1 Supplemental Material: Human health, economic and environmental

2 assessment of onsite non-potable reuse systems for a large, mixed use

3 urban building

```
4 Sam Arden<sup>1</sup>, Ben Morelli<sup>1</sup>, Mary Schoen<sup>2</sup>, Sarah Cashman<sup>1</sup>, Michael Jahne<sup>3</sup>, Cissy Ma<sup>3*</sup>, Jay Garland<sup>3</sup>
```

- ¹Eastern Research Group, Lexington, Massachusetts USA
- 6 ²Soller Environmental, Berkeley, California, USA
- ⁷ ³United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response,
- 8 Cincinnati, Ohio USA
- 9

10 S1. Treatment System Design and Inventory Development

Life cycle inventories (LCI) were developed for each treatment configuration based on the designs necessary to achieve the desired effluent water quality discussed in the main document. This supplementary information section provides additional detail as to the specific design details of individual treatment system unit process. It is intended to support the overview provided in Section 2.1 of the main text. Table S1 [1] provides the physical/chemical water quality parameters assumed for mixed wastewater and source-separated graywater, as well as applicable effluent quality guidelines. The remainder of the

17 section discusses the selection process and specific design details for individual unit processes.

18 Table S1. Wastewater Influent Characteristics and Target Effluent Quality for Unrestricted Urban Reuse

Water Quality Characteristics		Influe	nt Values	Target Effluent Quality	
- ,		Mixed WW	Graywater	Both	
Characteristic	Unit	Medium Strength	Low Pollutant Load with Laundry	Effluent Quality for Unrestricted Urban Use	
Suspended Solids	mg/L	220	94	<5	
Volatile Solids	%	80	47	-	
cBOD5	mg/L	200	170	-	
BOD ₅	mg/L	240	190	<10	
COD	mg/L	510	330		
TKN	mg N/L	35	8.5	_	
Ammonia	mg N/L	20	1.9	_	
Nitrite	mg N/L	-	-	-	
Nitrate	mg N/L	-	0.64	-	
Total Phosphorus	mg P/L	5.6	1.1	-	
Chlorine Residual	mg/L	-	-	0.5-2.5	

Table Acronyms: BOD – biochemical oxygen demand, cBOD- carbonaceous biochemical oxygen demand, COD –
 chemical oxygen demand

21 S1.1 Unit Process Selection to Achieve LRTs

Disinfection processes were specified for each of the wastewater treatment systems based on log reduction targets (LRTs) intended to achieve a risk level of 1 in 10,000 infections per person per year (ppy)

- 24 considering several reuse applications. Log reduction values (LRVs) vary based on organism type,
- disinfection method, and applied dose as specified in Table S2. Biological processes also provide some level
- of treatment, which was taken into account when selecting disinfection unit processes so that the total
- 27 (additive) LRT could be achieved. Table S3 shows LRVs assigned to individual biological and disinfection
- 28 processes included in the study systems, and the corresponding disinfection dose.
- Both MBR treatment processes were assigned a LRV of five for each pathogen class, which is conservative based on the LRV of six or more reported by [2]. Based on a lack of available data for the RVFW specifically, it was assigned LRVs for wetlands from Sharvelle et al. (2017), varying between 0.5 and 1 depending on organism type.
- 33 Most systems only require chlorine and ultraviolet (UV) disinfection processes to meet LRTs for non-34 potable reuse. Chlorination is legally required for all non-potable reuse systems, in order to maintain a free 35 chlorine residual of 1 mg/L [2].
- The RVFW treating mixed wastewater requires a third disinfection process, ozone, to meet the LRTsfor viruses and protozoa.

		Enteric Viruses	Parasitic Protozoa	Enteric Bacteria	Units
Membrane Bioreactor ^a	Log	5	5	5	log
Wetland	Reduction	0.5	1	0.8	log
	1 Log ₁₀	n/a	2000- 2600	0.4-0.6	mg- min/L
	2 Log ₁₀	1.5-1.8	n/a	0.8-1.2	mg- min/L
Free Chlorine	3 Log ₁₀	2.2-2.6	n/a	1.2-1.8	mg- min/L
	4 Log ₁₀	3-3.5	n/a	1.6-2.4	mg- min/L
	1 Log ₁₀	n/a	4-4.5	0.005- 0.01	mg- min/L
07070	2 Log ₁₀	0.25-0.3	8-8.5	0.01-0.02	mg- min/L
Ozone	3 Log ₁₀	0.35- 0.45	12-13	0.02-0.03	mg- min/L
	4 Log ₁₀	0.5-0.6	n/a	0.03-0.04	mg- min/L
	1 Log ₁₀	50-60	2-3	10-15	mJ/cm ²
UV Padiation	2 Log ₁₀	90-110	5-6	20-30	mJ/cm ²
UV Kadiation	3 Log ₁₀	140-150	11-12	30-45	mJ/cm ²
	4 Log ₁₀	180-200	20-25	40-60	mJ/cm ²

38 Table S2. Log Reduction Values for Biological and Disinfection Processes (Sharvelle et al., 2017).

³⁹ ^aLog reduction values for AeMBRs and AnMBRs are based on the use of ultrafiltration membranes.

MBR - mixed WW	Virus	Protozoa	Bacteria	Dees	Dees Unite
Technology	LRV	LRV	LRV	Dose	Dose Units
Membrane bioreactor	5	5	5	n/a	n/a
Ozone	-	-	-	-	-
UV	0	4	2	30	mJ/cm ²
Chlorination	4	0	4	32	mg-min/L
Total System LRV	9	9	11		
MBR - graywater	Virus	Protozoa	Bacteria	Daaa	Dees Inite
Technology	LRV	LRV	LRV	Dose	Dose Units
Membrane bioreactor	5	5	5	n/a	n/a
Ozone	-	-	-	-	-
UV	0	4	2	30	mJ/cm ²
Chlorination	4	0	4	32	mg-min/L
Total System LRV	9	9	11		
RVFW - mixed WW	Virus	Protozoa	Bacteria	Daga	Dose Units
Technology	LRV	LRV	LRV	Dose	
RVFW	0.5	1	0.8	n/a	n/a
Ozone	4	2	4	8.3	mg-min/L
UV	1	4	4	55	mJ/cm ²
Chlorination	4	0	4	32	mg-min/L
Total System LRV	9.5	7	12.8		
RVFW - graywater	Virus	Protozoa	Bacteria	Daga	Doco Unito
Technology	LRV	LRV	LRV	Dose	Dose Units
RVFW	0.5	1	0.8	n/a	n/a
Ozone	-	-	-	-	mg-min/L
UV	2	4	4	95	mJ/cm ²
Chlorination	4	0	4	32	mg-min/L
Total System LRV	6.5	5	8.8		

41 Table S3. Log Reduction Values of Selected Wastewater Treatment Processes.

43 S1.2 Pre-treatment

Each of the three treatment systems utilize a fine screen and equalization chamber for pre-treatment. The fine screen removes large particles and debris from influent that could damage or impede operation of the biological treatment units. Screenings are disposed of in a municipal solid waste landfill. A slant plate clarifier also precedes the RVFW to prevent unnecessary clogging of the media beds. Equalization chambers were sized to dampen fluctuation in hourly wastewater generation within the building. The LCI of these three processes includes electricity use and basic infrastructure materials (steel, concrete, and piping).

51 S1.3 Aerobic membrane bioreactor

52 The AeMBR combines a continuously-stirred aerobic reactor with a submerged membrane filter for 53 solids separation. Solids are pumped from the reactor and disposed of in the sanitary sewer, where they 54 are treated with the rest of the municipal waste stream.

Table S4 presents basic design values for the mixed wastewater and graywater AeMBR treatment processes. LCI electricity consumption accounts for aeration energy demand to provide both biological process aeration and membrane cleaning, permeate pumping, sludge pumping, and miscellaneous additional uses. The membrane is made out of polyvinyl fluoride and was sized based on the wastewater flowrate and the design membrane flux of 20 liters per m² per hour (LMH). The analysis assumes a membrane lifespan of ten years [3]. Inputs of concrete and steel for tank construction were estimated based on the presented unit dimensions. Sodium hypochlorite is used for membrane cleaning and was estimated

62 assuming that 950 liters of 12.5% NaOCl are used annually per 1,650 m² of membrane area [4].

Parameter	Mixed Wastewater	Graywater	Units
Solids Retention Time ^a	15	5	days
Hydraulic Retention Time ^a	5		hours
Mixed Liquor Suspended Solids ^b	12,000	11,000	mg/L
Dissolved Oxygen Setpoint	2		mg O ₂ /L
Membrane flux	20)	LMH
Backflush flux ^c	40	LMH	
Membrane area, operation	200	130	m ²
Membrane area, total	300	190	m ²
Tank depth, operational	2.7	2.7	m
Tank length	3.3	2.1	m
Tank width ^d	1.1	1.1	m
Tank volume, operational	20 13		m ³
Physical cleaning interval ^e	10	minutes	
Physical cleaning duration ^e	45		seconds
Chemical cleaning interval ^e	84		hours

Table S4. AeMBR Design Values

a [5]

e [6]

63 64 65

66

67

68

- ^c Twice membrane flux [5].
- ^d Tank width refers to individual tank. AeMBR consists of three parallel tanks.

Table Acronyms: LMH – liters per m² per hour

^b Output of GPS-X model, dependent on selected SRT.

69 The LCI includes process greenhouse gas (GHG) emissions of methane and nitrous oxide developed 70 using the IPCC Guidelines of National Inventories [7]. Methane and nitrous oxide emissions were 71 estimated based on the quantity of BOD and total kjeldahl nitrogen (TKN) entering the AeMBR treatment 72 process, respectively. GPS-XTM was used to estimate BOD and TKN concentrations influent to the AeMBR.

73 S1.4 Anaerobic membrane bioreactor

74 The AnMBR is a psychrophilic treatment process intended to operate at ambient temperatures, 75 eliminating heat demand typical of many anaerobic processes, and producing methane as a beneficial by-76 product that is assumed to be used as an alternative heat source for the building's hot water supply. The 77 treatment process includes an anaerobic continuously stirred tank reactor (CSTR) and additional tanks to 78 house the submerged membranes. Neither nitrogen or phosphorus are removed from wastewater in 79 anaerobic reactors [8]. Therefore, downflow-hanging sponge (DHS) and zeolite adsorption post-treatment 80 processes are necessary to ensure that treated effluent meets the criteria for unrestricted urban reuse. The 81 DHS reactors recover or destroy methane dissolved in AnMBR permeate and have the additional benefit 82 of removing 55% and 73% of COD and BOD remaining the wastewater. A zeolite adsorption system is used 83 to remove ammonium from the wastewater to allow establishment of a free chlorine residual without 84 excessive sodium NaOCl demand.

The AnMBR is a psychrophilic treatment process intended to operate at ambient temperatures, eliminating heat demand typical of many anaerobic processes, and producing methane as a beneficial byproduct. The assumed temperature of influent mixed wastewater and graywater is 23°C and 30°C, respectively. Graywater temperature was calculated as the median of values reported in literature reviews of graywater treatment and reuse studies [9–12]. The mixed wastewater temperature is typical of medium strength domestic wastewater [13]. The treatment process includes an anaerobic continuously stirred tank reactor (CSTR) and additional tanks to house the submerged membranes.

Table S5 lists basic design and operational parameters of the mixed wastewater and graywater AnMBRs. The AnMBR has a 60 day solids retention time (SRT). Dimensions of the CSTR were estimated based on the influent flowrate and a hydraulic retention time (HRT) of eight hours. Membrane area and material requirements were determined based on wastewater flowrate and the design membrane flux of 7.5 LMH.

97 Inputs of concrete and steel needed for tank construction were estimated based on the presented unit 98 dimensions. Electricity consumption of the AnMBR includes sludge pumping, operation of CSTR mixers, 99 permeate pumping, and biogas recirculation (i.e., sparging) for membrane cleaning. The baseline scenario 100 models continuous biogas sparging to ensure consistent performance, while intermittent sparging is 101 assessed in a sensitivity analysis [14]. Sodium hypochlorite is used for periodic chemical cleaning of the 102 membrane, with the same chemical requirement as discussed for the AeMBR.

System Component	Parameter	Mixed Wastewater		Units
Anaerobic Reactor	Solids retention time ^a	60)	days
	Hydraulic retention time	8		hours
	Mixed liquor suspended solids	12,0	000	mg/L
	COD/BOD removal	90%		of influent concentration
	Tank diameter	4	3.5	m
	Tank height	4.8 4		m

Table S5. AnMBR Design Values

System Component	Parameter	Mixed Wastewater	Graywater	Units
	Mixing power	0.84	0.53	HP
	Biogas production	14	6.3	m³/day
	Biogas recirculation ^a	120	76	m³/hour
	Flux ^a	7.	5	LMH
	Membrane area, operational	530	340	m ²
Membrane	Membrane area, total	790	500	m ²
Tank	Tank depth, per train	3.7		m
	Tank length, per train ^c	0.73	0.47	m
	Tank width, per train ^c	2.	7	m

Table Acronyms: BOD – biochemical oxygen demand, COD – chemical oxygen demand, LMH – liters per m² per hour

Table S5. AnMBR Design Values

104 ° [15,16]

105 106

107 Anaerobic processes generate methane which is trapped under the floating cover. The LCA quantifies 108 the benefit of avoiding natural gas consumption, assuming that generated biogas is used as an alternative 109 heat source for the building's hot water supply. Biogas production was estimated as a function of COD 110 removal, assuming that 90% of influent COD is removed [15,17,18]. Methane is produced at a rate of 0.25 111 and 0.26 m³ CH₄ per kg of COD removed in the 23^oC and 30^oC reactors, respectively [19]. Five percent of 112 produced methane was assumed to be lost through gaps in the floating cover, contributing process GHG 113 emissions [20]. Neither nitrogen or phosphorus are removed from wastewater in anaerobic reactors [8]. All 114 influent TKN was assumed to be released in the form of ammonia. Membrane processes produce effluent 115 with less than 2 mg/L of total suspended solids [21].

116 Downflow-hanging sponge (DHS) and zeolite adsorption post-treatment processes are necessary to 117 ensure that treated effluent meets the criteria for unrestricted urban reuse. The DHS reactors recover or 118 destroy methane dissolved in AnMBR permeate and have the additional benefit of removing 55% and 73% 119 of COD and BOD remaining the wastewater. Performance of the two-stage DHS system was based on the 120 research of [22]. Methane removed from permeate in the stage-one reactor is recovered, contributing 121 additional avoided natural gas benefits. Overall, the DHS reactor recovers or destroys 99.3% of permeate 122 methane. Methane remaining in the treated wastewater following the DHS reactor was assumed to be off-123 gassed contributing further process GHG emissions. Electricity consumption of the DHS reactors includes 124 wastewater pumping and blower operation. Steel, concrete, and piping material requirements were 125 estimated based on unit dimensions.

126 A zeolite adsorption system is used to remove ammonium from the wastewater to allow establishment 127 of a free chlorine residual without excessive sodium NaOCl demand. Ammonium adsorbs to zeolite in a 128 packed bed reactor, which is then flushed with sodium chloride (NaCl) facilitating reuse of zeolite media. 129 The resulting nitrogen rich brine solution is disposed of via deepwater injection, requiring 1.8 kWh of 130 electricity per cubic meter of injected brine. Deng et al. [23] indicates that such a system should be able to 131 remove greater than 95% of influent ammonium. The system was designed assuming an initial zeolite 132 adsorption capacity of 3.1 mg NH4-N per gram of zeolite media, which maintains sufficient adsorption 133 capacity throughout nine regeneration cycles. Average adsorption capacity across the nine regeneration 134 cycles is 2.4 mg NH₄-N per gram zeolite. Sodium hydroxide (NaOH) is also included in the LCI to raise the 135 pH of the regeneration fluid, considerably reducing the NaCl requirement [23].

The RVFW is a wetland based treatment process that uses active and continuous wastewater recirculation [24,25] to minimize land area requirements, making the process suitable for urban environments. Clarified wastewater is circulated over the surface of wetland planters. Wastewater filters downward through a 0.6 meter thick media bed consisting of crushed limestone and gravel. The media bed is suspended 0.5 meters above a concrete collection tank, into which wastewater falls, facilitating aeration. From the collection tank, water is recirculated to the surface.

Wastewater recirculation was determined based on results of a pilot-scale system (Gross et al. 2007), which reports that 8-12 hours of recirculation were sufficient to reach steady-state BOD and TSS removal when recirculating 300 liters of wastewater over one square meter of wetland area. This corresponds to treatment of 0.6 cubic meters of wastewater per square of wetland area per day. Sklarz et al. [25] identified an optimal recirculation rate of 1.5 meters (depth) per hour over the entire wetland surface. On average the system was assumed to remove 94% and 98% of influent TSS and BOD, respectively [24–27]

149Process GHG emissions of nitrous oxide were estimated based on an emission factor of 0.006 kg150N2O/m2 wetland area per year [28]. Methane emissions were estimated using the IPCC method and the151average methane correction factor specified for vertical subsurface flow constructed wetlands [7].

Pump electricity requirements were estimated using the identified recirculation rate and estimated headloss in the distribution piping. Steel grating is included in the wetland design to suspend the media bed above the concrete collection basin. High-density polyethylene piping is used for wastewater distribution.

156 S1.6 Disinfection Processes

157 All treatment systems use chlorination and UV disinfection processes while the RVFW treating mixed 158 wastewater requires a third disinfection process. Ozone was selected for its effectiveness against both viral 159 and protozoan pathogens and the desire for a second barrier of protection against protozoa.

Liquid sodium hypochlorite (NaOCl) is used as the chemical disinfectant. Development of the result LCI value considers instantaneous chlorine demand due to ammonia and total organic carbon (TOC) present in the treated wastewater as well as chlorine decay in the contact basin. Electricity consumption was estimated for operation of the peristaltic pump.

164 The UV disinfectant dose is based on delivered UV intensity considering nominal UV intensity, 165 transmittance of the quartz sleeve, bulb age, and bulb output in the UV spectrum. Commercially available 166 Sanitron® UV units were specified based on the required delivered dose necessary to meet LRTs. 167 Manufacturer specifications provide estimates of electricity consumption [29].

Ozone is produced from liquid oxygen in a Primozone® GM series ozone generator. Manufacturer specifications were used to develop LCI quantities for liquid oxygen and electricity consumption [30]. Ozone is injected into the effluent stream at the beginning of a three basin contact chamber. Instantaneous ozone demand is satisfied in the first chamber and is assessed on the basis of residual COD. Average ozone concentration in the second two chambers is used as the basis of effective ozone dose, considering ozone decay. Ozone decay was assessed assuming first-order decay and an average ozone half-life of 20 minutes [31].

175 S1.7 Thermal recovery

The analysis also looked at scenarios where the AeMBR treatment process was paired with a thermal recovery system. A heat pump is used to extract thermal energy from influent wastewater, transferring that thermal energy to the building's hot water system, and avoiding natural gas consumption. Wastewater and graywater enter a heat pump at 23°C and 30°C, respectively. A coefficient of performance (COP) is used to express the efficiency of the heat recovery process. Combined COPs, which consider both compressor and pump operation, of 2.5 and 2.6 were used for mixed wastewater and graywater treatment systems, respectively [32]. Estimates of obtainable thermal power are based on the temperature difference between wastewater as it enters and exits the heat pump, which was estimated to be 4.2°C and 4.3°C for mixed wastewater and graywater treatment systems, respectively [32]. Total thermal recovery is the sum of obtainable thermal power plus the fraction of compressor power transferred to the working fluid less internal loss in the heat pump [33]. The thermal recovery LCI also includes electricity consumption of the pump and compressor, fugitive emissions of the R-134a refrigerant used in the heat pump [34], and avoided natural gas consumption.

189 S1.8 Collection and Distribution Systems

190 Distribution of the recycled water for NPR requires its own piping system. Graywater recycling also 191 requires a separate collection system. The collection and distribution systems were modelled as polyvinyl 192 chloride (PVC) for the main vertical and zone risers, while crosslinked polyethylene (PEX) was modelled 193 for in-unit main and distribution piping [35]. Recycled water was assumed to displace potable water 194 treatment and distribution, with a 20% loss rate of water modelled during centralized treatment and 195 distribution [36]. Displaced energy requirements from potable water distribution were based on the 196 national median value from the review of literature sources in Xue et al. [37]. Although other background 197 inventories were based on conditions reflective of the San Francisco region, the city's unique water supply 198 system is gravity fed and distribution energy is anomalously low [38]. Net pumping energy for delivery of 199 onsite recycled water was calculated as the difference between gross onsite pumping requirements and 200 energy for potable water vertical pumping after taking into account the distribution pressure of the potable 201 water supply [39].

202 S1.9 System Scaling

To adapt LCIs to different treatment capacities in a way that maintained original design characteristics and isolated the effects of treatment capacity on system cost and environmental impact, LCI components of individual unit processes were scaled in ways that maintained original design specifications (e.g., HRT, coxygen transfer rates, chemical dosage rates, etc.) but updated applicable dimensional line items (e.g., concrete, steel, energy, etc.). Tables S6 through S8 provide detail as to how individual LCI components of AeMBR, AnMBR and RVF systems were scaled. Impacts and cost of thermal recovery units were held constant per unit of flow. Final LCIs are provided in Tables S9 through S14.

Table S6. Scaling approach for AeMBR LCI components

			Constant/	
Unit Process	Parts Description	Unit	Variablea	Scaling Approach
Fine Screen	Electricity	kWh	Variable	Energy use equation from [40]
Fine Screen	Screening Disposal	kg	Constant	Constant fraction of flow
Fine Screen	Steel	kg	Constant	Constant screen area per unit of flow
Equalization	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Equalization	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Equalization	Electricity	kWh	Variable	Pumping energy varied as function of flow, adherence to original design equations
AeMBR	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
AeMBR	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
AeMBR	Polyvinyl Fluoride	kg	Constant	Constant membrane area per unit of flow
AeMBR	Sodium Hypochlorite	kg	Constant	Constant dose rate
AeMBR	Electricity	kwh	Variable	Pumping energy varied as function of flow, adherence to original design equations
AeMBR	Methane	kg	Constant	Constant fraction of flow
AeMBR	N2O	kg	Constant	Constant fraction of flow
AeMBR	Sludge	m ³	Constant	Constant fraction of flow
UV	Electricity	kWh	Constant	Constant dose rate
UV	Steel	kg	Constant	Number of units increased/decreased to maintain constant UV dose
Chlorination	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Chlorination	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Chlorination	Electricity	kwh	Constant	Constant electricity per unit of flow
Chlorination	Sodium Hypochlorite	kg	Constant	Constant dose rate
Storage	HDPE	kg	Constant	Number of units increased/decreased to maintain constant storage capacity

^aConstant refers to line items that are constant per unit of flow treated. Examples include chemical dose rates, such as 3 mg of NaOCl per liter of water treated.

			Constant/	
Unit Process	Parts Description	Unit	Variable ^a	Scaling Approach
Fine Screen	Electricity	kWh	Variable	Energy use equation from [40]
Fine Screen	Screening Disposal	kg	Constant	Constant fraction of flow
Fine Screen	Steel	kg	Constant	Constant screen area per unit of flow
Equalization	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Equalization	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Equalization	Electricity	kWh	Variable	Pumping energy varied as function of flow, adherence to original design equations
AnMBR	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
AnMBR	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
AnMBR	HDPE	kg	Variable	Updated to account for new basin dimensions
AnMBR	Polyvinyl Fluoride	kg	Constant	Constant membrane area per unit of flow
AnMBR	Sodium Hypochlorite	kg	Constant	Constant dose rate
AnMBR	Electricity	kwh	Variable	Pumping energy varied as function of flow, adherence to original design equations
AnMBR	Methane	kg	Constant	Constant fraction of flow
AnMBR	Sludge	m ³	Constant	Constant fraction of flow
AnMBR	Biogas Recovery	m ³	Constant	Constant fraction of flow
DHS	Electricity	kWh	Constant	Constant per unit of flow
DHS	Methane	kg	Constant	Constant per unit of flow
DHS	Natural Gas	m ³	Constant	Constant per unit of flow
DHS	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
DHS	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
DHS	HDPE	kg	Variable	Updated to account for new basin dimensions
Zeolite	Zeolite	kg	Constant	Constant per unit of flow
Zeolite	NaCl (99+%)	kg	Constant	Constant per unit of flow
Zeolite	NaOH	kg	Constant	Constant per unit of flow

Table S7. Scaling approach for AnMBR LCI components

Unit Process	Parts Description	Unit	Constant/ Variableª	Scaling Approach	
Zeolite	Electricity	kWh	Variable	Scaled according to head associated with modified reaction chamber	
Zeolite	Disposal, Brine Injection	m ³	Constant	Constant fraction of flow	
UV	Electricity	kWh	Constant	Constant dose rate	
UV	Steel	kg	Constant	Number of units increased/decreased to maintain constant UV dose	
Chlorination	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.	
Chlorination	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.	
Chlorination	Electricity	kwh	Constant	Constant electricity per unit of flow	
Chlorination	Sodium Hypochlorite	kg	Constant	Constant dose rate	
Storage	HDPE	kg	Constant	Number of units increased/decreased to maintain constant storage capacity	

Table S7. Scaling approach for AnMBR LCI components

^aConstant refers to line items that are constant per unit of flow treated. Examples include chemical dose rates, such as 3 mg of NaOCl per liter of water treated.

Table S8. Scaling approach for RVFW LCI components

			Constant/	t/	
Unit Process	Parts Description	Unit	Variable ^a	Scaling Approach	
Fine Screen	Electricity	kWh	Variable	Energy use equation from [40]	
Fine Screen	Screening Disposal	kg	Constant	Constant fraction of flow	
Fine Screen	Steel	kg	Constant	Constant screen area per unit of flow	
Clarifier	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.	
Clarifier	Sludge Disposal	m ³	Constant	Constant fraction of flow	
Clarifier	Electricity	kWh	Constant	Constant per unit of flow	
Equalization	Concrete	m ³	Constant	Basin volume scaled to maintain HRT and depth to area ratio.	
Equalization	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.	
Equalization	Electricity	kWh	Variable	Pumping energy varied as function of flow, adherence to original design equations	

			Constant/	
Unit Process	Parts Description	Unit	Variable ^a	Scaling Approach
RVFW	Concrete	m ³	Variable	Number of basins varied to maintain constant loading rate
RVFW	Steel - Pumps	kg	Constant	Pump size held constant, number of pumps changed based on flow
RVFW	Steel - Grating	kg	Constant	Number of basins varied to maintain constant loading rate
RVFW	Steel - Rebar	kg	Variable	Number of basins varied to maintain constant loading rate
RVFW	HDPE	kg	Variable	Number of basins varied to maintain constant loading rate
RVFW	Electricity	kwh	Variable	Varied to account for new basin dimensions
RVFW	Lower Media, Crushed Limestone	kg	Variable	Number of basins varied to maintain constant loading rate
RVFW	Middle Media, Gravel	kg	Variable	Number of basins varied to maintain constant loading rate
RVFW	Organic Cover, Wood Chips	kg	Variable	Number of basins varied to maintain constant loading rate
RVFW	Methane	kg	Constant	Constant fraction of flow
RVFW	CO ₂ , biogenic	kg	Constant	Constant fraction of flow
RVFW	N2O	kg	Constant	Constant fraction of flow
UV	Electricity	kWh	Constant	Constant dose rate
UV	Steel	kg	Constant	Number of units increased/decreased to maintain constant UV dose
Chlorination	Concrete	m ³	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Chlorination	Steel	kg	Variable	Basin volume scaled to maintain HRT and depth to area ratio.
Chlorination	Electricity	kwh	Constant	Constant electricity per unit of flow
Chlorination	Sodium Hypochlorite	kg	Constant	Constant dose rate
Storage	Electricity	kWh	Constant	Constant electricity per unit of flow
Storage	HDPE	kg	Constant	Number of units increased/decreased to maintain constant storage capacity

_

Table S8. Scaling approach for RVFW LCI components

^aConstant refers to line items that are constant per unit of flow treated. Examples include chemical dose rates, such as 3 mg of NaOCl per liter of water treated.

214 *S1.10 Life cycle inventories*

215 Resulting LCIs for each treatment system are provided in Table S9-S11.

216 Table S9. Graywater AeMBR LCI.

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³
		Partial	Full	Excess	treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
Centralized	Solids and Residual				
Wastewater	Blackwater	1.40	0.919	0.593	m ³
Potable Water	Avoided	1.00	1.00	0.830	m ³
	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	4.07E-3	4.07E-3	4.07E-3	kg
	Steel	2.14E-3	1.65E-3	1.34E-3	kg
	Concrete	1.82E-5	1.62E-5	1.48E-5	m ³
Equalization	Steel	1.08E-3	9.64E-4	8.81E-4	kg
	Electricity	0.095	0.095	0.095	kWh
	Concrete	2.94E-5	2.59E-5	2.36E-5	m ³
	Steel	1.87E-3	1.63E-3	1.47E-3	kg
	Polyvinyl Fluoride	5.92E-4	5.92E-4	5.92E-4	kg
	Sodium				
AeMBR	Hypochlorite	7.19E-4	7.19E-4	7.19E-4	kg
	Electricity	0.428	0.428	0.428	kwh
	Methane	4.86E-3	4.86E-3	4.86E-3	kg
	N ₂ O	5.01E-5	5.01E-5	5.01E-5	kg
	Sludge	8.32E-3	8.32E-3	8.32E-3	m ³
T 15 7	Electricity	0.017	0.017	0.017	kWh
UV	Steel	3.42E-5	3.42E-5	3.42E-5	kg
	Concrete	1.92E-6	1.73E-6	1.59E-6	m ³
	Steel	5.18E-5	4.64E-5	4.26E-5	kg
Chlorination	Electricity	0.081	0.081	0.081	kwh
	Sodium				
	Hypochlorite	3.20E-3	3.20E-3	3.20E-3	kg NaOCl
Storage	HDPE	7.21E-4	1.11E-3	9.01E-4	kg
	Electricity	0.100	0.100	0.100	kWh
Dogualad Watar	PEX pipe, 1/2"	3.66E-4	3.66E-4	3.66E-4	m
Delivery	PEX pipe, 1"	2.40E-3	2.40E-3	2.40E-3	m
Denvery	PVC pipe, 1"	8.53E-4	8.53E-4	8.53E-4	m
	PVC pipe, 2"	2.79E-4	2.79E-4	2.79E-4	m
	Electricity	4.10	4.10	4.10	kWh
Thormal	Electricity,				
Recoverva	Avoided	7.52	7.52	7.52	kWh
Recovery	Natural Gas,				
	Avoided	0.901	0.901	0.901	m ³

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³
		Partial	Full	Excess	treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
	R-134a, emission to				
	air	1.56E-5	1.56E-5	1.56E-5	kg

217 ^aOptional unit process.

218 Table S10. Mixed Wastewater AeMBR

		Scenario 1	Scenario 2	Scenario 3	Units (per
		Partial	Full	Excess	m ³ treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	wastewater)
Centralized	Treatment of Offsite				
Wastewater	Water	1.40	0.919	0.593	m ³
Potable Water	Avoided	1.00	1.00	0.830	m ³
	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	9.54E-3	9.54E-3	9.54E-3	kg
	Steel	2.14E-3	1.65E-3	1.34E-3	kg
	Concrete	1.82E-5	1.62E-5	1.48E-5	m ³
Equalization	Steel	1.08E-3	9.64E-4	8.81E-4	kg
	Electricity	0.095	0.095	0.095	kWh
	Concrete	2.94E-5	2.59E-5	2.36E-5	m ³
	Steel	1.87E-3	1.63E-3	1.47E-3	kg
	Polyvinyl Fluoride	5.92E-4	5.92E-4	5.92E-4	kg
	Sodium Hypochlorite	7.19E-4	7.19E-4	7.19E-4	kg
AEMBK	Electricity	0.622	0.622	0.622	kwh
	Methane	5.94E-3	5.94E-3	5.94E-3	kg
	N2O	2.03E-4	2.03E-4	2.03E-4	kg
	Sludge	0.014	0.014	0.014	m ³
LIV	Electricity	0.014	0.014	0.014	kWh
	Steel	3.15E-5	3.15E-5	3.15E-5	kg
	Concrete	1.86E-6	1.68E-6	1.55E-6	m ³
Chlorination	Steel	5.08E-5	4.56E-5	4.19E-5	kg
Chlorination	Electricity	0.081	0.081	0.081	kwh
	Sodium Hypochlorite	3.60E-3	3.60E-3	3.60E-3	kg NaOCl
Storage	HDPE	7.21E-4	1.11E-3	9.01E-4	kg
	Electricity	0.100	0.100	0.100	kWh
Degraled Water	PEX pipe, 1/2"	3.66E-4	3.66E-4	3.66E-4	m
Dolivory	PEX pipe, 1"	2.40E-3	2.40E-3	2.40E-3	m
Denvery	PVC pipe, 1"	8.53E-4	8.53E-4	8.53E-4	m
	PVC pipe, 2"	2.79E-4	2.79E-4	2.79E-4	m
Thermal	Electricity	4.21	4.21	4.21	kWh
Recovery ^a	Electricity, Avoided	7.40	7.40	7.40	kWh

		Scenario 1	Scenario 2	Scenario 3	Units (per
		Partial	Full	Excess	m ³ treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	wastewater)
	Natural Gas,				
	Avoided	0.887	0.887	0.887	m ³
	R-134a, emission to				
	air	9.98E-6	1.00	2.00	kg

219 ^aOptional unit process

Table S11. Graywater AnMBR LCI.

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³
		Partial	Full	Excess	treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
Centralized	Treatment of Offsite				
Wastewater	Water	1.40	0.919	0.593	m ³
Potable Water	Avoided	1.00	1.00	0.830	m ³
	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	4.07E-3	4.07E-3	4.07E-3	kg
	Steel	2.14E-3	1.65E-3	1.34E-3	kg
	Concrete	1.82E-5	1.62E-5	1.48E-5	m ³
Equalization	Steel	1.08E-3	9.64E-4	8.81E-4	kg
	Electricity	0.095	0.095	0.095	kWh
	Concrete	1.92E-6	1.73E-6	1.59E-6	m ³
Chlorination	Steel	5.18E-5	4.64E-5	4.26E-5	kg
Chiorination	Electricity	0.081	0.081	0.081	kwh
	Sodium Hypochlorite	5.79E-3	5.79E-3	5.79E-3	kg NaOCl
	Concrete	6.53E-5	5.58E-5	4.97E-5	m ³
	Steel	3.56E-3	3.01E-3	2.66E-3	kg
	HDPE	1.56E-4	1.24E-4	1.04E-4	kg
	Polyvinyl Fluoride	1.58E-3	1.58E-3	1.58E-3	kg
AnMBR	Sodium Hypochlorite	1.92E-3	1.92E-3	1.92E-3	kg
	Electricity	0.726	0.749	0.768	kwh
	Electricity Sensitivity	0.149	0.150	0.152	kwh
	Methane	2.42E-3	2.42E-3	2.42E-3	kg
	Sludge Disposal	7.25E-3	7.25E-3	7.25E-3	m ³
Biogas Recovery	Natural Gas	0.045	0.045	0.045	m ³
	Electricity	0.035	0.035	0.035	kWh
	Methane	1.29E-4	1.29E-4	1.29E-4	kg
DUC	Natural Gas	0.013	0.013	0.013	m ³
	Concrete	3.07E-5	2.75E-5	2.53E-5	m ³
	Steel	1.40E-3	1.28E-3	1.19E-3	kg
	HDPE	3.43E-5	2.76E-5	2.33E-5	kg
Zaalita	Zeolite	0.112	0.112	0.112	kg
Zeonte	NaCl (99+%)	0.055	0.055	0.055	kg

Table S11. Graywater AnMBR LCI.

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³
		Partial	Full	Excess	treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
	NaOH	0.200	0.200	0.200	kg
	Electricity	0.025	0.029	0.034	kWh
	Disposal, Brine				
	Injection	5.51E-3	5.51E-3	5.51E-3	m ³
I IV	Electricity	0.017	0.017	0.017	kWh
υv	Steel	3.42E-5	3.42E-5	3.42E-5	kg
Storage	HDPE	7.21E-4	1.11E-3	9.01E-4	kg
	Electricity	0.100	0.100	0.083	kWh
	PEX pipe, 1/2"	3.66E-4	3.66E-4	3.66E-4	m
Recycled Water	PEX pipe, 1"	2.40E-3	2.40E-3	2.40E-3	m
Denvery	PVC pipe, 1"	8.53E-4	8.53E-4	8.53E-4	m
	PVC pipe, 2"	2.79E-4	2.79E-4	2.79E-4	m

220

Table S12. Mixed Wastewater AnMBR LCI

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³
		Partial	Full	Excess	treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	wastewater)
Controlized Westernator	Treatment of Offsite				
Centralized wastewater	Water	1.40	0.919	0.593	m ³
Potable Water	Avoided	1.00	1.00	0.830	m ³
	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	9.54E-3	9.54E-3	9.54E-3	kg
	Steel	2.14E-3	1.65E-3	1.34E-3	kg
	Concrete	1.82E-5	1.62E-5	1.48E-5	m ³
Equalization	Steel	1.08E-3	9.64E-4	8.81E-4	kg
	Electricity	0.095	0.095	0.095	kWh
	Concrete	1.95E-6	1.75E-6	1.62E-6	m ³
Chlorination	Steel	5.25E-5	4.71E-5	4.32E-5	kg
Chiomadon	Electricity	0.081	0.081	0.081	kwh
	Sodium Hypochlorite	0.012	0.012	0.012	kg NaOCl
	Concrete	6.53E-5	5.58E-5	4.97E-5	m ³
	Steel	3.56E-3	3.01E-3	2.66E-3	kg
	HDPE	2.69E-4	2.12E-4	1.77E-4	kg
AnMBR	Polyvinyl Fluoride	1.58E-3	1.58E-3	1.58E-3	kg
	Sodium Hypochlorite	1.92E-3	1.92E-3	1.92E-3	kg
	Electricity	0.715	0.737	0.755	kwh
	Electricity Sensitivity	0.148	0.150	0.151	kwh

Unit Process	Inventory Item	Scenario 1 Partial Treatment	Scenario 2 Full Treatment	Scenario 3 Excess Treatment	Units (per m ³ treated wastewater)
	Methane	3.49E-3	3.49E-3	3.49E-3	kg
	Sludge Disposal	7.25E-3	7.25E-3	7.25E-3	m ³
	Natural Gas	0.070	0.070	0.070	m ³
	Electricity	0.035	0.035	0.035	kWh
	Methane	1.46E-4	1.46E-4	1.46E-4	kg
DUC	Natural Gas	0.014	0.014	0.014	m ³
DH3	Concrete	3.07E-5	2.75E-5	2.53E-5	m ³
	Steel	1.40E-3	1.28E-3	1.19E-3	kg
	HDPE	6.35E-5	5.16E-5	4.40E-5	kg
	Zeolite	0.360	0.360	0.360	kg
	NaCl (99+%)	0.227	0.227	0.227	kg
Zeolite	NaOH	0.200	0.200	0.200	kg
Zeonie	Electricity	0.024	0.029	0.034	kWh
	Disposal, Brine	0.022	0.022	0.022	
	Injection	0.023	0.023	0.023	m ³
UV	Electricity	0.034	0.026	0.021	kWh
	Steel	3.15E-5	3.15E-5	3.15E-5	kg
Storage	HDPE	7.21E-4	1.11E-3	9.01E-4	kg
	Electricity	0.100	0.100	0.083	kWh
Degraled Water	PEX pipe, 1/2"	1.15E-3	1.15E-3	1.15E-3	m
Delivery	PEX pipe, 1"	7.56E-4	7.56E-4	7.56E-4	m
Denvery	PVC pipe, 1"	2.68E-4	2.68E-4	2.68E-4	m
	PVC pipe, 2"	8.78E-5	8.78E-5	8.78E-5	m

Table S12. Mixed Wastewater AnMBR LCI

221

Table S13. Graywater RVFW LCI.

		Scenario 1	Scenario 2	Scenario 3	Units (per
		Partial	Full	Excess	m ³ treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
Controlized Westerwater	Treatment of				
Centralized Wastewater	Offsite Water	1.40	0.919	0.593	m ³
Potable Water	Avoided	1.00	1.00	0.830	m ³
	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	4.08E-3	4.08E-3	4.08E-3	kg
	Steel	2.14E-3	1.65E-3	1.34E-3	kg
Chlaringtian	Concrete	1.93E-6	1.74E-6	1.60E-6	m ³
Chiorination	Steel	6.85E-5	5.27E-5	4.28E-5	kg

		Scenario 1	Scenario 2	Scenario 3	Units (per
		Partial	Full	Excess	m ³ treated
Unit Process	Inventory Item	Treatment	Treatment	Treatment	graywater)
	Electricity	0.081	0.081	0.081	kwh
	Sodium				
	Hypochlorite	1.50E-3	1.50E-3	1.50E-3	kg NaOCl
	Concrete	7.45E-5	5.73E-5	9.32E-5	m ³
	Steel	4.99E-5	3.84E-5	6.24E-5	kg
	Steel	7.86E-3	7.86E-3	7.86E-3	kg
	Steel	2.13E-3	1.64E-3	2.67E-3	kg
	HDPE	6.66E-4	5.12E-4	8.32E-4	kg
	Electricity	0.338	0.260	0.423	kwh
	Lower Media,				
	Crushed				
K V F VV	Limestone	0.017	0.013	0.022	kg
	Middle Media,				
	Gravel	0.061	0.047	0.076	kg
	Organic Cover,				
	Wood Chips	0.065	0.050	0.081	kg
	Methane	7.45E-4	7.45E-4	7.45E-4	kg
	CO ₂ , biogenic	0.015	0.012	0.019	kg
	N2O	2.61E-5	2.00E-5	3.26E-5	kg
	Steel	6.07E-3	4.67E-3	3.80E-3	kg
Clarifier	Sludge Disposal	7.32E-3	7.32E-3	7.32E-3	m ³
	Electricity	6.41E-4	6.41E-4	6.41E-4	kWh
	Concrete	1.74E-5	1.80E-5	1.86E-5	m ³
F 1. (*	Steel	4.98E-4	5.16E-4	5.34E-4	kg
Equalization	HPDE	7.23E-5	5.56E-5	7.92E-5	kg
	Electricity	0.197	0.197	0.197	kWh
T TT 7	Electricity	0.056	0.056	0.056	kWh
UV	Steel	7.88E-5	6.06E-5	4.92E-5	kg
C I	HDPE	2.16E-3	1.66E-3	1.80E-3	kg
Storage	Electricity	0.045	0.045	0.045	kWh
	Electricity	0.100	0.100	0.083	kWh
	PEX pipe, 1/2"	3.66E-4	3.66E-4	3.66E-4	m
Kecycled Water	PEX pipe, 1"	2.40E-3	2.40E-3	2.40E-3	m
Denvery	PVC pipe, 1"	8.53E-4	8.53E-4	8.53E-4	m
	PVC pipe, 2"	2.79E-4	2.79E-4	2.79E-4	m

223 Table S14. Mixed Wastewater RVFW LCI

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³ treated
Unit Process	Inventory Item	Partial	Full	Excess	wastewater)
		Treatment	Treatment	Treatment	wastewater
Centralized	Treatment of Offsite	1.4	0.010	0 502	m ³
Wastewater	Water	1.4	0.919	0.595	III°
Potable Water	Avoided	1	1	0.83	m ³

		Scenario 1	Scenario 2	Scenario 3	Units (per m ³ treated
Unit Process	Inventory Item	Partial	Full	Excess	wastewater)
		Treatment	Treatment	Treatment	1 1 1 1 1
F : 0	Electricity	0.137	0.119	0.107	kWh
Fine Screen	Screening Disposal	9.54E-03	9.54E-03	9.54E-03	kg
	Steel	2.14E-03	1.65E-03	1.34E-03	kg
	Concrete	1.92E-06	1.73E-06	1.60E-06	m ³
Chlorination	Steel	5.15E-05	4.63E-05	4.25E-05	kg
	Electricity	0.081	0.081	0.081	kwh
	Sodium Hypochlorite	1.57E-03	1.57E-03	1.57E-03	kg NaOCl
	Concrete	7.35E-05	5.65E-05	9.18E-05	m ³
	Steel	1.50E-04	1.15E-04	9.36E-05	kg
	Steel	7.86E-03	7.86E-03	7.86E-03	kg
	Steel	2.10E-03	1.62E-03	2.63E-03	kg
	HDPE	6.66E-04	5.12E-04	8.32E-04	kg
	Electricity	0.338	0.26	0.423	kwh
RVFW	Lower Media, Crushed Limestone	0.017	0.013	0.022	kg
	Middle Media, Gravel	0.061	0.047	0.076	kg
	Organic Cover, Wood Chips	0.065	0.05	0.081	kg
	Methane	9.05E-04	9.05E-04	9.05E-04	kg
	CO ₂ , biogenic	0.015	0.012	0.019	kg
	N2O	2.61E-05	2.00E-05	3.26E-05	kg
	Steel	9.11E-03	7.01E-03	5.69E-03	kg
Clarifier	Sludge Disposal	0.017	0.017	0.017	m ³
	Electricity	1.50E-03	1.50E-03	1.50E-03	kWh
	Concrete	1.36E-05	1.40E-05	1.44E-05	m ³
Empliestion	Steel	3.89E-04	4.00E-04	4.12E-04	kg
Equalization	HPDE	7.15E-05	5.50E-05	7.82E-05	kg
	Electricity	0.197	0.197	0.197	kWh
1117	Electricity	0.089	0.068	0.056	kWh
UV	Steel	7.88E-05	6.06E-05	4.92E-05	kg
<i>C</i> 1	HDPE	2.89E-03	2.77E-03	2.71E-03	kg
Storage	Electricity	0.045	0.045	0.045	kWh
	Electricity	0.21	0.21	0.21	kWh
Ozone	Oxygen	0.131	0.131	0.131	kg
	Electricity	0.1	0.1	0.083	kWh
	PEX pipe, 1/2"	1.15E-03	1.15E-03	1.15E-03	m
Recycled Water	PEX pipe, 1"	7.56E-04	7.56E-04	7.56E-04	m
Denvery	PVC pipe, 1"	2.68E-04	2.68E-04	2.68E-04	m
	PVC pipe, 2"	8.78E-05	8.78E-05	8.78E-05	m

225 S2. Water Use Scenarios

Indoor flows were defined following [35] using data that reflect the implementation of water conservation efforts typical of new building construction. Residential demand is defined as 35.8 gallons per capita per day (gpcd), less than the national average of 52 gpcd [41]. Commercial demand is defined as 11.3 gpcd following [42]. Graywater generation is assumed to be 72% of residential indoor demand [41] and 37% of commercial indoor demand [43], with the remainder of each flow allocated to blackwater. These assumptions result in the onsite generation of 0.016 million gallons per day (MGD) of graywater or 0.025 MGD of mixed wastewater.

Even with water conservation efforts, non-potable demand, which is defined here as the water required for toilet flushing, laundry and outdoor irrigation, has the potential to vary depending on actual indoor water use efficiency and outdoor irrigation demand. For example, Morelli et al. [35] developed two scenarios to contrast the implementation of high efficiency fixtures and low irrigation demand with average efficiency fixtures and high irrigation demand, with resulting building-wide non-potable demands of 0.0082 MGD and 0.018 MGD, respectively. For this study, an average of the two, or 0.013 MGD, is assumed.

	Partial Treatment	artial Treatment Full Treatment	
	Treatment System	Treatment System	Treatment System
Flows within Large Building	Size < Non-potable	Size = Non-potable	Size > Non-potable
(1110 Occupants)	Demand	Demand	Demand
Non-potable Demand ^a	0.013	0.013	0.013
Graywater Generation ^b	0.016	0.016	0.016
Mixed Wastewater Generation ^b	0.025	0.025	0.025
Treatment System Size ^c	0.010	0.013	0.016
Potable Offset ^d	0.010	0.013	0.013

Table S15. Water Use Scenarios (Million Gallons per Day)

239 ^a Average of high reuse and low reuse scenarios described in [35]

240 ^b [35]

²⁴¹ ^c Treatment system size equal to 80%, 100% and 120% of non-potable demand for Scenarios 1, 2 and 3, respectively

242 d Equivalent to non-potable demand satisfied

243 S3. QMRA Methods

Details of QMRA methodology including exposure routes, use of reference pathogens and doseresponse functions, characterization of pathogen concentrations and pathogen treatment are listed in Sections S3.1-S3.4. Section S3.5 lists treatment performance (TP) of specific unit processes for the associated dose.

248 S3.1 Exposure routes

For toilet flush water and clothes washing, we assumed that 4×10⁻⁵ L of water was consumed per day for 365 days a year and 10⁻³ L per day for irrigation for 50 days a year, adopted from [44]. We also included accidental ingestion of the treated water for one day of the year for 10% of the population at a volume of 2 L, to be consistent with the exposure assumptions included in the LRT calculation [45].

253 S3.2 *Reference pathogens and dose-response*

Of the human-infectious enteric viruses, bacteria and protozoa included in [42], we narrowed the list to the dominant hazards (i.e., *Norovirus* and *Cryptosporidium* spp.). We selected commonly used dose256 response models that relate a healthy adult's dose to a probability of infection based on ingestion (see [45] 257 for more details). For Norovirus (doses in genome copies (gc)), two dose-response models were selected to 258 represent the lower- and upper-bounds of predicted risk across the range of available models. The upper-259 bound, a hypergeometric model for disaggregated viruses [46], predicts relatively high risks among the 260 available models in the relevant dose range. The lower-bound, a fractional Poisson model [47] predicts 261 similar risks as the majority of the published Norovirus dose-response models with good empirical fit to the 262 available data (reviewed in Abel et al. [48]). For Cryptosporidium spp. (doses in oocysts), we adopted an 263 exponential model based on the U.S. EPA Long Term 2 Enhanced Surface Water Treatment Rule (LT2) 264 Economic Analysis [49] and a fractional Poisson model [47], which results in risks that are much greater 265 than previously predicted in the LT2. LRTs from the guidance document (Table 1) are based primarily on 266 the lower-bound dose-response for Norovirus and the upper-bound for Cryptosporidium (Sharvelle et al., 267 2017).

268 S3.3 Characterization of pathogens in waters

We adopted previously simulated onsite graywater and wastewater pathogen concentrations [50], which used an epidemiology-based approach to describe distributions of pathogen concentrations. The epidemiological approach used data describing population illness rates (as a surrogate for infection) and pathogen shedding characteristics during an infection.

The mixed-use building (with a 1,100-person collection) was modeled using the pathogen concentration simulations from a reference 1,000-person residential building collection system (described in detail in [50]). This simplification was made since most of the collected water in the mixed-use system was from residential use and the difference in population size was small between the reference system and the mixed-use systems.

278 S3.4 Pathogen treatment

To provide a realistic estimate of risk, we accounted for variability in treatment performance for the MBR and ozone systems, for which pathogen (or surrogate) monitoring data was available (see Tables S16– 18 for TP characterizations). Chlorine disinfection performance was set to the LRVs in Table S3 based on the available performance data which showed minimal variation [51,52]. For the RVFW and UV, we did not identify performance data to characterize performance probabilistically; rather, we used the LRVs in Table S3.

285 The MBR treatment performance was modeled as normal (described in [42]) based on a review of the 286 literature on treatment performance for full scale AeMBR reclaimed water systems between 1992 and 2015 287 [53]. We did not identify performance data for the AnMBR and assumed that performance was the same. 288 For the ozone treatment performance, we adopted an inverse gaussian characterization based on 289 performance measured over the course of one year at a direct potable reuse plant [51], but we shifted the 290 mean to align with dosing requirements for non-potable treatment (while maintaining the same variance). 291 Although we did not model UV performance probabilistically, we included a sudden UV treatment 292 failure event, which has been identified previously as a potential problem for finished water quality in 293 potable reuse [51,52]. We modeled a 15-minute UV failure event (UV TP=0) during which poorly treated 294 water mixes with stored, treated water and is consumed over the course of one day. This duration was

selected based on previous work [51,52] and assumed that UV treatment failure triggers an alarm and garners a quick response in the form of a manual value close. We modelled the occurrence of a lamp or ballast failure as one event per year [51,54].. For comparison, we also separately modeled risk using the

298 LRVs in Table S3 for indoor use (excluding the irrigation).

299 S3.5 Treatment Performance

300Table S16. Variable Treatment Performance (TP) for Aerobic and Anaerobic MBRs: Mixed Wastewater and301Graywater^a

Unit Process	Virus	Protozoa	Bacteria	Dose	Dose Units
MBR	N(5.6,1) ^b	N(5.0,0.65)	n/a	n/a	n/a
Ozone	n/a	n/a	n/a	n/a	n/a
UV	0	4.0 or 0 ^c	n/a	30	mJ/cm ²
Chlorination	4	0	n/a	32	mg-min/L

^aSource: MBR [53], UV and chlorination [2]

^b Where N denotes a normal distribution with parameters (mu,sigma)

^c A LRT of 0 for 15 minutes for 1 day a year due to sudden lamp or ballast failure [51,54]

302Table S17. Variable Treatment Performance (TP) for Recirculating Vertical Flow Wetland: Mixed303Wastewater^a

Unit Process	Virus	Protozoa	Bacteria	Dose	Dose Units
RVFW	0.5	1	n/a	n/a	n/a
Ozone	Inverse Gaussian (mu=4.0, lambda= 48.7)	Inverse Gaussian (mu=2.0, lambda= 6.03)	n/a	8.3	mg-min/L
UV	1.0 or 0 ^b	4.0 or 0 ^b	n/a	55	mJ/cm ²
Chlorination	4	0	n/a	32	mg-min/L

^aSource: RVFW, UV and Chlorination Guidance [2]

^bA LRT of 0 for 15 minutes for 1 day a year due to sudden lamp or ballast failure (Pecson et al., 2017, Tng et al., 2015)

Table S18. Variable Treatment Performance (TP) for Recirculating Vertical Flow Wetland: Source-Separated
 Graywater^a

Unit Process	Virus	Protozoa	Bacteria	Dose	Dose Units
RVFW	0.5	1	n/a	n/a	n/a
Ozone	n/a	n/a	n/a	n/a	n/a
UV	2.0 or 0 ^b	4.0 or 0 ^b	n/a	95	mJ/cm ²
Chlorination	4	0	n/a	32	mg-min/L

^aSource: RVFW, UV and Chlorination [2]

306

307 S4. LCCA Methods

308 Direct cost factors listed in Table S19 were multiplied by unit process costs to estimate the cost of 309 integrating individual treatment processes within the larger wastewater treatment system. Indirect cost

- 310 factors listed in Table S20 were multiplied by the sum of unit process and direct costs to estimate the cost 311 of professional services, profit and contingency spending. Table S21 lists the estimated life span of
- 312 individual system components that determine the time of equipment replacement.

313 Table S19. Direct Cost Factors

Direct Cost Elements	Direct Cost Factor		
Mobilization	0.05		
Site Preparation	0.07		
Site Electrical	0.15		
Yard Piping	0.10		
Instrumentation and Control	0.08		

314

315 Table S20. Indirect Cost Factors

Indirect Cost Elements	Indirect Cost Factor
Miscellaneous Costs	0.05
Legal Costs	0.02
Engineering Design Fee	0.15
Inspection Costs	0.02
Contingency	0.10
Technical Services	0.02
Profit	0.15

Table S21. Estimated Lifespan of System Components

Unit Process	Component	Component Lifespan (years)
Equalization Davin	Basin	40
Equalization Basin	Floating Aerator/Mixer	15
Fine Screen	Screen Equipment	15
	Basin	40
	Blowers	15
	Diffuser Swing Arm	20
AeMBR	Diffusers	10
	Membrane	10
	Permeate Pumps	25
	Sludge Pumps	25
	Basin	40
	Blower, Biogas Recirculation	15
	Diffuser Swing Arm	20
	Diffusers	10
ANMBR	Floating Cover	40
	Gas Safety Equipment	15
	Membrane	10
	Mixer	15

Unit Process	Component	Component Lifespan (years)
	Permeate Pumps	25
	Sludge Pumps	25
	Unit Piping	50
	Blower	15
Downflow Hanging Sponge	Sponge Media	10
	Vessels	40
	Feed System	25
Zaalita Adaamatian Crastem	Vessel	40
Zeolite Adsorption System	Zeolite Regeneration System	15
	Zeolite Replacement System	15
	Basins	40
Recirculating Vertical Flow	Gravel Media	40
Wetland	Piping	50
	Pumps	25
Slant Plata Clarifian	Sludge Pump	25
Siant Flate Clariner	Unit	40
	Bulb	1
UV	Quartz Sleeve	5
	Unit	30
Chloringtion	Chlorine Pump	25
Chiormation	Contact Basin	40
	Contact Basin	40
Ozone	Monitoring Equipment	10
	Ozone Generator	10

Table S21. Estimated Lifespan of System Components

317

Equation S1 presents the equation used to estimate interest costs during construction.

319

 $I_{C} = \sum (Unit \ Process \ Costs + Direct \ Costs + Indirect \ Costs) \times T_{CP} \times \left(\frac{i_{r}}{2}\right)$

Equation S1

- 320 Where:
- 321 Ic (2016 \$) = Interest paid during construction
- 322 Unit Process Costs (2016 \$) = Total unit process equipment and installation cost
- 323 Direct Costs (2016 \$) = Total direct costs
- Indirect Costs (2014 \$) = Indirect costs, including miscellaneous items, legal costs, engineering design
 fees, inspection costs, contingency and technical services
- 326 T_{CP} = Construction period, 3 years based on CAPDETWorksTM default construction period 327 (Hydromantis, 2014)
- 328 ir = Interest rate during construction, %
- 329

330 S5. LCA Methods

Acidification potential, eutrophication potential, and particulate matter formation potential were assessed using U.S. EPA's Tool for the Reduction and Assessment of Chemical and Environmental Impacts (TRACI) impact assessment method, version 2.1 [55,56]. Results for global warming potential (GWP) 334 category are characterized using factors reported by the Intergovernmental Panel on Climate Change

(IPCC) in 2013 with a 100-year time horizon [57]. Fossil fuel depletion potential (FDP) is based on the

heating value of the fossil fuel and according to the ReCiPe impact assessment method [58]. Cumulative

energy demand (CED) and water use (WU) are inventory indicators and not representative of potential end
 impacts. CED assesses non-renewable energy extracted and renewable energy utilized. WU is calculated

- as an inventory of consumptive freshwater withdrawals which are evaporated, incorporated into products
- 340 and waste, transferred to different watersheds, or disposed into the sea after usage.

Impact/Inventory Category	Description	Unit
Acidification Potential	AP quantifies the acidifying effect of substances on their environment.	
(AP)	Important emissions leading to terrestrial acidification include sulfur	1 60
	dioxide (SO ₂), NOx and ammonia (NH ₃). Results are characterized as	kg SO2 eq
	kg SO ₂ eq according to the TRACI impact assessment method.	
Cumulative Energy	The CED indicator accounts for the total usage of non-renewable fuels	
Demand (CED)	(natural gas, petroleum, coal and nuclear) and renewable fuels (such as	
	biomass and hydro). Energy is tracked based on the higher heating	MI
	value of the fuel utilized from point of extraction, with all energy	IVIJ
	values summed together and reported on a megajoule (MJ) basis	
	(Hischier et al. 2010).	
Eutrophication	EP assesses the potential impacts from excessive loading of macro-	
Potential (EP)	nutrients to the environment and eventual deposition in freshwater and	
	marine environments. Impacts were assessed according to the TRACI	
	impact assessment method, which calculates a generic eutrophication	kg N eq
	potential impact that is not specific to either marine or freshwater	
	environments. Both nitrogen and phosphorous compounds are	
	expressed on an equivalent Nitrogen (N) basis.	
Fossil Fuel Depletion	FDP captures the consumption of fossil fuels, primarily coal, natural	
Potential (FDP)	gas and crude oil. All fuels are standardized to kg oil eq based on the	kg oil eg
	heating value of the fossil fuel, according to the ReCiPe impact	kg on eq
	assessment method.	
Global Warming	The GWP impact category represents the heat trapping capacity of	
Potential (GWP)	GHGs over a 100-year time horizon. All GHGs are characterized as kg	
	carbon dioxide equivalents (CO2 eq) according to the	kg CO2 eq
	intergovernmental panel on climate change (IPCC) 2013 5th	
	Assessment Report global warming potentials (IPCC 2013).	
Water Use (WU)	The water use indicator accounts for use of freshwater resources	
	abstracted from surface and groundwaters. Water use is an inventory	m ³ H2O
	indicator that does not reflect specifically consumptive uses.	
Particulate Matter	PMFP results in health impacts such as effects on breathing and	
Formation Potential	respiratory systems, damage to lung tissue and premature death	
(PMFP)	(Goedkoop et al. 2013). Primary pollutants (including PM2.5) and	kg PM2.5 eg
	secondary pollutants (e.g., SOx and NOx) leading to PM formation are	
	characterized here as kg PM2.5 eq based on the TRACI impact	
	assessment method.	

Table S22. LCA Metrics

Table S22. LCA Metrics

Impact/Inventory		
Category	Description	Unit
Smog Formation	SFP results determine the formation of reactive substances that cause	
Potential (SFP)	harm to human health and vegetation. Results are characterized here as	
	kg of ozone (O ₃) eq according to the TRACI impact assessment method.	kg O₃ eq
	Some key emissions leading to SFP include CO, methane (CH4), NOx,	
	NMVOCs and SOx.	

341 S6. Detailed Results

342 Tables S23 and S24 contain detailed QMRA results listing 95th percentile annual probability of infection 343 for each mixed wastewater and graywater treatment scenario for individual reference pathogens and 344 combined risk.

345

Table S23. 95th percentile annual probability of infection (ppy) for non-potable reuse including treatment 346 variability and selected failures^{a,b}

	Scenario					
Reference hazard	WW MBR	WW Wetland	GW MBR	GW Wetland		
1 Cryptosporidium low	8.1E-07	1.2E-04	2.6E-09	1.6E-05		
2 Cryptosporidium up	6.6E-06	1.0E-03	2.1E-08	1.2E-04		
3 Norovirus low	3.9E-05	4.3E-05	3.0E-07	4.4E-05		
4 Norovirus up	2.1E-02	2.4E-02	2.0E-04	2.4E-02		
Combined risk low (1,3)	4.2E-05	2.0E-04	3.2E-07	7.0E-05		
Combined risk mid-range	5.2E-05	1.1E-03	3.8E-07	2.0E-04		
(2,3)						
Combined risk up (2,4)	2.1E-02	2.6E-02	2.0E-04	2.4E-02		

347 ^a. Assumed 4×10⁻⁵ L of water consumed per day for 365 days a year; 10⁻³ L of water consumed per day for 50 days a 348 year; and 10% of the population ingesting 2 L per day for 1 day of the year

349 ^b. For combined risk, numbers in parentheses indicate the pathogen-specific risk used to calculate annual combined

350 risk, using the upper- (up) or lower- (low) bound dose-response

351 Table S24. 95th percentile annual probability of infection (ppy) for non-potable reuse using LRVs ^{a,b}

	Scenario					
Reference hazard	WW MBR	WW Wetland	GW MBR	GW Wetland		
1 Cryptosporidium low	6.9E-08	7.3E-06	3.5E-10	3.7E-06		
2 Cryptosporidium up	5.6E-07	6.0E-05	2.9E-09	3.1E-05		
3 Norovirus low	2.2E-05	6.6E-06	8.5E-08	2.8E-05		
4 Norovirus up	1.2E-02	4.1E-03	5.5E-05	1.5E-02		
Combined risk low (1,3)	2.2E-05	1.4E-05	8.5E-08	3.2E-05		
Combined risk mix (2,3)	2.2E-05	6.6E-05	8.8E-08	5.8E-05		
Combined risk up (2,4)	1.2E-02	4.2E-03	5.5E-05	1.5E-02		

352 ^a Assumed 4×10⁻⁵ L of water consumed per day for 365 days a year with 10% of the population ingesting 2 L per day

- ^b. For combined risk, numbers in parentheses indicate the pathogen-specific risk used to calculate annual combined
 risk, using the upper- (up) or lower- (low) bound dose-response risk
- 356
- Tables S25 and S26 list summary LCA results for mixed wastewater and graywater treatment systems,
 respectively.

	AeMBR		AnM	1BR			
		Electric	Natural				
Impact Category	No T.R.	T.R.	Gas T.R.	Intermittent	Continuous	RVFW	Units
Acidification Potential	-5.40E-4	-3.46E-3	9.50E-4	1.88E-3	2.43E-3	-3.30E-4	kg SO2 eq
Cumulative Energy Demand	-1.80	-32.3	5.41	-4.94	0.743	-0.441	MJ
Eutrophication Potential	4.81E-3	4.64E-3	5.09E-3	5.12E-3	5.17E-3	4.99E-3	kg N eq
Fossil Depletion Potential	-0.039	-0.464	-0.257	-0.098	-0.019	-0.024	kg oil eq
Global Warming Potential	0.054	-1.19	-0.263	0.086	0.321	-0.048	kg CO2 eq
Particulate Matter Formation Potential	-5.29E-5	-2.40E-4	8.63E-5	7.91E-5	1.20E-4	-2.35E-6	kg PM2.5 eq
Smog Formation Potential	2.77E-3	-0.055	0.036	0.079	0.090	6.29E-3	kg O₃ eq
Water Use	-1.19	-1.20	-1.19	-1.19	-1.19	-1.19	$m^3 H_2O$

Table S25. Summary LCA Results for Mixed Wastewater Treatment Syster
--

Table S26. Summary LCA Results for Graywater Treatment Systems

	AeMBR			AnN	1BR		
			Natural				
		Electric	Gas				
Impact Category	No T.R.	T.R.	T.R.	Intermittent	Continuous	RVFW	Units
Acidification Potential	-7.30E-4	-3.84E-3	6.30E-4	1.60E-4	7.20E-4	-6.00E-4	kg SO2 eq
Cumulative Energy Demand	-3.68	-36.3	2.07	-4.84	0.953	-2.84	MJ
Eutrophication Potential	4.72E-3	4.53E-3	4.99E-3	4.88E-3	4.93E-3	4.85E-3	kg N eq
Fossil Depletion Potential	-0.064	-0.518	-0.308	-0.087	-6.03E-3	-0.058	kg oil eq
Global Warming Potential	-0.101	-1.42	-0.480	-0.110	0.129	-0.163	kg CO2 eq

	AeMBR			AnM	1BR		
			Natural				
		Electric	Gas				
Impact Category	No T.R.	T.R.	T.R.	Intermittent	Continuous	RVFW	Units
Particulate Matter							lea DM.
Formation	-6.55E-5	-2.70E-4	6.60E-5	-7.73E-6	2.91E-5	-2.54E-5	Kg P 1V12.5
Potential							eq
Smog Formation	0 505 4	0.062	0.020	0.022	0.022	1 40E 2	ka Or og
Potential	-9.30E-4	-0.063	0.030	0.022	0.055	1.40E-3	kg O3 eq
Water Use	-1.19	-1.20	-1.19	-1.19	-1.19	-1.19	m ³ H ₂ O

Table S26. Summary LCA Results for Graywater Treatment Systems

			System Costs over 30 Year Lifespan							
								Centralized		
	Thermal						Energy	Treatment	Avoided	
System Type	Recovery	Scenario	Electricity	Capital	Materials	Labor	Offset	Cost	Utility Cost	Net NPV
GW AeMBR	None	One	35,161	1,231,889	285,099	1,653,523	-	1,096,516	(1,254,056)	3,048,133
GW AeMBR	None	Two	44,623	1,473,988	305,428	1,767,678	-	936,616	(1,630,273)	2,898,061
GW AeMBR	None	Three	53,988	1,703,919	326,297	1,866,863	-	1,152,759	(1,880,325)	3,223,501
GW AeMBR	Electricity	One	225,754	1,289,927	293,791	1,662,215	(349,321)	1,096,516	(1,254,056)	2,964,827
GW AeMBR	Electricity	Two	292,394	1,549,438	316,727	1,778,977	(454,117)	936,616	(1,630,273)	2,789,763
GW AeMBR	Electricity	Three	358,937	1,796,780	340,204	1,880,770	(558,913)	1,152,759	(1,880,325)	3,090,211
	Natural									
GW AeMBR	Gas	One	225,754	1,289,927	293,791	1,662,215	(123,219)	1,096,516	(1,254,056)	3,190,928
	Natural									
GW AeMBR	Gas	Two	292,394	1,549,438	316,727	1,778,977	(160,185)	936,616	(1,630,273)	3,083,694
	Natural									
GW AeMBR	Gas	Three	358,937	1,796,780	340,204	1,880,770	(197,151)	1,152,759	(1,880,325)	3,451,973
Mixed WW										
AeMBR	None	One	43,998	832,501	254,483	1,664,916	-	1,096,516	(1,258,578)	2,633,836
Mixed WW										
AeMBR	None	Two	56,111	953,031	264,279	1,773,414	-	936,616	(1,636,151)	2,347,299
Mixed WW										
AeMBR	None	Three	68,127	1,061,156	275,014	1,866,740	-	1,152,759	(1,887,560)	2,536,235
Mixed WW										
AeMBR	Electricity	One	239,598	879,640	261,542	1,671,975	(343,889)	1,096,516	(1,258,578)	2,546,804

Table S27. Summary LCA Results for Graywater Treatment Systems

			System Costs over 30 Year Lifespan							
								Centralized		
	Thermal						Energy	Treatment	Avoided	
System Type	Recovery	Scenario	Electricity	Capital	Materials	Labor	Offset	Cost	Utility Cost	Net NPV
Mixed WW										
AeMBR	Electricity	Two	310,391	1,014,311	273,456	1,782,591	(447,056)	936,616	(1,636,151)	2,234,158
Mixed WW										
AeMBR	Electricity	Three	381,087	1,136,578	286,309	1,878,035	(550,223)	1,152,759	(1,887,560)	2,396,984
Mixed WW	Natural									
AeMBR	Gas	One	239,598	879,640	261,542	1,671,975	(121,303)	1,096,516	(1,258,578)	2,769,390
Mixed WW	Natural									
AeMBR	Gas	Two	310,391	1,014,311	273,456	1,782,591	(157,694)	936,616	(1,636,151)	2,523,520
Mixed WW	Natural									
AeMBR	Gas	Three	381,087	1,136,578	286,309	1,878,035	(194,085)	1,152,759	(1,887,560)	2,753,122
GW RVF	None	One	37,507	1,428,279	108,836	1,896,965	-	1,096,516	(1,254,056)	3,314,047
GW RVF	None	Two	42,969	1,751,480	129,927	2,023,241	-	936,616	(1,630,273)	3,253,960
GW RVF	None	Three	64,012	2,077,401	150,930	2,136,575	-	1,152,759	(1,880,325)	3,701,352
Mixed WW										
RVF	None	One	48,771	1,107,654	63,069	2,305,142	-	1,096,516	(1,258,578)	3,362,575
Mixed WW										
RVF	None	Two	56,378	1,339,783	70,564	2,421,086	-	936,616	(1,636,151)	3,188,276
Mixed WW										
RVF	None	Three	79,566	1,565,766	77,708	2,523,578	-	1,152,759	(1,887,560)	3,511,816
GW AnMBR	None	One	51,755	1,737,043	390,436	1,847,523	(7,875)	1,096,516	(1,254,056)	3,861,342
GW AnMBR	None	Two	67,833	2,044,487	425,215	1,983,161	(10,238)	936,616	(1,630,273)	3,816,802

Table S27. Summary LCA Results for Graywater Treatment Systems

			System Costs over 30 Year Lifespan							
								Centralized		
	Thermal						Energy	Treatment	Avoided	
System Type	Recovery	Scenario	Electricity	Capital	Materials	Labor	Offset	Cost	Utility Cost	Net NPV
GW AnMBR	None	Three	84,288	2,335,166	460,110	2,101,111	(12,600)	1,152,759	(1,880,325)	4,240,507
Mixed WW										
AnMBR	None	One	49,635	1,456,476	384,154	1,823,172	(11,568)	1,096,516	(1,258,578)	3,539,807
Mixed WW										
AnMBR	None	Two	63,845	1,652,476	416,224	1,949,876	(15,039)	936,616	(1,636,151)	3,367,847
Mixed WW										
AnMBR	None	Three	78,398	1,830,731	448,415	2,058,725	(18,509)	1,152,759	(1,887,560)	3,662,959
GW AnMBR	None	One	31,896	1,737,043	390,436	1,847,523	(7,875)	1,096,516	(1,254,056)	3,841,482
GW AnMBR	None	Two	40,833	2,044,487	425,215	1,983,161	(10,238)	936,616	(1,630,273)	3,789,802
GW AnMBR	None	Three	49,826	2,335,166	460,110	2,101,111	(12,600)	1,152,759	(1,880,325)	4,206,046
Mixed WW										
AnMBR	None	One	31,577	1,456,476	384,154	1,823,172	(11,568)	1,096,516	(1,258,578)	3,521,749
Mixed WW										
AnMBR	None	Two	39,295	1,652,476	416,224	1,949,876	(15,039)	936,616	(1,636,151)	3,343,297
Mixed WW										
AnMBR	None	Three	47,063	1,830,731	448,415	2,058,725	(18,509)	1,152,759	(1,887,560)	3,631,625

Table S27. Summary LCA Results for Graywater Treatment Systems

363

364 References

- Bastian, R.; Murray, D. 2012 *Guidelines for Water Reuse*; U.S. EPA Office of Research and Development:
 Washington D.C., 2012;
- Sharvelle, S.; Ashbolt, N.; Clerico, E.; Hultquist, R.; Leverenz, H.; Olivieri, A. *Risk-Based Framework for the Development of Public Health Guidance for Decentralized Non-Potable Water Systems*; 2017; ISBN 978-1-941242-83-4.
- Cote, P.; Alam, Z.; Penny, J. Hollow fiber membrane life in membrane bioreactors (MBR). *Desalination* **2012**, *288*, 145–151, doi:10.1016/j.desal.2011.12.026.
- 372 4. Suez Z-MOD L Packaged Plants: MBR Platform Systems Featuring LEAPmbr Technology 2017.
- 373 5. Yoon, S.-H. *Membrane Bioreactor Processes;* CRC Press: Boca Raton, Florida, 2016;
- 6. Best, G. Personal Communication Graham Best, GE Power, Water Regional Sales Manager. **2015**.
- 375 7. IPCC *IPCC Guidelines for National Greenhouse Gas Inventories*; Intergovernmental Panel on Climate
 376 Change, National Greenhouse Gas Inventories Programme: IGES, Japan, 2006; ISBN 4-88788-032-4.
- Mai, D.T.; Kunacheva, C.; Stuckey, D.C. A review of posttreatment technologies for anaerobic
 effluents for discharge and recycling of wastewater. *Critical Reviews in Environmental Science and Technology* 2018, 48, 167–209, doi:10.1080/10643389.2018.1443667.
- Boyjoo, Y.; Pareek, V.K.; Ang, M. A review of greywater characteristics and treatment processes. *Water Science and Technology* 2013, *67*, 1403–1424, doi:10.2166/wst.2013.675.
- 382 10. Eriksson, E.; Auffarth, K.; Henze, M.; Ledin, A. Characteristics of grey wastewater. *Urban Water* 2002,
 383 4, 85–104, doi:10.1016/S1462-0758(01)00064-4.
- 384 11. Ghaitidak, D.M.; Yadav, K.D. Characteristics and treatment of greywater a review. *Environ Sci Pollut* 385 *Res* 2013, 20, 2795–2809, doi:10.1007/s11356-013-1533-0.
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment
 and reuses. *Science of the Total Environment* 2009, 407, 3439–3449, doi:10.1016/j.scitotenv.2009.02.004.
- 388 13. Metcalf & Eddy; Tchobanoglous, G.; Burton, F. L.; Stensel, H. D.; Tsuchihashi, R. Wastewater
 389 Engineering: Treatment and Reuse; 5th ed.; McGraw-Hill: Boston, MA, 2014;
- 390 14. Feickert, C.A.; Guy, K.; Page, M. *Energy Balance Calculations for an Anaerobic Membrane Bioreactor*;
 391 Washington, D.C., 2012; pp. 1–30;.
- 392 15. Chang, S. Anaerobic Membrane Bioreactors (AnMBR) for Wastewater Treatment. Advances in 393 Chemical Engineering and Science 2014, 04, 56–61, doi:10.4236/aces.2014.41008.
- Lew, B.; Tarre, S.; Beliavski, M.; Dosoretz, C.; Green, M. Anaerobic membrane bioreactor (AnMBR)
 for domestic wastewater treatment. *Desalination* 2009, 243, 251–257, doi:10.1016/j.desal.2008.04.027.
- Ho, J.; Sung, S. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating
 synthetic municipal wastewater. *Bioresource Technology* 2010, 101, 2191–2196,
 doi:10.1016/j.biortech.2009.11.042.
- Ho, J.; Sung, S. Anaerobic Membrane Bioreactor Treatment of Synthetic Municipal Wastewater at
 Ambient Temperature. *Water Environment Research* 2009, *81*, 922–928, doi:10.2175/106143009X407339.
- 401
 19. Martinez-Sosa, D.; Helmreich, B.; Netter, T.; Paris, S.; Bischof, F.; Horn, H. Anaerobic submerged
 402 membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and
 403 psychrophilic temperature conditions. *Bioresource Technology* 2011, 102, 10377–10385,
 404 doi:10.1016/j.biortech.2011.09.012.
- 405 20. UNFCCC Clean Development Mechanism: Methodological Tool, Project and leakage emissions from anaerobic
 406 digestion; CDM Methodology; 2012; p. 11;.

- 407 21. Christian, S.; Grant, S.; Wilso, D.; McCarthy, P.; Mills, D.; Kolakowski, M. The first two years of full408 scale anaerobic membrane bioreactor operation treating high strength wastewater at Kens Foods Inc.
 409 WEF Conference Proceedings 2010, 4019–4033.
- 410 22. Matsuura, N.; Hatamoto, M.; Sumino, H.; Syutsubo, K.; Yamaguchi, T.; Ohashi, A. Recovery and
 411 biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage
 412 using a two-stage closed downflow hanging sponge system. *Journal of Environmental Management*413 2015, 151, 200–209, doi:10.1016/j.jenvman.2014.12.026.
- 414 23. Deng, Q.; Dhar, B.R.; Elbeshbishy, E.; Lee, H.S. Ammonium nitrogen removal from the permeates of
 415 anaerobic membrane bioreactors: Economic regeneration of exhausted zeolite. *Environmental*416 *Technology (United Kingdom)* 2014, 35, 2008–2017, doi:10.1080/09593330.2014.889759.
- 417 24. Gross, A.; Shmueli, O.; Ronen, Z.; Raveh, E. Recycled vertical flow constructed wetland (RVFCW) –
 418 a novel method of recycling greywater for irrigation in small communities and households.
 419 *Chemosphere* 2007, *66*, 916–923.
- 420 25. Sklarz, M.Y.; Gross, A.; Soares, M.I.M.; Yakirevich, A. Mathematical model for analysis of
 421 recirculating vertical flow constructed wetlands. *Water Research* 2010, 44,
 422 doi:10.1016/j.watres.2009.12.011.
- Alfiya, Y.; Gross, A.; Sklarz, M.; Friedler, E. Reliability of on-site greywater treatment systems in
 Mediterranean and arid environments A case study. *Water Science and Technology* 2013, 67, 1389–
 1395, doi:10.2166/wst.2013.687.
- 426 27. Gross, A.; Kaplan, D.; Baker, K. Removal of chemical and microbiological contaminants from domestic greywater using a recycled vertical flow bioreactor (RVFB). *Ecological Engineering* 2007, 32, 107–114, doi:10.1016/j.ecoleng.2007.06.006.
- 429 28. Teiter, S.; Mander, U. Emission of greenhouse gases from constructed wetlands for wastewater
 430 treatment and from riparian buffer zones. *Ecological Engineering2* 2005, 25, 528–541,
 431 doi:10.1016/j.ecoleng.2005.07.011.
- 432 29. Atlantic UV Corp. Sanitron® Ultraviolet Water Purifiers. 2007, 1–10.
- 433 30. Primozone® Primozone® GM1-GM2-GM3 high concentration ozone generators with compact
 434 design. 2014, 1–2.
- 435 31. Lenntech Ozone decomposition 2018.
- 436 32. Kahraman, A.; Çelebi, A. Investigation of the performance of a heat pump using waste water as a
 437 heat source. *Energies* 2009, 2, 697–713, doi:10.3390/en20300697.
- 438 33. Cipolla, S.S.; Maglionico, M. Heat recovery from urban wastewater: Analysis of the variability of flow
 439 rate and temperature in the sewer of Bologna, Italy. *Energy Procedia* 2014, 45, 288–297,
 440 doi:10.1016/j.egypro.2014.01.031.
- 441 34. Greening, B.; Azapagic, A. Domestic heat pumps: Life cycle environmental impacts and potential
 442 implications for the UK. *Energy* 2012, *39*, 205–217, doi:10.1016/j.energy.2012.01.028.
- 443 35. Morelli, B.; Cashman, S.; Ma, Cissy; Garland, Jay; Bless, Diana; Jahne, Michael Life Cycle Assessment
 444 and Cost Analysis of Distributed Mixed Wastewater and Graywater Treatment for Water Recycling in the
 445 Context of an Urban Case Study; U.S. Environmental Protection Agency: Cincinnati, OH, 2019; p. 162;.
- 446 36. Cashman, S.; Gaglione, A.; Mosley, J.; Weiss, L.; Ashbolt, N.; Hawkins, T.; Cashdollar, J.; Xue, X.; Ma,
 447 C.; Arden, S. *Environmental and cost life cycle assessment of disinfection options for municipal drinking water*448 *treatment*; Washington, D.C., 2014;
- Xue, X.; Cashman, S.; Gaglione, A.; Mosley, J.; Weiss, L.; Ma, X.C.; Cashdollar, J.; Garland, J. Holistic
 analysis of urban water systems in the Greater Cincinnati region: (1) life cycle assessment and cost
 implications. *Water Research X* 2019, *2*, 100015, doi:10.1016/j.wroa.2018.100015.
- 452 38. Hendrickson, T.P.; Nguyen, M.T.; Sukardi, M.; Miot, A.; Horvath, A.; Nelson, K.L. Life-Cycle Energy
 453 Use and Greenhouse Gas Emissions of a Building-Scale Wastewater Treatment and Nonpotable
 454 Reuse System. *Environ. Sci. Technol.* 2015, *49*, 10303–10311, doi:10.1021/acs.est.5b01677.

- 455 39. Beveridge, J. Domestic Water System Design for High-rise Buildings. *Plumbing Systems & Design* 2007, 40–45.
- 40. Harris, R.W.; Cullinane, M.J.; Sun, P.T. Process Design and Cost Estimating Algorithms for the Computer
 458 Assisted Procedure for Design and Evaluation of Wastewater Treatment Systems (CAPDET); U.S.
 459 Environmental Protection Agency: Washington, D.C., 1982; p. 1700;.
- 460 41. DeOreo, W.B.; Mayer, P.W.; Dziegielewski, B.; Kiefer, J. Residential End Uses of Water, Version 2;
 461 Denver, CO, 2016;
- 462 42. Schoen, M.E.; Jahne, M.A.; Garland, J. Human health impact of non-potable reuse of distributed
 463 wastewater and greywater treated by membrane bioreactors. *Microbial Risk Analysis* 2018, *9*, 72–81,
 464 doi:10.1016/j.mran.2018.01.003.
- 43. Dziegielewski, B.; Kiefer, J.C.; Opitz, E.M.; Porter, G.A.; Lantz, G.L.; DeOreo, W.B.; Mayer, P.W.;
 466 Nelson, J.O. *Commercial and Institutional End Uses of Water*; 2000; pp. 298–298;.
- 467 44. NRMMC; EPHC; AHMC Australian Guidelines for Water Recycling: Managing Health and Environmental
 468 *Risk (Phase 1)*; Natural Resource Management Ministerial Council, Environmental Protection and
 469 Heritage Council, Australian Health Ministers' Conference, 2006;
- 470 45. Schoen, M.E.; Ashbolt, N.J.; Jahne, M.A.; Garland, J. Risk-based enteric pathogen reduction targets
 471 for non-potable and direct potable use of roof runoff, stormwater, and greywater. *Microbial Risk*472 *Analysis* 2017, *5*, 32–43, doi:10.1016/j.mran.2017.01.002.
- 473 46. Teunis, P.F.M.; Moe, C.L.; Liu, P.; Miller, S.E.; Lindesmith, L.; Baric, R.S.; Pendu, J.L.; Calderon, R.L.
 474 Norwalk virus: How infectious is it? *Journal of Medical Virology* 2008, *80*, 1468–1476, doi:10.1002/jmv.21237.
- 476 47. Messner, M.J.; Berger, P. Cryptosporidium Infection Risk: Results of New Dose-Response Modeling.
 477 *Risk Analysis* 2016, 36, 1969–1982, doi:10.1111/risa.12541.
- 478 48. Abel, N.V.; Schoen, M.E.; Kissel, J.C.; Meschke, J.S. Comparison of Risk Predicted by Multiple
 479 Norovirus Dose–Response Models and Implications for Quantitative Microbial Risk Assessment. *Risk*480 *Analysis* 2017, *37*, 245–264, doi:10.1111/risa.12616.
- 481 49. U.S. EPA Occurrence and Exposure Assessment for the Final Long Term 2 Enhanced Surface Water Treatment
 482 Rule; U.S. Environmental Protection Agency: Washington, D.C., 2005;
- Jahne, M.A.; Schoen, M.E.; Garland, J.L.; Ashbolt, N.J. Simulation of enteric pathogen concentrations
 in locally-collected greywater and wastewater for microbial risk assessments. *Microbial Risk Analysis*2017, 5, 44–52, doi:10.1016/j.mran.2016.11.001.
- Pecson, B.M.; Triolo, S.C.; Olivieri, S.; Chen, E.C.; Pisarenko, A.N.; Yang, C.-C.; Olivieri, A.; Haas,
 C.N.; Trussell, R.S.; Trussell, R.R. Reliability of pathogen control in direct potable reuse: Performance
 evaluation and QMRA of a full-scale 1 MGD advanced treatment train. *Water Research* 2017, 122, 258–
 268, doi:10.1016/j.watres.2017.06.014.
- 490 52. Soller, J.A.; Parker, A.M.; Salveson, A. Public Health Implications of Short Duration, Off-Specification
 491 Conditions at Potable Reuse Water Treatment Facilities. *Environ. Sci. Technol. Lett.* 2018, *5*, 675–680,
 492 doi:10.1021/acs.estlett.8b00470.
- 493 53. Branch, A. Validation of membrane bioreactors for water recycling 2016.
- 494 54. Tng, K., H.; Currie, J.; Roberts, C.; Koh, S.H.; Audley, M.; Leslie, G.L. *Resilience of Advanced Water* 495 *Treatment Plants for Potable Reuse*; 2015;
- 496 55. Bare, J. TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and other Environmental
 497 Impacts. *Clean Technologies and Environmental Policy* 2011, *13*, 687–696, doi:10.1007/s10098-010-0338-9.
- 498 56. Bare, J.; Norris, G.A.; Pennington, D.W.; McKone, T. TRACI: The Tool for the Reduction and 499 Assessment of Chemical and other Environmental Impacts. *Journal of Industrial Ecology* **2002**, *6*, 49–78,
- 500 doi:10.1162/108819802766269539.

- 501 57. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
 502 Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press:
 503 Cambridge, UK and New York, NY, 2013;
- 504 58. Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.;
 505 Hollander, A.; van Zelm, R. ReCiPe2016: a harmonised life cycle impact assessment method at
 506 midpoint and endpoint level. *Int J Life Cycle Assess* 2017, *22*, 138–147, doi:10.1007/s11367-016-1246-y.
- 507