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Abstract: Lately, the Internet of Things (IoT) has opened up new opportunities to business and 

enterprises; however, the cost of providing security and privacy best practices is preventing 

numerous organizations from adopting this innovation. With the proliferation of connecting devices 

in IoT, significant increases have been recorded in energy use, harmful contamination and e-waste. 

A new paradigm of green IoT is aimed at designing environmentally friendly protocols by reducing 

the carbon impact and promote efficient techniques for energy use. There is a consistent effort of 

designing distinctive security structures to address vulnerabilities and attacks. However, most of 

the existing schemes are not energy efficient. To bridge the gap, we propose the hybrid logical 

security framework (HLSF), which offers authentication and data confidentiality in IoT. HLSF uses 

a lightweight cryptographic mechanism for unique authentication. It enhances the level of security 

and provides better network functionalities using energy-efficient schemes. With extensive 

simulation, we compare HLSF with two existing popular security schemes, namely, constrained 

application protocol (CoAP) and object security architecture for IoT (OSCAR). The result shows that 

HLSF outperforms CoAP and OSCAR in terms of throughput with low computational, storage and 

energy overhead, even in the presence of attackers. 

Keywords: green IoT; ICT; authentication; confidentiality; cryptography; security framework 

 

1. Introduction 

The Internet of Things (IoT) leads to a revolutionary change in the lifestyle of users [1]. Every 

device that is connected to the IoT works in a smart way to make the world technology-dependent 

[2]. IoT works in numerous applications, such as inventory, health care, and smart homes [3]. 

Therefore, users expect a high level of security and privacy from the IoT, requiring a security 

framework [4]. The inbuilt security solutions in the IoT are susceptible to attacks, such as denial of 

service (DoS), spoofing, and many more [5]. A security framework is evaluated by assessing its 

security features, such as authentication, or confidentiality in this case [6,7]. The next step for 

evaluating a framework is to check whether the data collected are authentic or not [8]. The last 
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evaluation measure for a security framework is the synthesis or mining of data to make fruitful 

decisions. A security framework can be competent if it can meet the security requirements and can 

make decisions efficiently in real-time [9]. A security framework tends to provide overall system 

security. As shown in Figure 1 below, there are four operation layers in the IoT. These four layers—

that is the perception, network, transport, and application layers—take care of the security 

implementation at different levels.  

 

Figure 1. Security concerns at each layer of the Internet of Things (IoT). 

The IoT consists of resource-constrained devices like radio frequency identification (RFID), 

sensors that are battery operated. Therefore, special attention should be paid to limit the use of their 

resources, as well as to offer security at the same time. Lightweight cryptography solutions offer both 

security as well as performance. The main reasons for applying lightweight cryptography in IoT are 

summarized below: 

 End-to-end communication efficiency: when two resource-constrained devices communicate 

using lightweight solutions, the overall energy consumption will be reduced. Hence, the end-to-

end communication will become efficient.  

 Increased number of connections: as a lightweight solution requires fewer resources, any 

resource-constrained device can connect to the network. The number of connections in the 

network will thus increase.  

Lightweight block ciphers work well over conventional solutions due to their lightweight design 

considerations, as specified below: 

 Small key size: the key size selected by a lightweight block cipher should be comparatively less 

than those of conventional block ciphers. The National Institute of Standards and Technology 

(NIST) restricts the minimum key size to 112 bits. A key size less than this is more susceptible to 

brute force attacks.  

 Small block size: the block size chosen for the lightweight cipher should be less than those of 

conventional ciphers. For example, if the block size is chosen as 64 bit, as compared to 128 bit, 

the Advanced Encryption Standard (AES), a greater number of plaintext blocks can be 

encrypted. Moreover, the memory requirements will be less.  
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 Simple round structure: the rounds designed for lightweight ciphers should be simpler than the 

conventional cryptographic algorithms. For example, a round can be made simpler by replacing 

an 8-bit Substitution (S)-Box with a 4- bit S-Box. This will also reduce memory requirements. 

This may reduce the level of security, which can be improvised by increasing the total number 

of rounds.  

 Simple key schedule: the generation function of key schedule in lightweight designs must 

generate the subkeys very fast. The simpler a key schedule is, the less power consumption and 

memory will be required by the algorithm. Using a simple key schedule may lead to attacks like 

a weak key, related key, or chosen key attack, but that can be overcome by using a secure and 

frequent function for key generation.  

 Fewer implementation requirements: a device should support either encryption or decryption. 

Only the required operations of the cipher should be implemented rather than implementing 

the full cipher.  

 Purpose of green IoT: green IoT focuses on reducing IoT energy usage, a necessity for satisfying 

the world’s appetite for the maintainability of everything being intelligent and reducing CO2 

emissions. Green IoT comprises designing and leveraging aspects [10]. The design elements of 

green IoT refer to developing registering devices, correspondence conventions, energy 

efficiency, and networking architectures [11]. Leveraging the IoT element seeks to reduce or 

eliminate emissions of CO2, reduce the contaminations, and enhance energy efficiency. On the 

other hand, the enabling technologies for green IoT are called information and communication 

technology (ICT) technologies [12]. 

1.1. Motivation 

With the advancement of technology, every internet user is more inclined towards the smart 

activities that can be performed using IoT. With this smartness, security vulnerabilities also become 

an issue, when user details are processed online. This kind of call is required for a security framework 

for IoT environments. Security frameworks can be designed at every architectural layer of IoT. This 

work primarily works on the security framework on the application layer. Different frameworks for 

security exist in IoT, but the existing solutions use the traditional heavyweight security mechanisms 

like AES in various modes or asymmetric cryptographic solutions like RSA. These heavyweight 

solutions can take away all the resources and will decay the power sources of the devices. Therefore, 

this research paper proposes a security framework that uses a lightweight security alternative that 

will consume minimal resources and power. In this way, this system is also helpful for protecting the 

environment. 

1.2. Contributions 

Three major phases of security are taken into consideration while designing a security 

framework for IoT; namely, registration, authentication, and data security. 

 Registration: This is the first phase every device has to go through. Whenever a device joins the 

network, the identity of the device is registered on the server. This is a one-time process. 

 Authentication: Once the registration is done and the device is in an active state and has some 

information to share with the server, the device has to first authenticate its identity to the server. 

The server in response also authenticates itself to the device. The moment mutual authentication 

is over, a device can initiate the data transfer process. 

 Data Security: The last but the important concern is that every time information is shared 

between the device and the server, the data need to be secure. This phase ensures that the data 

shared are not readable as well as not alterable by a third party. 

Therefore, the main contribution of this work is the proposal of a security framework that uses 

a smaller key size, fewer rounds with an easy but tricky round structure in the process of registration, 

authentication as well as offering data security. On the other hand, the existing frameworks tend to 
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use a large key size and a complex round structure. This makes the proposed framework a better, 

more lightweight solution as compared to the existing counterparts. 

1.3. Organization 

The rest of the paper is organized as follows. In the second section, the literature review is 

conducted that highlights the existing security frameworks in IoT by specifying their security features 

and modes of operation. In this section, two existing frameworks are detailed; one is constrained 

application protocol (CoAP), and the second is object security architecture for IoT (OSCAR). The third 

section proposes a new security framework, HLSF, for IoT categorized into three distinct phases, 

where the first is registration, the next is authentication and the final phase is data security. This 

section elaborates on the flow of steps that are to be followed for one-time registration, authentication, 

and every-time data security required during data transmission. Later, in the next section, the existing 

security frameworks CoAP and OSCAR are compared with the proposed security framework HLSF 

using the COOJA simulator, and based on result analysis, certain discussions and decisions are made. 

Performance parameters used for comparison are memory requirements, energy overhead, 

computation overhead, and communication rate. Finally, the last section concludes with the state of 

the art and the working efficiency of the HLSF proposed. 

2. Related Work 

After conducting the theoretical and analytical study, this section describes the recent state of 

existing security frameworks in IoT. There are several existing security frameworks in IoT, achieving 

the same target while following different approaches [13–15]. Each framework is designed based on 

the same level of expectancy, as specified below 

 Software reliance in each framework to carry out the whole process 

 Set of protocols required to initiate and set up the communication among the devices. 

 Contribution of the security framework in maintaining the security and privacy in IoT. 

Considering the expectancy from a security framework and in authentication, cryptographic 

solutions [16] used by the framework are the prime concern of this section. The frameworks analyzed 

in this study are the constrained application protocol (CoAP) framework, and object security 

framework for IoT (OSCAR). 

2.1. Constrained Application Protocol (CoAP) Framework 

CoAP was proposed by constrained restful environment working group (CORE) in the Internet 

Engineering Task Force (IETF) [17]. CoAP works for constrained devices at the application layer. For 

communication, IPV6 over Low Power Personal Area Network (6LoWPAN) provides the usage of 

IPv6 communication among the sensing devices. IoT devices can communicate in CoAP by using the 

user datagram protocol (UDP) at the transport layer and 6LoWPAN [18]. Interactions in a constrained 

network like IoT running CoAP can be either between devices or the client/server, where one of the 

devices can act as a client and one dedicated device acts as a server [19]. Figure 2 shows the 

integration of CoAP with the Internet. CoAP itself acts as an internal network, which means that a 

CoAP client request can only be processed by the CoAP server. CoAP, otherwise, can be extended 

and can process HTTP client requests using the CoAP/HTTP mapping process, as CoAP acts as a 

subset of HTTP. The 6LoWPAN border router (6LBR) can be used to establish this connection. 
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Figure 2. Constrained application protocol (CoAP) Network. 

The CoAP framework uses the CoAP protocol working at the application layer, the transport 

layer’s UDP protocol and, in the end, 6LoWPAN is used at the network layer [20]. At the network 

layer, 6LoWPAN is used, as it commercializes with the constrained networks like IoT. At the 

transport layer, UDP is used for fast transmission as compared to the reliable countermeasure 

transmission control protocol (TCP). This is due to the reliability mechanism offered by the message 

layer of CoAP. At the application layer, CoAP operates at distinguished sub layers. The responsibility 

of the request/response layer is to employ methods like get, put, post, and delete for accessing the 

resources in the CoAP network [21–23]. The number of requests and the mapping among their 

semantically correct responses also forms the responsibility of this layer. 

CoAP offers security features by using datagram transport layer security (DTLS) over UDP 

instead of TCP. DTLS is designed to offer end-to-end security. As it runs with UDP, it can be used in 

numerous constrained applications like voice over IP (VoIP), real-time communication. DTLS in 

CoAP offers security features such as authentication, confidentiality, integrity, key sharing 

mechanism [24]. This research work emphasizes the authentication and the confidentiality security 

aspect of CoAP. CoAP comes in four security options, namely NoSec, PreShared Key, Certificates, 

and RawPublic key. 

2.2. Object Security Framework for IoT (OSCAR) 

The OSCAR framework works on the consumer–producer model. In IoT, consumers are the end 

devices, such as accessories used by humans, and the actuating devices that intake data from the 

producers, such as sensors, smartwatches, smart meters, and motion sensors. The responsibility of 

offering security in OSCAR lies with the producers. Security is provided to the data at rest or during 

transmission. The major emphasis of OSCAR is on the object/device security. Global applications, 

such as smart cities, work on OSCAR, as several consumers/clients are requesting the services of 

constrained servers [25]. Figure 3 represents the OSCAR framework as the typical consumer–

producer model. 
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Figure 3. Object security framework for IoT (OSCAR) framework. 

OSCAR needs authorization servers to restrict the access of resources by the consumers. For 

authentication, OSCAR uses the simple concept of elliptic curve digital signatures. A cryptographic 

security solution to offer confidentiality is provided by using AES in CCM mode is used. 

There are numerous other security add-ons that are frequently made in the literature for IoT. 

With the increasing number of sensors required for IoT surveillance, there comes a requirement of 

large-scale sensor-based designs for operating these systems. For supporting these applications 

which are based on real-time with minimum delay, routers or switches are visualized [26]. 

Additionally, interconnectivity is required among everything that is connected in IoT that needs 

integration of the networking components [27]. This openness of sensors in IoT scenarios also comes 

with the different attacks and vulnerabilities and these security threats are identified by the authors 

in [28]. 

In [29], a study was made on considering the effective security solutions for IoT. The above 

solutions are independent of the platform and contribute to energy savings. IoT protection in smart 

healthcare applications, alongside energy efficiency, is a key issue. Password conceiving is the most 

common thing that can be done with a weak security framework in such applications. In [30], the 

user’s privacy in applications with IoT is maintained through a certain password strengthening 

technique. 

IoT devices are a vein of security for the operation of IoT to ensure the validity of devices and 

data gathered from these devices. In the literature, many authentication methods to verify the data 

collected from the devices are available to ensure the authenticity of the application. To improve the 

third party’s faith in the IoT system, the data can be collected carefully. In [31], a scheme for sensing 

the sensed data is proposed that is based on policy and confidence. The suggested scheme, Real Alert, 

shows the trust of both the systems and the collected data. It increases the user’s conviction. 

In [32], the author introduced an IoT application validation protocol (AAoT). This scheme 

involves no changes to existing micro control units. The disadvantage of this system is that dynamic 

vulnerabilities cannot be corrected. The Authenticated Key Exchange system [33], which provides 

protection to side-channel attacks and is versatile in key certificate management, is still vulnerable to 

the leakage of random secret values. 

New threats are being inserted at every point in existing IoT operations. Consequently, a SCADA 

model was introduced in [34] for threat detection. For detection of attacks, detection models using 

vector support machines and networks of deep faith are used. 
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To deal with the information for attack detection, the current attacks involve other intelligent 

methods and one of their intelligent security strategies is proposed [35]. In [36], the authors addressed 

background history, concerns, holes, and obstacles in IoT that contribute to these attacks. Devices are 

authenticated by Zigbee technology between devices in [37]. This is important because IoT devices 

are heterogeneous and therefore need a common platform for security arrangements between 

devices. 

Therefore, based on related work, it can be concluded that the existing framework for IoT 

security implements solutions that are heavyweight in context to their key size, the complex structure 

of each round, and key schedules. The existing frameworks lack efficiency regarding security, 

throughput, and the delay in packet transmission. 

3. Proposed Hybrid Logical Security Framework (HLSF) 

The proposed HLSF contends to offer security services like confidentiality, integrity, and 

authentication. For this, HLSF is divided into three phases. The first phase is for the registration of 

the new devices that join the network. Second phase lightweight authentication is designed for 

providing a mechanism with which every device has to authenticate itself to the centralized server. 

Once the authentication is over, the last phase concentrates on the security of data in transit when 

different devices communicate with each other. 

The entire HLSF is executed by taking an example of inventory automation, with a coordinating 

unit (CU), items, a database, an inventory server (IS), and an internet service provider as the 

components. The architecture representing the communication flow among these components is 

represented in Figure 4. 

 

Figure 4. Hybrid logical security framework (HLSF) architecture. 

3.1. Security Features 

The proposed HLSF offers authentication, data confidentiality, and validation by using efficient 

mechanisms for each. The whole process is categorized into three phases, namely registration, then 

authentication, and finally data security. The notations used in every algorithm are described in Table 

1. 
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Table 1. Notations used in Hybrid Logical Security Framework (HLSF). 

Symbol Description 

C&NC Coordinating Unit (CU) and Number of CU 

IDC&IDS Identity of CU and Identity of Server 

TIDC Temporary Identity of CU 

IS Inventory Server 

SN Sequence Number 

UID Unique IDs 

KS Key Shared between CU and Server 

TV Temporary Variable  

Ka Alternate Keys 

 Registration Phase 

When a new device joins a network, the credentials are logged first to the server using the key-

sharing system as shown in Figure 5. 

 

Figure 5. Registration process of HLSF. 

In the registration phase, whenever a new CU joins, it has to submit its identity to IS. IS, further 

using its own identity, the identity of CU and a nonce value, computes a secret key KS, along with 

unique IDs, alternate keys, and a unique sequence number for that particular CU. Every time a 

connection request is made by CU to IS, the sequence umber of CU is matched with the one stored in 

IS. If a match occurs, CU is authenticated at the server otherwise it makes use of alternate keys for 

proving its identity to IS. 

 Authentication Phase 

Once the device receives the credentials, the mutual authentication between the client and the 

server is completed, as shown in Figure 6 before any contact is initiated. 
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Figure 6. Authentication process of HLSF. 

The mutual authentication process starts between CU and IS, where CU first generates a variable 

computing hash of its identity, a nonce, and an already shared secret key. CU then sends an 

authentication request consisting of a variable, its ID, and the SN it already has. IS, on receiving the 

request, first matches the SN received by CU; if a match occurs, IS initiates the process of 

authentication. For this, IS generates a temporary variable, again using a hash function on the variable 

received by CU, a secret key and a nonce. CU extracts its variable from a received message from IS. 

If a match occurs, IS is also authenticated at CU. Once this mutual authentication is done, further data 

communication starts. 

 Securing Data in HLSF 

Once the device is authenticated, the data communicated to and from the device are made secure 

using a security algorithm, as shown in Figure 7. 
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Figure 7. Data security process of HLSF. 

Data security in communication is achieved by performing computation and permutation 

operations on data being shared. First, the key is divided into two halves to perform computations 

like finding 1s and the sum of 1s. Later, an Ex-OR operation is done on two separate halves. Finally, 

the ciphertext is fetched by permutating the halves and using crossover operation. 

3.2. Security Analysis of HLSF 

Proposed HLSF works in three different ways to overcome attacks; that is, during registration, 

authentication, and then finally during data transit. Each phase of HLSF tends to make the whole 

framework secure by preventing attacks based on its working mechanism. Security analysis of HLSF 

will explore the attacks that are restricted by each phase and hence makes HLSF less vulnerable to 

attacks. 

 Attack Resistance during Registration 

This phase of registration is used to generate a secret key that will be further used during the 

authentication and data security phases. Any CU who wishes to be part of the network has to register 

itself to the server. There is a sequence number assigned to CU by IS during registration. Whenever 

a communication initiates, the CU has to present that sequence number. If an intruder tries to connect 

to IS, the IS will ask for a sequence number or any alternate key which the intruder will not have. 

When there is a mismatch, IS will not allow an intruder to join the network. This concept of matching 

SN will prevent a denial of service attack against the server, as an intruder will not be able to connect 

to the server. 

 Attack Resistance during Authentication 

Mutual authentication is performed among CU and IS using multiple parameters, such as a 

secret key, a random variable, and an SN that is generated in the registration phase. In the 

authentication phase, the entire security process depends on multiple parameters for generating 
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authentication messages at CU as well as for generating a response message from IS. Even if the secret 

key generated in the registration phase is compromised by an intruder, they will still not have the 

SN, and thus cannot authenticate themselves to the IS. This will again help in preventing denial of 

service attacks and is also non-vulnerable to the man in the middle attack. 

 Attack Resistance during Data Transit 

This phase is used to transmit data securely. For this, certain operations like EX-OR, 

permutation, and cross over operations are performed on the secret key and the plain text to figure 

out the ciphertext. EX-OR operation is used as it is reversible as well as the output calculated depends 

on both the halves. The simple but tricky mechanism of data security abstains from compromising 

attacks and replay attacks as each time a new secret key is created for information transmission. 

4. Performance Comparison of COAP, OSCAR, and HLSF 

This section evaluates and compares the performance of existing frameworks CoAP, OSCAR 

with the proposed framework HLSF. First, the security effectiveness of the frameworks is tested by 

finding the memory requirements, energy overhead, computational overhead, communicate rate, 

and denial of service attack. Later, the effectiveness of the overall framework from authentication, 

data collection, data security, data mining, and decision making is tested in terms of throughput, 

latency, and packet delivery ratio. Considering the heterogeneous nature of frameworks, certain 

research assumptions are made and realized for the performance evaluation. 

4.1. Simulation Tool and Simulation Parameters 

To evaluate the performance of HLSF, CoAP, and OSCAR, the COOJA simulator developed by 

Adam Dunkels in 2002 supported on CONTIKI OS is used. COOJA offers an environment where 

sensor motes can connect, communicate, and share data. While the data are shared among the motes, 

each security framework is implemented on data to measure its performance. The simulation 

parameters used to carry out this evaluation are represented in Table 2 below. 

Table 2. Simulation parameters. 

Parameter Name Value 

Radio medium Unit Disk Graph Medium (UDGM) 

Transmission range 50 m 

Inference range 100 m 

Type of Channel Wireless 

Nodes Position  Random 

Sensing interval 10 s 

MAC protocol Contiki MAC 

Routing protocol RPL 

Map Area 1000 × 1000 m2 

4.2. Memory Requirements 

The random-access memory (RAM) and read-only memory (ROM) are evaluated for CoAP, 

OSCAR, and the proposed HLSF, using COOJA as the simulator. Figure 8 represents the memory 

requirements in percentage by considering the total available memory in CoAP, OSCAR, and HLSF. 
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Figure 8. Percentage memory requirement for CoAP, OSCAR, and HLSF. 

From Figure 8, it can be concluded that the ROM requirement of HLSF is 3 percent less than 

CoAP and 13 percent less than OSCAR. On the other hand, the RAM requirement of HLSF is 2 percent 

less than CoAP and 7 percent less than OSCAR. Therefore, it can be deduced that the overall memory 

requirements of HLSF are less as compared to those of OSCAR and CoAP. 

4.3. Energy Overhead 

The energy overhead of the security framework has a direct impact on the lifetime of the sensors 

and will ultimately impact the transmission rate of the application. Therefore, if the energy overhead 

increases for a particular application, its lifetime gradually decreases. A more complex security 

framework possesses more energy overhead. Figure 9 represents the energy overhead calculated in 

millijoules (MJ) for CoAP, OSCAR, and HLSF. 

 

Figure 9. Energy overhead for CoAP, OSCAR, and HLSF. 

Figure 9 reflects that energy overhead depends on the packet size. With an increase in packet 

size, energy overhead goes on increasing. Even at the largest packet size, the energy overhead of the 

proposed HLSF is 18 percent less than CoAP and 55 percent less than OSCAR. 
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4.4. Computational Overhead 

Computational overhead is the excess time required by a security framework for offering 

security used in IoT applications. Figure 10 represents the computational overhead evaluated in 

milliseconds (ms) for CoAP, OSCAR, and HLSF. 

 

Figure 10. Computational overhead for CoAP, OSCAR, and HLSF. 

Figure 10 reflects that the computational overhead depends on the packet size. With an increase 

in packet size, computational overhead goes on increasing. Even at the largest packet size, the 

computational overhead of proposed HLSF is 8 percent less than CoAP and 24 percent less than 

OSCAR. 

4.5. Communication Rate 

The communications rate is the number of packets sent over in one second. The communication 

rate is impacted by the type of security framework used for an application scenario. An application 

that does not offer any security will tend to have a greater communication rate than a security-

oriented application. Figure 11 represents the communication rate of CoAP, OSCAR, and HLSF, 

considering the packet size as 64 bytes. 

 

Figure 11. Communication Rate for CoAP, OSCAR, and HLSF. 



Sustainability 2020, 12, 5542 14 of 16 

From Figure 11, it can be concluded that the communication rate—that is, the number of packets 

sent per unit time—is more in HLSF, as it is more than 2 percent greater than that of CoAP and more 

than 10 percent greater than that of OSCAR. 

The overall result is summarized below: 

 With a fewer number of rounds required, the memory requirements of HLSF are less as 

compared to CoAP and OSCAR. 

 HLSF has a less complex structure, as it does not work on an asymmetric algorithm, hence 

making its energy overhead less. 

 HLSF takes less time to encrypt the data as the round keys are generated at each round and are 

of optimal size, making its computational overhead smaller. 

 Even if the number of rounds is less and the structure is less complex and but still tricky, each 

round generates a unique set of keys. Thus, this makes it less vulnerable to denial of service 

attack, as it becomes difficult for the intruder to get over the frequently changing key. Moreover, 

every time intruder has to prove its authenticity to the server. 

 HLSF with a security mechanism offered still has a high communication rate, as fewer packets 

are lost or attacked in transmission. 

5. Conclusion 

With the proliferation of advanced technology, the environment is facing more challenges due 

to e-waste and risky emissions. It becomes very essential that more research must take into 

consideration green IoT to preserve our environment and to make society more astute and greener. 

As the essential factors of ICT become more advanced, the things around us will get smarter, 

performing explicit endeavors in a self-administering way, rendering the new sort of green 

communication among human and things and between entities themselves. Providing security and 

network functionalities with a preferable decreased energy usage is one of the requirements of next 

generation IoT. In light of this, the hybrid logical security framework (HLSF) has been proposed, 

consisting of three phases: namely, registration, authentication, and data security. HLSF provides a 

lightweight security solution that requires a lower key size and frequently changes the pattern of the 

key. We have simulated and compared our proposed method with two well-known frameworks, 

namely CoAP and OSCAR. The simulation result shows that the memory requirement for HLSF is 

3% and 13% less as compared to CoAP and OSCAR, respectively. HLSF outperforms the CoAP and 

OSCAR in terms of computational and energy overhead. The computational overhead of the 

proposed method is 8% and 24% less in comparison to CoAP and OSCAR, respectively. The energy 

requirement of HLSF is 18% less than CoAP and 55% less than OSCAR. Moreover, the throughput of 

HLSF is more than 2% greater than that of CoAP and 10% more than that of OSCAR. Thusly, it is 

evident that HLSF provides better network functionalities with a low overhead as compared to CoAP 

and OSCAR. In order to make the system more efficient and smarter, further research can be carried 

out by investigating the use of data mining and enabling smart decision making for innovative 

dynamics in IoT. 
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