based on wave velocity were obtained. Moreover, the relative errors of the predicted strengths
and tested values were calculated, as demonstrated in Figure 9. It could be observed that the strength
values of sandstone predicted by the traditional strength predicting model based on the wave velocity
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deviated greatly from the tested values. Furthermore, the prediction error rose with the increase of
the drying–wetting cycle number n and confining pressure σ3, and the maximum relative error of the
predicted values is 47.4%.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 8. The relationship of damage variable Dpn and drying-wetting cycles.
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Figure 9. The predicted and tested peak strength based on the traditional strength prediction model:
(a) 0 MPa; (b) 5 MPa; (c) 10 MPa; (d) 15 MPa.

4.3. Proposed Model for Predicting Strength Based on Wave Velocity

Under different drying–wetting cycles, the corresponding relationship between peak strength of
the sandstone and the damage variable under different confining pressures (0, 5, 10 and 15 MPa) is
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displayed in Figure 10. There is a significant correlation between the peak strength σ f (x,n) and damage
variable Dpn under different confining pressures, which can be expressed in a unified form of power
function, as shown in Equation (11)

σ f (x,σ3) = aσ3 × (c−Dpn)
bσ3 (11)

where n represents the drying–wetting cycle number; aσ3 and bσ3 are constants relating to the confining
pressure; c is the damage threshold value. For the sandstones of the test, c = 1.0. Under different
confining pressures, parameters aσ3 and bσ3 in Equation (11) are demonstrated in Table 2.
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Table 2. Parameter values of different confining pressures.

Parameter 0 MPa 5 MPa 10 MPa 15 MPa

aσ3 50.969 77.370 100.600 114.590
bσ3 0.4941 0.2980 0.1875 0.1168

The relationships of parameters aσ3 and bσ3 in Equation (11) with the confining pressure are shown
in Figure 11.

It could be seen that the relationships parameters aσ3 and bσ3 and the confining pressure can
be described by linear and exponential functions, where the fitting degrees are 0.9827 and 0.999,
respectively. Therefore, parameters aσ3 and bσ3 could be expressed as the functions of confining
pressure, as illustrated in Equation (12) and Equation (13). Also, the coefficient value of a1, a2, b1, b2 and
b3 is 4.2819, 53.768, 0.4725, 9.4493 and 0.02124, respectively.

aσ3 = f1(σ3) = a1 × σ3 + a2 (12)

bσ3 = f2(σ3) = b1 × e−(σ3/b2) + b3 (13)

By combining Equations (11)–(13), the peak strength of σf sandstones under multiple
drying–wetting cycles and different confining pressures could be expressed as a united composite
function of confining pressure σ3 and the drying–wetting cycle number n, as shown in Equation
(14). Then, the Equation (14) is the proposed strength predicting model based on the wave velocity,
which can be used to predict the peak strength of sandstone under a different drying–wetting cycle
number n and confining pressures σ3

σ f (σ3, n) = f1(σ3) × (c−Dpn)
f2(σ3) (14)
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where σ f (σ3, n) represents the peak strength considering confining pressure and the drying–wetting
cycle number; f1(σ3) and f2(σ3) are constants relating to the confining pressure; aσ3 and bσ3 , c are the
threshold values of the test results. Dpn represents the damage variable under different confining
pressures, which can be expressed in a unified form of power function, as shown in Equation (10).
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Figure 12 displays the comparisons between predicted values obtained by the traditional strength
predicting model and the modified model based on the wave velocity, the tested values and the relative
prediction errors. It can be seen that the error in the traditional strength prediction model generally
increases with the increase of σ3. This result happens under the condition that if the confining pressure
is not zero, the prediction error range of the traditional strength prediction model is 15–50% and its
maximum value is 47.4%, while the drying–wetting cycle number n is 20 and confining pressures value
is 15 MPa. The error in the modified strength prediction model is 10.48% only when the drying-wet
cycle is 20 and the confining pressure is 0 Mpa, and the prediction error under other conditions is
within 10%. Compared with the traditional strength prediction model, the predicted error of the
modified model is greatly reduced, and the predicted values of the modified model are closer to the
experimental values. This indicated that the modified strength prediction model based on the wave
velocity is better.
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Figure 12. Comparison of strengths predicted by the models based on wave velocity and error analysis:
(a) 0 MPa; (b) 5 MPa; (c) 10 MPa; (d) 15 MPa.

4.4. Validation of the Proposed Model

To verify the validity of the method of the proposed model, the data in the literature [36] were
used. The peak strength σ f (σ3, n) can also be expressed as the formula (14). Also, f1(σ3), f2(σ3) were
expressed as formulas (12) and (13), respectively. The coefficient values of a1, a2, b1, b2 and b3 are 5.1644,
39.184, 0.09175, 5.29714 and 0.02018, respectively.

Calculated from the data in the literature [36], the threshold value of c for these test data is 0.43,
which is shown in Figure 13. D′pn is the evolution law of damage variable calculated by the P-wave
velocity with the drying-wetting cycle number n, which depends on the nature of the rock itself,
while the evolution law of D′pn is shown as formula (15) for the rock in [36].

D′pn = 0.43× (1− e−n/0.512) (15)

The comparison of test peak strength in the literature [36] and predicted strength according
to formula (14) are shown in Figure 14. Because the types of rocks used in the tests are different,
the coefficient values of a1, a2, b1, b2, b3 and c are determined by the rock itself. The verification
results show that the proposed model is more applicable than the traditional model, especially for the
conditions with more dry and wet cycles and a higher confining pressure.
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Figure 14. Validation results: (a) 0 MPa; (b) 5 MPa; (c) 10 MPa; (d) 15 MPa.

5. Conclusions

The main conclusions drawn from the present study can be summarized as follow:

(1) The drying-wetting cycle causes the development and expansion of the internal micro-cracks
in sandstone, resulting in the decrease of the integrity and compactness of sandstone samples.
The ultrasonic wave velocity decreases exponentially with the increase of the drying-wetting
cycle number.
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(2) With the same drying-wetting cycle number, the peak strength of sandstone samples increases
with the increase of the confining pressure, and the corresponding peak strain increases gradually.
With the increase of drying-wetting cycles, the strain range at the yield stage of the stress-strain
curves of the sandstone sample gradually increases, which shows obvious ductile deformation
characteristics. The peak strength of the drying-wetting cycle sandstones decreases linearly with
the increase of the drying-wetting cycles.

(3) The damage variable of sandstones undergoing the drying-wetting cycle has a power function
relationship with the drying-wetting cycle number. Also, the initial drying-wetting cycle stage
has the most significant influence on the P-wave velocity of the sandstones. There is a large error
rate difference between the test and predicted values of the traditional strength prediction model
based on the P-wave velocity.

(4) The peak strength of sandstones is a united composite function of the confining pressure
and drying–wetting cycle number. The modified strength prediction model considering the
drying–wetting cycle number and confining pressures was established based on the traditional
strength prediction model. Compared with the traditional strength prediction model, the error of
the modified model is greatly reduced and the prediction effect is better. The results show that it
is reasonable and feasible to predict the strength of sandstones while considering the effect of the
drying-wetting cycle and confining pressures by using the modified strength prediction model
based on the P-wave velocity.
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