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Abstract: Serious congestion and delay problems exist in most of the busiest airports worldwide
because of imbalance between scarce airport slot resources and increasing traffic demand.
Various factors, especially weather conditions, exacerbate the demand–capacity imbalance. This paper
presents a robust model for simultaneous slot allocation on an airport network in multiple calendar
days, considering airport capacity uncertainty. The idea of robust optimization is conducive to
sustainable and stable decision-making. Robustness is represented through reducing the potential
scheduling conflicts in the worst case. Then the model links the strategic decisions and pre-tactical
decisions in air traffic management (ATM) through the tradeoff between strategic discrepancy cost
and operational congestion cost. Under the support of the Cplex solver, numerical analyses are taken
to validate the characteristics and effectiveness of the proposed model. The results show that the
proposed model effectively eliminates the existing and potential scheduling conflicts, and makes
effective tradeoffs between airline preference and potential airport congestion risk.
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1. Introduction

In recent years, rapid growth of air traffic demand brings frequent and serious congestion and
delay problems all over the world. The resulting flight delays, rescheduling, standby, and fuel
consumption cause huge economic losses. Various factors, especially bad weather, lead to capacity
reduction and exacerbate the imbalance between scarce airport slot resources and increasing traffic
demand. In addition, the uncertainty of future weather increases the risk and instability of the initial
flight plan. For instance, the 7.20 rainstorm attacking Beijing, China in 2016 caused large-scale flight
delays in Beijing Capital International Airport (BCIA), and up to 212 of the daily planned 1715 flights
had been cancelled by 14:00 [1]. The 1.17 snowstorm attacking USA in 2018 caused nearly 1800 flights
to be cancelled and 5300 flights postponed nationwide, and more than 700 flights, accounting for
nearly 25% of the daily flights, at the Hartsfield-Jackson Atlanta International Airport (ATL) were
cancelled [2].

In the absence of long-term improvements in capacity through airport runway expansion or air
traffic control facility upgrades, air traffic flow management (ATFM) is the most effective solution to
mitigate airport congestion risk and ensure flight safety. Slot allocation is a key ATFM technology for
achieving flow-capacity balance and relieving airport congestion. Slot allocation problems mainly aim
to allocate requested departure and arrival movements to corresponding time slot (the main resources
of airport) under airport declared capacity constraints. Here, a slot means the permission given to an
airline to use the airport infrastructure to operate an aircraft take-off or landing movement “on a specific
day and time”. The entire process of ATFM can generally be divided into three phases of strategy,
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pre-tactics, and operation/tactics in the time dimension. The strategic slot scheduling is a long-term
plan for the timing of flight execution. Before each season, the air traffic control agency will work with
the airlines to generate the initial schedule of flight time. The pre-tactical phase refers to the period
before the flight take-off on the flight operation day. At this phase, various uncertainties gradually
become clear. The strategic plan will be adjusted based on the actual situation of the operation day.
The operational/tactical phase refers to the period from flight take-off to flight completion. This phase
mainly deals with the issue of aerial conflict resolution during the flight. The airport slot allocation
work is mainly carried out in the first two phases. Generally, the whole slot allocation processes can be
briefly summarized as: (1) The airlines submit slot requests, (2) the traffic management department
allocates slots to corresponding flights or airlines according to a certain mechanism, thereby forming an
initial flight time slot plan, (3) according to environmental changes, the traffic management department
performs secondary slot allocation to adjust time slot plan in real time. This slot allocation work has
been running through the long-term strategic phase (step (1), (2)) as well as the short-term pre-tactical
phase (step (3)) before the flight take-off. In current, in most practical management or academic
researches, the slot allocation problems of the two phases are handled independently. This type of
processing ignores the reliability and robustness of the initial slot allocation plan, at the same time
increases the rescheduling costs of both the airline companies and the traffic management department,
and the potential congestion risk. The examples of the Beijing 7.20 rainstorm and USA 1.17 snowstorm
show that extremely bad weather causes airport capacity to reduce drastically, which leads to the
complete failure of slot scheduling decision in the strategic phase. Therefore, robust slot scheduling
methods not only are the urgent need of practical operations, but also the focus of future research [3].

Research shows that a minute of tactical delay cost is approximately three times higher than a
minute of its strategic counterpart [4]. Thus, reducing potential tactical slot capacity violations through
appropriately increasing strategic schedule discrepancies is both cost and efficiency beneficial. In this
work we develop a robust optimization model for a multi-airport multi-calendar day slot allocation
problem, which aims to improve decision robustness by linking the decisions of the strategic phase
and the pre-tactical phase. This robust optimization idea is also a method that meets the sustainability
requirements of airports. Wan et al. (2020) [5] identify four airport sustainability dimensions of economy,
environment, society, and operation. Obviously, the delay and congestion issues optimized in this paper
are related to the economic, environmental, and social considerations of sustainability requirements.
Firstly, improving the accuracy and feasibility of slot schedule can reduce the cost and resource waste
caused by rearrangement, which is economically and environmentally beneficial. Secondly, reducing
flight delays and airport congestion not only improves travelers’ satisfaction, but also reduces airports’
workload, which is socially beneficial. Most importantly, the robust optimization method guarantees
the sustainability of decision-making from an operational perspective. It is well known that robust
optimization is a method of anti-interference and risk avoidance. The urgent adjustment of the initial
flight scheduling caused by uncertainty is the main reason for airport congestion. Taking into account
the unexpected situations that may occur on the operation day in the strategic decision-making phase,
will greatly reduce the future congestion risk. Therefore, from an operational perspective, the robust
optimization method provides a more stable and sustainable initial flight plan.

In traditional slot allocation research and practice, satisfying the airlines’ preferences (namely,
to ensure the allocation plan as consistent as possible with the airline’s initial request on the premise
of meeting the declared capacity) is the main optimization objective. The difference between our
model and traditional research/practice is that we added the robustness consideration. The first part
of the optimization objective of our model is the airlines’ preference consideration, which consists of
misallocation cost (namely, flight cancellation cost), movement displacement cost and flight duration
displacement cost. The three costs all reflect the degree of difference between the scheduling plan and
the airlines’ initial request, which are not costs in money measured and borne by a certain stakeholder
Therefore, they are together named as the strategic discrepancy cost in this paper. The second part
of our optimization objective is to guarantee the decision robustness. Uncertain airport capacity is
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represented by a set of scenarios, which can be simulated based on historical data and weather forecasts.
The probability of each scenario is unknown. Using the min-max method, minimizing the potential
congestion of the worst scenario is adopted to express robustness. Then the paper aims to embody
a trade-off between airlines’ preference and decision robustness by simultaneously minimizing the
strategic discrepancy cost and potential congestion. This robust consideration is especially beneficial
for periods or regions with bad and changeable weather. In addition, intertwined capacity constraints,
turnaround time and flight duration constraints are included in the model. Then, the linear conversion
of the model makes it possible to apply the model to practical-size problems.

The remainder of the paper unfolds as follows. In Section 2 we review relevant research in the
literature. In Section 3 we give the problem description. In Section 4 we present the robust model and
corresponding notations. In Section 5, we present the model transformation. In Section 6, numerical
analyses are taken to verify the proposed model. Finally, Section 7 gives the conclusions and prospects.

2. Literature Review

Air traffic flow management (ATFM) refers to the safe, orderly, and efficient circulation of air
traffic to ensure the maximum use of the capacity of air traffic control services and to meet the
standards and capacities published by the relevant air traffic service authorities. Many topics have
been studied in ATFM area to guarantee the safety and efficiency of aviation network operations.
These studies focus on the optimization of air conflict resolution [6], airspace or sector traffic and
capacity management [7], runway scheduling [8–10], ground-delay program [11], etc. Airport slot
allocation is an important one of these topics in ATFM. The Worldwide Airport Slot Guidelines
(WASG) [12] is published to provide standards for airport slot management by Airports Council
International (ACI), the International Air Transport Association (IATA) and the Worldwide Airport
Coordinators Group (WWACG). Several principles are included in the document to guide the slot
allocation research and practice, such as grandfather right (priority rules of slot allocation), use it or
lose it rule, etc. Most research about airport slot allocation follows the IATA standards. The existing
research can be divided into single-airport and network-based slot allocation problems. Zografos et al.
(2012) [13] formulate a deterministic integer linear program for the single-airport slot allocation problem.
The objective of the model is to minimize the difference between airlines’ slot request and actual
allocated slot, and existing European Union (EU) and International Air Transport Association (IATA)
regulations are implemented to the model. Jacquillat et al. (2015) [14] propose an integrated model
that jointly optimizes strategic flight scheduling and tactical airport capacity utilization. Ribeiro et al.
(2018) [15] propose a priority-based slot allocation model to optimize slot allocation decisions, which
complies with the many priority requirements presented by IATA.

Single-airport models have many restrictions due to the mis-consideration of slot interdependencies
of origin-destination (O-D) airports. Increasing research identify simultaneous slot scheduling problems
at an airport network. Vranas et al. (1996) [16] present a static network-based integer programming model,
which is adapted to the needs of Central Flow Management Unit (CFMU). Pellegrini et al. (2017) [17]
propose an integer linear programming model to deal with slot allocation problem on the European
scale, applying existing regulations. Aircraft rotations are considered by turnaround time constraints.
Bolić et al. (2017) [18] present an integer programming model for network-based flight scheduling
problem. Apart from the assigning departure time to each flight, the proposed model also gives flight
route decisions. Besides, both airports and sectors capacity constraints are considered. Ivanov et al.
(2017) [19] formulate a two-level mixed-integer model to simultaneously reduce propagated delay and
improve airport slot adherence.

However, uncertain capacity is not considered in the above models. Corolli et al. (2014) [20] propose
a two-stage framework for slot allocation problem over airports network under scenario-based uncertain
airport capacity. The model aims to provide insights for slot allocation through trade-off between schedule
displacement cost and operational delay cost. As well, the sample average approximation (SAA) method
is adopted to deal with uncertainty of the problem. Corolli et al. (2015) [21] present a stochastic model for
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air traffic flow management considering capacity uncertainty both at airports and air sectors. Furthermore,
a new heuristic algorithm is designed for the proposed model. The stochastic information of the problem
is expressed based on an expected value method.

Robust programming, first presented by Mulvey et al. (1995) [22], a risk-averse stochastic programming
processing technique, has gradually been introduced into various issues of air traffic management.
Some studies focus on the robust aircraft routing problem [23,24]. Heidt et al. (2016) [25] study a robust
airport runway scheduling problem under uncertain conditions. Sidiropoulos et al. (2017) [26] apply the
robust optimization method to identification of air traffic flow patterns in the terminal area. Unfortunately,
few studies pay attention to robust airport slot allocation problems.

Through the above analysis, we conclude that airport slot allocation research considering
uncertainty are still lacking, especially robust models capturing dynamic nature and decision stability.

3. Problem Description

A slot is the permission given to an airline to use the airport infrastructure to operate aircraft
take-off or landing movement “on a specific day and time”. Furthermore, a slot has a corresponding
duration (or time interval), for instance 15 min (min), associated to it. For example, if a slot is granted
to an airline at 9:00 of a specific day, a flight of the airline has the right to depart (or arrive) during time
interval from 9:00–9:15. One day of 24 h is subdivided into equal size time intervals in one specific
airport. Different airports may adopt different size of time interval, such as, 5 min, 10 min and 15 min.
However, at all airports a time interval must begin at 0 min, 5 min, 15 min . . . , the duration of which
is multiple of 5. Thus, we can define the coincide of different sizes of time intervals as subinterval,
for instance 5. For simplification and without losing generality, we assume that all time intervals in
the airport network have the same size (which can take the length of the subinterval) in our problem.
In addition, the airlines’ requests are reflected by series of slots, namely, one specific flight movement
is requested on several calendar days at the same operation time.

At the strategic level, slot allocation aims to reduce the potential demand-capacity imbalance and
further guarantee the safety and efficiency of aviation network operation. In practice, see Figure 1,
airlines submit slot requests to slot coordinator. As well, the coordinator gives the original slot
allocation outcome based on airport declared capacity and other operational constraints. The final
slot allocation plans are determined after rounds of revisions through bilateral communications
between slot coordinator and airlines. However, various factors, especially meteorological factors,
have significantly impact on airport capacity. Thus, the strategic decisions of slot allocation may be
ineffective on day of operations. With the continuous updating of information, the decisions in the
strategic stage will be continuously rescheduled before operations. If we link the decisions of the
strategic stage and the pre-tactical stage, considering early knowledge of the future situation based
on historical data, the stability of decisions in the strategic level can be improved and the subsequent
rescheduling cost can be reduced.
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Based on the above interpretation, we present a robust programming model, which aims to
minimize the strategic discrepancy cost and potential operational congestion cost. As Figure 2 shows,
the problem deals with the trade-off between strategic discrepancy cost and potential operational
congestion cost. The strategic discrepancy cost consists of three items: misallocation cost, movement
displacement cost and flight duration displacement cost. Misallocation of one specific movement refers
that this movement is not allocated to any time point. Namely, the flight related to the movement is
cancelled. Therefore, misallocation cost is the cost of flight cancellation. The movement displacement
cost means the cost caused by allocating a flight movement to a time point different from the requested
time. For example, a movement is requested to be executed on time point 10. If the execution time
allocated to this movement is 15, a cost of 5 is caused by the allocation deviation from the initial
request. For movement pairs connected by a same flight, flight duration displacement cost may occur.
For example, if a flight’s requested duration is 20, but the duration after scheduling is 23. A flight
duration displacement cost of 3 time units is generated. All the three costs represent the difference
between the scheduling plan and the initial request. Therefore, we together name them discrepancy
cost. Potential operational congestion is described as the maximum possible exceeded allocated
number on the operational day. This consideration not only ensures the robustness of decisions but
also avoids the problem of lacking scenario probability. Then, the model formulation process will be
stated in the following section.
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4. The Model

In this paper, we focus on slot allocation optimization of several calendar days. Furthermore,
one day is divided into equal size time intervals, such as 00:00–00:15, 00:05–00:20, 00:10–00:25 . . . , each of
which has a 15-min length associated to it. Then, the model is expressed as follows (The interpretations
of parameters and variables refer to the Notation section at the end of the article):

F = min

∑
r∈R

mcr·yr·nr + nr·
∑

r∈R,¬∃r′:(r,r′)∈F∪(r′,r)∈F

∑
tm∈TM

dcr(tm)·xr,tm

+nr·
∑

(r,r′)∈F

∑
tm∈TM

[dcr(tm)·xr,tm + f cr,r′(tm, tm′)·xr,tm·xr′,tm′ ]

+τ·max
ω∈Ω

( ∑
d∈D

∑
a∈A

∑
t∈T

nωt,a,d

)} (1)

Subject to:
yr = yr′ , ∀(r, r′) ∈ P∪ F (2)
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∑
tm∈TM

xr,tm = 1− yr, ∀r ∈ R (3)

∑
r∈R1

a

∑
t∈T,tm∨t

xr,tm·rd ≤ α
d,t
a , ∀a ∈ A, d ∈ D (4)

∑
r∈R2

a

∑
t∈T,tm∨t

xr,tm·rd ≤ β
d,t
a , ∀a ∈ A, d ∈ D (5)

∑
r∈Ra

∑
t∈T,tm∨t

xr,tm·rd ≤ γ
d,t
a , ∀a ∈ A, d ∈ D (6)

∑
tm∈TM

xr′,tm·tm−
∑

tm∈TM

xr,tm·tm + yr·M ≥ f tmin
r,r′ , (r, r′) ∈ F (7)

∑
tm∈TM

xr′,tm·tm−
∑

tm∈TM

xr,tm·tm− yr·M ≤ f tmax
r,r′ , (r, r′) ∈ F (8)

∑
tm∈TM

xr′,tm·tm−
∑

tm∈TM

xr,tm·tm− yr·M ≥ tr,r′ , (r, r′) ∈ P (9)

nωa,t,d =

 ∑
r∈R1

a,d

∑
t∈T,tm∨t

xr,tm − α
d,t
a (ω)


+

+

 ∑
r∈R2

a,d

∑
t∈T,tm∨t

xr,tm − β
d,t
a (ω)


+

+

 ∑
r∈Ra,d

∑
t∈T,tm∨t

xr,tm − γ
d,t
a (ω)

+, ∀a ∈ A, d ∈ D,ω ∈ Ω

(10)

In objective (1), the first three terms respectively represent misallocation cost, displacement cost
of requests not belonging to coupled slot set and displacement cost of coupled slots. Cost of coupled
slots is represented individually because the displacement cost of coupled slots consists of movement
displacement cost and flight duration displacement cost. The above costs are together called discrepancy
cost in this paper. Constraints (2) guarantee that a pair of coupled slots or turnaround slots are either
both allocated, or neither is allocated. Constraints (3) make sure that one slot is finally allocated to
one time interval unless it is not allocated. For example, if yr = 1, then all values of xtm equals to 0.
This means that if a movement is cancelled, it is not allocated to any time point. Constraints (4)–(6)
together express airport capacity restrictions, in which tm∨ t denotes that time point tm belongs to time
interval t. The three constraints represent the capacity limits of departure, arrival, and total movements
respectively. Constraints (7)–(8) indicate the duration of one specific flight should fall into a feasible interval.
Constraints (9) denote the turnaround time requirements Namely, a certain preparation time should be
satisfied between the departure and arrival movement of the connecting flights. Constraints (10) denote
the future excess allocated amount in different scenarios, which reflects the potential congestion risk.

5. Model Transformation

The proposed model is a nonlinear 0–1 integer programming model. The nonlinearity of the
model is mainly reflected in Constraints (10). Next, we will do some transformations on the model.

Theorem 1. For variables X, Y, Z and parameters a, b, if X = [a− b]+, Z ≥ a− b, Z ≥ 0, and Y = minZ,
then X = Y.

Proof. (1) If a ≤ b, then X = [a− b]+ = 0,
a− b ≤ 0
Z ≥ a− b

Z ≥ 0
⇒ Z ≥ 0,

{
Z ≥ 0

Y = minZ
⇒ Y = 0;
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Then X = Y.
(2) If a > b, then X = [a− b]+ = a− b,

a− b>0
Z ≥ a− b

Z ≥ 0
⇒ Z ≥ a− b,

{
Z ≥ a− b

Y = minZ
⇒ Y = a− b;

Then X = Y. �

Based on Theorem 1, the nonlinear characteristics caused by [. . .]+ can be linearized.
We introduce non-negative auxiliary variables ndωa,t,d, naωa,t,d, ntωa,t,d, let

ndωa,t,d ≥
∑

r∈R1
a,d

∑
t∈T,tm∨t

xr,tm − α
d,t
a (ω) (11)

naωa,t,d ≥
∑

r∈R2
a,d

∑
t∈T,tm∨t

xr,tm − β
d,t
a (ω) (12)

ntωa,t,d ≥
∑

r∈Ra,d

∑
t∈T,tm∨t

xr,tm − γ
d,t
a (ω) (13)

Then, the original model can be written as,

min

∑
r∈R

mcr·yr·nr + nr·
∑

r∈R,¬∃r′:(r,r′)∈F∪(r′,r)∈F

∑
tm∈TM

dcr(tm)·xr,tm

+nr·
∑

(r,r′)∈F

∑
tm∈TM

[dcr(tm)·xr,tm + f cr,r′(tm, tm′)·xr,tm·xr′,tm′ ]+τ·rob}

s.t. Formulas (2)–(9),
Formulas (11)–(13),

rob ≥
∑
d∈D

∑
a∈A

∑
t∈T

(ndωa,t,d + naωa,t,d + ntωa,t,d),∀ω ∈ Ω,

ndωa,t,d ≥ 0, naωa,t,d ≥ 0, ntωa,t,d ≥ 0.

where, rob is another auxiliary variable introduced. After the above transformation, the original model
is transformed into an equivalent 0–1 linear programming model, which can be easily solved by many
mainstream commercial software.

6. Numerical Analysis

In this section, we present a practical scale case to verify the characteristics and effectiveness of the
proposed model. We take the Level 3 airports in the South China airport network as the case. According to
the IATA’s definition, Level 3 airports are those where “it is necessary for all airlines and other aircraft
operators to have a slot allocated by a coordinator in order to arrive or depart at the airport during
the periods when slot allocation occurs”. Generally, the slot allocation process only focuses on airports
that are at capacity, namely Level 3 airports. The South China airport network includes Guangzhou
Baiyun International Airport (IATA: CAN), Shenzhen Bao’an International Airport (IATA: SZX) and Sanya
Phoenix International Airport (IATA: SYX) three Level 3 airports. The data of the numerical analysis
includes real data (initial request and airport network), as well as hypothetical/simulated data (capacity
data). We take 3317 slot request series (1 slot series includes several slot requests distributed on different
calendar days) over 7 calendar days at the three airports as the original slot demand, which consist of slot
pairs, turnaround slots and independent slots. Each calendar day is subdivided into 286 15-min time
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intervals, such as 00:00–00:15, 00:05–00:20, 00:10–00:25, and so on. In each time interval, departure capacity
constraints, arrival capacity constraints and total capacity constraints should be satisfied. Each time point,
such as 00:00, 00:05, 00:10, is taken as an allocation candidate for the requests, and each day includes
288 such time points. At different airports, we generate the declared capacity basing on the slot demand
of each time interval. Then, based on the declared capacity, we generate 20 capacity reduction scenarios.
In practice, the capacity reduction scenarios can be generated basing on historical weather conditions.
The number of scenarios does not affect the computational characteristics of the model since, in robust
optimization, we only need to consider the worst case of the many scenarios. Before running the model,
we perform initial data processing on the uncertain scenario set and filter out the worst case by calculating
the conflict number between different capacity scenarios and the initial request. Based on the above
method, we set a tight capacity constraint in our numerical experiment (as Columns 2–3 in Table 1 show,
1366 strategic conflicts and 3079 potential tactical conflicts exist in the original setting). The reason for this
setting is that we want to show the model’s ability to eliminate existing and potential conflicts. In addition,
we assume all the slot series are executed on each day of the planning period, and each calendar day has
the same capacity setting. This assumption is purely for the simplicity of data collection and does not
affect the model characteristics and the calculation complexity.

We solve the 0–1 linear programming model under the support of the Cplex solver. All the test
instances are solved on a computer with AMD Ryzen 7 3700U CPU with 16 GB of RAM. In our case,
mcr and δ are set as 30 and 5 respectively, which indicates that misallocation is not preferred and unit
flight duration difference cost is larger than unit movement displacement cost.

First, we use 1 as the step size to generate 30 sets of two-stage weight (τ) from 1 to 30, which almost
cover the entire effective weight value interval. The total calculation time of the 30 sets of cases is 3.9 h.
Namely, the average calculation time of one case is about 467 s, which is completely acceptable for a
strategic decision. The results are shown in Figure 3. We see that as the weight for the second-stage
cost increases, the strategic discrepancy cost increases, and the potential congestion quantity decreases.
This reflects the effectiveness of the two-stage cost trade-offs emphasized by the model. Figure 3 also
shows that τ takes values in different intervals will lead to different cost change rates due to tradeoffs.
Decision makers can choose appropriate weight values from different intervals based on their decision
preferences. For example, in Figure 3, when the weight value increases from 1 to 7, the potential
congestion cost decreases by 430.1% with a 52.6% increase of discrepancy cost. This reflects the
advantages of the proposed model compared to traditional models. In practical slot management, such
an interval (1–7 in this experiment) is a good weight value interval. By setting the weight value in this
interval, we can obtain a significant reduction of congestion risk with a slight increase of discrepancy
cost. Namely, a stable and robust decision can be obtained without deviating significantly from the
airlines’ initial request. However, the decision maker can also choose bigger weight values if they want
to reduce future congestion risk more. We take three representative values—5, 10, 15 from different
intervals of Figure 3 as the weight values of the subsequent numerical analyses.

We take the first calendar day’s flight schedule as an example to show the optimization of the
proposed model on the airlines’ initial requests. The results are shown in Table 1. The second column
(C2) of Table 1 denotes the number of conflicts between initial request and declared capacity. The third
column denotes the maximum potential number of conflicts of the initial request. The 4th column
denotes the maximum potential conflict number of the optimized scheduling. The 5th column denotes
the potential conflict reduction of the proposed model to the initial request. The 6–7th columns denote
the flight cancellation rate and the total deviation time of the optimized scheduling, respectively.
In Table 1, when the two-stage weight (τ) is equal to 5, the 1366 strategic conflicts are completely
eliminated and the potential conflicts are reduced by nearly half (45.6%) only by canceling a small
number of flights and making some movement time adjustments. If we increase the weight value,
the potential conflicts will be further reduced while increasing the number of flight cancellations and
movement deviation. In summary, the proposed model can effectively eliminate the existing strategic
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imbalance between airlines’ requests and declared capacity, and significantly reduces the potential
conflict number and congestion risk.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 14 
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Table 1. Comparative results with initial requests.

Weight
(C1)

Initial Request Results of the Proposed Model

Stra.no (C2) Oper.no (C3) Oper.no (C4) Oper.d (C5) Miss.r (C6) Discr (C7)

5
1366 3079

1674 45.6% 0.7% 4082
10 594 80.7% 10.9% 13,889
15 43 98.6% 16.5% 19,618

Note: C1–C7 denote the column numbers.

In Table 2, we present the comparative results between the solution obtained by the proposed
model and the decision only considering nominal capacity (without considering robustness, namely
τ = 0). The second and third columns denote the strategic discrepancy cost and potential congestion
cost when we only consider declared capacity and ignore decision robustness. Columns 4–5 respectively
denote the added strategic cost and saved congestion cost by the proposed model. The last column
presents the overall savings for the total costs. We can see that the proposed model aims to increase
the strategic discrepancy cost to reduce the potential operational congestion cost. As well, and as
the weight increases, which indicates the importance of mitigating potential congestion increases,
the benefits of the proposed model increase. In summary, the model can effectively achieve the balance
between airline preference and potential airport congestion in the slot allocation problem.

Table 2. Comparative results with nominal capacity.

Weight
(C1)

Nominal Capacity Results of the Proposed Model

Stra.Cost (C2) Oper.Cost (C3) Stra.Add. (C4) Oper.Saved. (C5) Global Gain (C6)

5 2824 11,930 1258 3560 15.6%
10 2824 23,860 11,065 17,920 25.7%
15 2824 35,790 16,794 35,145 47.5%

Note: C1–C6 denote the column numbers.

We take the first calendar day as an example to show the delay rates of the initial request, decision
without robustness and robust decisions. On the operational day, flight movements that exceed the
capacity will be delayed or cancelled. In this paper, we name the ratio of these delayed or cancelled
movements to the total movements delay rate. Then, the worst-case delay rates of the above decisions
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are presented in Figure 4. We see that the proposed model is significantly better than the model without
robustness in reducing flight delay rate. If a larger weight value is selected, the flight delay rate will be
reduced to a very low level.
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Further, taking the departure flight plan of Baiyun Airport on the first day as an example, we present
the slot allocation decisions of several different methods in Figure 5. In Figure 5, the standard deviation
of the four curves is 7.62 (initial), 6.54 (τ = 0), 6.08 (τ = 5) and 5.50 (τ = 15) We see that the decisions
obtained by the proposed model have smoother distributions over different time periods. Along with
the increase of the weight (τ), the curve becomes smoother. This indicates that the proposed model
transfers some slot requests of busy time intervals to other intervals, which makes the flight scheduling
smooth and uniform in the time dimension. The smooth distribution of slot requests not only ensures
the full and reasonable utilization of airport time slot resources, but also reflects the anti-disturbance
ability of the decision and indicates the robustness of the proposed model.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 14 
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7. Conclusions

Today, slot scheduling practice suffers significant inefficiency for lacking effective slot allocation
optimization applications. Strategic slot scheduling plans vary frequently and significantly due to various
factors, especially meteorological factors. In this paper, we propose a robust optimization model for
a network-based strategic slot scheduling problem, which contributes to obtain sustainable and stable
decisions. The model simultaneously considers strategic scheduling discrepancy cost and potential
airport congestion to guarantee the robustness of decisions. The strategic scheduling discrepancy cost
are expressed with an exhaustive cost structure, which consists of misallocation cost, flight duration
displacement cost and slot displacement cost. Through numerical analyses, we conclude that:

(1) The proposed model can be equivalently converted into a linear model, which can be solved
efficiently using mainstream commercial software like Cplex. This guarantees the applicability of
the model in practical large-scale problems;

(2) The proposed model can effectively eliminate the existing and potential scheduling conflicts;
(3) The proposed model can significantly reduce the flight delay rate through tradeoffs between

airline preference and potential airport congestion in the slot allocation problem;
(4) The proposed model transfers slot requests of busy time intervals to other intervals, which makes

slot allocation smooth and uniform in the time dimension. This not only ensures the full use
of airport time slot resources, but also improves the anti-disturbance ability and robustness of
the decisions.

The proposed model provides another way of thinking. It is a risk-averse method sacrificing some
airline preferences to get more reliable decisions. This may be different from most existing practical
applications. However, we think the robust method makes sense in theory, enriches the current
literature, and has application prospects. In further directions, more researches are needed to deal with
slot allocation problems under uncertain environment, including model construction and solution
algorithm design. Complex system theory is recognized to be introduced to characterize decision
stability and system resilience. In addition, further work considering multi-stakeholder collaboration
and gaming will be an interesting and meaningful topic.
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Abbreviations

Parameters
D set of scheduled days, indexed by d

A set of airports, indexed by a

T set of time intervals of one day indexed by t, t = 1, 2 . . . , 286

TM set of time points on which movements are allocated indexed by tm, tm = 1,2 . . . ,288, any two adjacent time points are separated by 5 min

R set of movements indexed by r, which is reflected by series of slots

nr the requested times of movement r during the whole planning period

rd whether movement r is requested on calendar day d, if requested, rd = 1, else, rd = 0

Ra set of requested movements at airport a

R1
a set of requested departure movements at airport a

R2
a set of requested arrival movements at airport a

P set of pairs of requested turnaround slots (r, r′)

F set of requested coupled slots (r, r′) executed by one flight

tr
∗ requested slot time for requested movement r

tr,r′ the minimum turnaround time between movements r and r′, ∀(r, r′) ∈ P

f tr,r′ , f tmin
r,r′ , f tmax

r,r′ requested, minimum feasible and maximum feasible flight time for coupled requested slots (r, r′) ∈ F

mcr cost for the missed allocation of requested slot r ∈ R

dcr(tm) cost for allocating requested movement r ∈ R to time tm which is expressed by |tm− tr
∗
| in our research

f cr,r′ (tm, tm′)
the cost of difference between actual flight time and requested flight time, denoted by δ·

∣∣∣∣tm′ − tm−
(
t∗r′ − t∗r

)∣∣∣∣. Here, δ > 1, which represents that
the cost of airborne delay is greater than ground delay.

αd,t
a , βd,t

a , γd,t
a the declared departure, arrival and total capacity at airport a during time interval t on calendar day d

τ weight for the displacement cost and potential delay cost

Ω scenario sets, indexed by ω

αd,t
a (ω), βd,t

a (ω), γd,t
a (ω) the departure, arrival and total capacity at airport a during time interval t on calendar day d under scenario ω

nωa,t,d
excess allocated amount at airport a during time interval t on day d under scenario ω

M a big number
Decision variables
yr 0-1variable, if movement r is allocated, yr = 1, else, yr = 0

xr,tm 0-1variable, if movement r is allocated to time tm, xr,tm = 1, else xr,tm = 0
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