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Abstract: Sustainable distribution network design for the maintenance components of electric
multiple units (EMUs) is critical to reduce the problem of unreasonable resource allocation and capital
occupation of high-speed railway (HSR) operations. Motivated by the above analysis, this study
investigates the integrated optimization of the location and inventory of EMU maintenance component
distributions. Aiming to improve the sustainable operation for high-speed railway, we proposed
a corresponding nonlinear mixed-integer programming model to determine the location of the
distribution center (DC) for EMU maintenance component delivery, inventory control strategy, and
corresponding service level. The above optimization model is solved by an adaptive improved
genetic algorithm. The proposed model and algorithm are applied to a real-world case study on
China’s EMU maintenance components. The findings show that a higher service level is not better
to achieve the lower total cost in the maintenance component distribution network. The ratios of
transportation modes are significant to balance the service level and total cost of the EMU distribution
network. Furthermore, the unit out-of-stock cost and the service level both show great impacts on the
total costs of the EMU distribution system. Finally, there exists an optimal ratio of different transport
modes, which ensures the least total cost of the EMU distribution system.

Keywords: distribution network design; maintenance components of high-speed railway;
location–inventory problem; optimization model; adaptive genetic algorithm; case study

1. Introduction

As a new method of transportation, high-speed railways have attracted extensive attention in
recent years. By the end of 2019, China had built a high-speed rail system of 35,000 km, which is more
than 2/3 of the total length of all global high-speed rail systems [1,2]. Along with the construction
of high-speed rail networks, the demand for electronic multiple unit (EMU) trains is increasingly
strong. For example, as of early 2019, the China Railway Administration owned 2827 EMU trains,
an increase of 11.3% year-on-year. The first high-speed line was the Beijing–Tianjin high-speed rail
line, which was put into operation in 2008 [3]. According to the maintenance standards, the upcoming
maintenance period will be a problem for a considerable number of EMU trains. The long-term plan for
high-speed railway networks and the current macroeconomic background raise concerns for scholars
and managers regarding the distribution network design of maintenance components for high-speed
railway operation.

Inevitably, the construction of the distribution network for EMU maintenance components involves
the distribution network design, the distribution transportation mode, and the corresponding inventory
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strategies, which are important issues for integrated optimization. “Safety first” is an important feature
of the traditional inventory management of maintenance components. That is, to cope with the shortage
of stock each EMU depot store requires many maintenance components for the monthly plan. However,
this arrangement not only causes inefficient use of components but also leads to high holding costs [4].
In addition, the maintenance method of the EMU train is different from that of the conventional train.
It is divided into one to five levels of maintenance. Taking the EMU powder metallurgy brake as
an example, it belongs to the third level maintenance. The consumption of this brake is subject to
mileage, which increases the uncertainty of the corresponding demand. Furthermore, the price of
EMU train maintenance components is much more expensive, and they need to keep a rational level
inventory based on the principle of “safety first,” which usually incurs a slightly higher inventory
cost. The China Railway Administration might increase costs by maintaining an excess inventory
of maintenance components. In contrast, insufficient inventory reduces service levels and incurs
unnecessary transportation costs due to urgent orders. For example, maintenance components that are
usually transported by road have to be transported by air because of time constraints, which may yield
economic losses. Therefore, the China Railway Administration wants to make strategic and tactical
decisions simultaneously.

In summary, this paper aims to minimize the total cost of the location–inventory problem of
maintenance component distribution for high-speed railway operations. Our proposed problem
involves determining the optimal locations of distribution centers (DCs) of EMU components and
the corresponding inventory control strategies (i.e., reorder points and optimal service level) based
on the actual consumption and storage of maintenance components. Finally, combined with the
distribution center location, this study integrates the scattered EMU maintenance component resources.
It establishes regional integration and chooses the appropriate transportation modes and proportion of
different transportation modes to ensure that the maintenance components are kept at a reasonable
level and supplied in a timely manner when the corresponding demand is required. As an extension
of the facility location problem, the location–inventory problem has proved to be a NP-hard problem.
A genetic algorithm (GA) is an effective method to solve the above problem. It simulates the principle
of survival of the fittest in nature, and through implicit parallel search, reduces the possibility of falling
into a local optimal solution.

The rest of this paper can be summarized as follows. Section 2 reviews the literature on the
location–inventory problem and proposes research gaps. Section 3 describes the problem and gives
the modeling process. Section 4 presents an improved adaptive genetic algorithm. Section 5 applies
the proposed algorithm to a real-world study and obtains some management insights and tactical
decisions simultaneously. Conclusions are drawn and future work is discussed in Section 6.

2. Literature Review

The relevant research can be divided into three topics: (i) facility location problem, (ii) logistics
network design, and (iii) location–inventory problem.

The distribution network configuration substantially influences strategic and tactical decisions.
Traditionally, strategic and tactical decisions are made separately at different levels of management.
Strategic decisions include considering the facility location and customer assignments [5]. Tactical
decisions include inventory management and inventory control strategies. Owen and Daskin [6]
were among the first scholars to study the facility location problem (FLP), and subsequent scholars
have expanded a series of qualitative or quantitative models [7–11]. A great number of scholars
have proposed different types of constraints to address industrial FLPs [12–14]. Shen [15] considered
the multicommodity flow problem, Meraklı and Yaman [16] improved the capacitated hub location
problem, and Correia et al. [17] solved a stochastic multiperiod capacitated multiple allocation hub
location problem. Alumur et al. [18] presented a modeling for hub location problems with a service
time limit considering congestion at hubs. Binary optimization of the FLP is a NP-hard problem,
and there are various methods to solve it. Classical solution methods include column generation
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algorithms, branch and bound methods, benders decomposition, Lagrangian relaxation, and dynamic
programming [7,19–21]. In recent years, an increasing number of scholars have used heuristic
algorithms, including genetic algorithms, tabu search algorithms, simulated annealing algorithms,
particle swarm optimization, and scatter search algorithms [8,22]. For solving nonlinear large-scale
problems, heuristic algorithms are regularly used. The heuristic algorithm has the advantages of simple
operation and fast solution speed under complex conditions. This paper considers a two-echelon
distribution network of large scale, and the solution requires the use of a heuristic algorithm.

The logistics network design is different from the FLP, which usually includes multiple echelons
and determines the number and capacity of facilities and the product flow in the entire network [23].
In recent years, the high-speed rail network has gradually improved, and the choice of transportation
methods has also changed, including highways, railways, and airways [2]. Multimodal transport
has become a research focus [24,25]. Different product flows with different transportation modes
will produce different location allocation results, and finding a suitable transportation method is the
research goal of this paper.

In addition to uncertain transportation options, factors such as uncertain customer demand
exist [26,27]. Nickel et al. [28] investigated the problem of choosing the location and number of
ambulances for minimum cost under stochastic demand. As for distribution network design, uncertain
demand brings the need for safety stocks and the possibility of stockouts. This requires reasonable
stock and service levels to avoid a large amount of capital occupation or losses caused by stockouts [29].
Singh et al. [30] provided an overview of inventory management in the logistics network design,
clearly considering the importance of service level. Miranda and Garrido [31] adopted a sequential
heuristic approach, a two-step formulation, to address the distribution network design problem and
optimize inventory service levels. In the first step, the approach determined the optimal service
level, and in the second step, it optimized the facility location and inventory strategy decisions.
This paper focuses on different service levels and finds the relationship between service level, total
cost, and transportation mode.

With the development of supply chain management, the location–inventory problem (LIP) has
become a further expansion of the facility location problem and logistics network design, which makes
simultaneous decisions on strategies and tactics [32]. Daskin et al. [33] formulated a model and
proposed a solution method for the LIP. Shen et al. [34], combining real cases of local blood banks,
established a location–inventory joint optimization model and used the risk-pooling principle to reduce
safety stocks. The LIP has generated great interest in academia regarding a variety of situations, such
as vendor-managed inventory, replenishment strategies, stochastic capacity, multi-period, and service
constraint [17,35–38]. Some scholars integrated location, inventory, and routing problems in the supply
chain network design, which are all NP-hard problems. Jahangir et al. [39] compared the performance
of genetic and discrete invasive weed optimization (DIWO) algorithms for solving the inventory
routing problem. They proved that a GA is better than DIWO to solve large-scale problems. Liu
et al. [40] considered random supply disruptions and dealt with a coordinated location–inventory
problem in a stochastic supply chain system. They addressed a tailored hybrid genetic algorithm
embedded with direct search. Many researchers have used genetic algorithms in solving such problems,
which shows that a genetic algorithm is suitable to solve the location–inventory problem [41,42].

Compared with academia, the application of the LIP is a recent trend [43–45]. Farahani et al. [46]
conducted a comprehensive review of the existing literature on LIPs and pointed out that there are
a few studies combined with real-world situations. Therein, Manatkar et al. [47] proposed a model
of the location–inventory problem considering multiple products in a multilevel supply chain for
steel retailers to make decisions. Lin et al. [4] presented a mixed integrated formulation to obtain
optimal inventory strategies and modes of transport for high-speed train maintenance components
between the advance and the temporary order policy. The Program Evaluation and Review Technique
(PERT) method was applied to deal with the shortage cost. However, our proposed problem differs
from Lin et al. [4] in the following aspects. First, we extended the problem into a three-level network



Sustainability 2020, 12, 5447 4 of 24

design. Moreover, our proposed problem aims to determine the optimal location selection of EMU
maintenance component DCs and the combined transport modes, and considers also the stock shortage
costs related to the corresponding service levels. Finally, our research findings show the relationship
between the optimal service level and ratios of different transportation modes.

Finally, some features of related studies with the location–inventory problem are illustrated in
Table 1.

Table 1. Review of the existing literature.

Objective Transportation
Mode

Solution
Procedure

Reference Article
(Year)

Location
Cost

Transportation
Cost

Ordering
Cost

Holding
Cost

Penalty
Cost Single Multiple

Zhang et al. [32] · · · · · Lingo

Vahdani et al. [45] · · · · ·
Heuristic

Algorithm

Shahabi et al. [48] · · · ·
Heuristic

Algorithm
Ahmadi-Javid,

Amir and
Hoseinpour,
Pooya [49]

· · · · ·
Heuristic

Algorithm

This research · · · · · ·
Heuristic

Algorithm

Thus, the main contributions of this paper to filling the research gap are as follows: (i) to construct
a joint optimization model for the LIP considering multimodal transport and to minimize the cost
of fixed operating, inventory, transportation, and stockout penalties. (ii) Because comprehensive
location–inventory decisions are more complicated than individual decisions, we propose an improved
adaptive genetic algorithm using matrix encoding. In addition, an efficient genetic operator is designed
to address the model. (iii) According to the actual background of a high-speed railway, the model
provides the foundation and strategy for solving the optimization problem of the EMU maintenance
component distribution network.

3. Problem Description and Modeling Process

This paper focuses on a location–inventory model based on real situations. The China Railway
Administration, as a company with a social welfare focus, must consider safe public travel. Thus,
the distribution network needs to ensure the timely supply of EMU maintenance components.
Otherwise, large-scale high-speed train outages and even social unrest may occur. Based on this
characteristic, we added penalty costs, which are out-of-stock costs, into the location inventory
formulation that distinguishes maintenance components of the EMU distribution network from
regular components.

3.1. Problem Description

The considered three-layer distribution network is shown in Figure 1. It consists of multiple
suppliers, potential distribution centers, and EMU depots. This problem aims to minimize the
total cost of distribution network design. Location is a high initial investment and has long-term
impact. Furthermore, inventory policy selection is imperative. Due to stochastic demand, determining
inventory policy can solve problems such as how often to reorder, the economic order quantity (EOQ),
and the level of safety stock to establish. It is significant to deal with the trade-off between the safety
stock and the corresponding service level in supply chain management. To set a lower level of safety
stocks will result in decreasing of the service levels and increasing of the corresponding penalty cost.
On the contrary, the higher the safety stock, the higher the ratio of meeting the demand with uncertainty
and the higher the service level. However, high safety stock will cause high capital occupancy, as
well as the lower ratio of turnover of EMU components. Finally, it is important to choose transport
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modes. As we all know, different modes of transportation have different advantages. Air freight
is efficient and fast but is greatly affected by weather. High-speed rail transport makes up for this
shortcoming but is still in its infancy. The road transport cost is the smallest compared to that of
the previous two modes, but the timeliness is poor. This study never considers the cost in transit,
which distinguishes the advantages of different transportation modes by order cost and transportation
cost. Therefore, their impact on the service level can be reflected in two aspects: the fixed order cost
and the transportation cost. So, it is necessary to choose an optimal combined transport service scheme
to reduce the total cost of the maintenance component distribution system.
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In summary, our model aims to minimize the total cost, which is the sum of the location cost,
transportation cost, inventory cost, and penalty cost. The inventory cost in the model includes the
fixed ordering, the holding cost of the cycle, and the safety stock in the distribution center. Through
this mixed-integer nonlinear programming model of location inventory, we can finally determine (i)
the facility location and number of distribution centers; (ii) the allocation plan from the suppliers to
distribution centers and distribution centers to EMU depots, and the choice of transportation mode;
and (iii) the distribution center economic order quantity, reorder point, and safety stock.

3.2. Assumptions and Notations

The study makes the following assumptions:

(i) Every distribution center has a fixed construction cost;
(ii) Normal distributions of known mean and variance are followed by the maintenance component

demand of each EMU depot. There are independent demands for different EMU depots;
(iii) There is only one supplier per distribution center and only one distribution center per EMU depot;
(iv) Each distribution center adopts a continuous review (r, Q), which means that when the inventory

level falls below the reorder point r, each distribution center orders a fixed quantity Q at once;
(v) The unit transportation cost is proportional to distance and product shipment.

The model sets, parameters, decision variables, and intermediate variables used throughout the
paper are listed as follows:

Indices:
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I: Index for EMU depots, i = 1, 2, . . . I
J: Index for potential distribution center locations, j = 1, 2, . . . J
K: Index for suppliers, k = 1, 2, . . . K
T: Index for mode of transport, t = 1,2, . . . T
Parameters:
f j: Fixed operating cost of opening a distribution center j per unit time (¥)
Ct: Unit transportation cost by transport mode t (¥/unit·km)
Tkj: The distance from supplier k to distribution center j (km)
S ji: The distance from distribution center j to EMU depot i (km)
µi: Mean daily demand at EMU depot i (unit)
σ2

i : Variance of daily demand at EMU depot i (unit2)
χ: Days worked in a year (day)
LT j: Lead time of the distribution center j to order from supplier k (day)
OCt

j: Fixed ordering cost at distribution center j by transport mode t (¥/order)
HC j: Holding cost at distribution center j (¥/unit)
SC j: Shortage cost at distribution center j (¥/unit)
α j: Service level for distribution center j
Zα: Safety factor related to service level and standard normal distribution, P(Z ≤ Zα) ≤ α
Intermediate Variables:
D j: Mean of daily demand allocated to potential distribution center j (unit)
V2

j : Variance of daily demand allocated to potential distribution center j (unit2)
Q j: Optimal order quantity for distribution center j (unit)
r j: Reorder point for distribution center j (unit)
Decision Variables:
X j ∈ {0, 1}, Takes the value 1 when located at distribution center j; otherwise, the value 0;
Yt

k j ∈ {0, 1}, Takes the value 1 when distribution center j is allocated to supplier k by transport
mode t; otherwise, the value 0;

Zt
ji ∈ {0, 1}, Takes the value 1 when EMU depot i is allocated to distribution center j by transport

mode t; otherwise, the value 0.

3.3. Location-Inventory Model

The location–inventory problem of the maintenance components was formulated as a mixed-integer
nonlinear programming model. The objective function of the model was to minimize the total cost,
including the fixed operating cost, transportation cost, inventory cost, and penalty cost as follows:

(1) The fixed operating cost of opening distribution centers, given as
∑
j

f jX j;

(2) The transportation cost from the supplier to the opened distribution center, given by∑
k

∑
j

∑
t

(
CtTkjχµiZt

jiY
t
k j

)
, and from the opened distribution center to the EMU depot, given by∑

j

∑
i

∑
t

(
CtS jiχµiZt

ji

)
. We assume that the transportation cost is related to maintenance component

shipment, transportation distance, and transport mode;
(3) The inventory cost includes the ordering cost, the holding cost of working inventory and

safety stock. The mean of daily demand at EMU depot i follows a normal distribution with N
(
µi, σi

2
)
.

Because of unrelated demand, the mean of daily demand at distribution center j also obeys the normal
distribution with N

(
D j, V j

2
)
, where D j =

∑
i

∑
t
µiZt

ji,∀ j, and V2
j =

∑
i

∑
t
σ2

i Zt
ji,∀ j. To facilitate the model

solution, Shen et al. [34] proposed approximating the demand of a normal distribution by a Poisson
distribution. It is common to assume that σ2

i /µi = γ,∀i, where γ is the ratio of variance and mean.
Based on this assumption, safety stock can be obtained as ss j = Zα

√
γD jLT j,∀ j, and the reorder point

is r j = D jLT j + Zα
√
γD jLT j,∀ j;
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(4) For each distribution center j, we set the penalty cost caused by stock shortages. Miranda and
Garrido [31] assumed a normal demand distribution for stochastic demand during lead time, SD j

(
LT j

)
,

and the density function of SD j
(
LT j

)
is computed by (1):

f (x) =
1

√
2π

√
V2

j LT j

e
−(1/2)(x−D jLT j/

√
V2

j LT j)
2

=
1

√
2π

√
γD jLT j

e−(1/2)(x−D jLT j/
√
γD jLT j)

2

. (1)

Expected out-of-stock demand is given by (2).∫ +∞

r j

(x− r j) f (x)dx =

∫ +∞

r j

x f (x)dx− r j

∫ +∞

r j

f (x)dx, (2)

where ∫ +∞

r j

x f (x)dx =

√
γD jLT j
√

2π
e−(1/2)Z2

α + D jLT j(1− α j), (3)

and ∫ +∞

r j

f (x)dx = 1− α j. (4)

The penalty cost for a distribution center j in a single ordering period can be obtained by (5).

SC j

[
1
√

2π
e−(1/2)Z2

α − (1− α j)Zα

]√
γD jLT j. (5)

In short, the inventory and penalty cost of the distribution center j can be expressed by (6), where
χD j/Q j is the expected order frequency in a year.

IC j + PC j = OCt
j

χD j

Q j
+ HC j

(Q j

2
+ ss j

)
+ SC j

[
1
√

2π
e−(1/2)Z2

α − (1− α j)Zα

]√
γD jLT j

χD j

Q j
∀ j, t. (6)

The first term of (6) is the fixed ordering cost, the second term represents the holding cost with
working inventory and safety stock, and the third term expresses the out-of-stock penalty cost.

Consistent with [31,33], this paper assumes that the EOQ model determines the optimal order

quantity of each distribution center j, Q j =
√

2OCt
jχD j/HC j.

Thus, the inventory and penalty cost for each distribution center j can be rearranged by (7).

IC j + PC j =
√

2χHC jOCt
jD j + HC jZα

√
γLT jD j + SC jD j

(
1
√

2π
e−

1
2 Z2

α −

(
1− α j

)
Zα

)√√
γχLT jHC j

2OCt
j

,∀ j.

(7)
Extracting the constant term in (7), the inventory cost and penalty cost can be rewritten by (8) and

(9), respectively.

IC j = λ1 j

√
D j,∀ j, (8)

PC j = λ2 jD j,∀ j, (9)

where λ1 j =
√

2χHC jOCt
j + HC jZα

√
γLT j, λ2 j = SC j

(
1
√

2π
e−

1
2 Z2

α −

(
1− α j

)
Zα

)√
γχLT jHC j

2OCt
j

.

The service level determines the safety stock on the one hand, and is related to the stock shortage
on the other hand. Penalty costs are incurred due to out-of-stock inventory, which shows great impact
on the total cost of the entire distribution system because the China Railway Administration should
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meet the requirement of EMU maintenance component supply in a timely manner, so as to provide a
strong guarantee for on-time operation of high-speed train operators.

As described above, this paper analyzes the inventory cost of the distribution center j; thus,
we propose a location–inventory model for the optimization of the distribution network of the EMU
maintenance components. The model is formulated as follows (10)–(17):

Min
∑

j

f jX j +
∑

j

λ1 j

√
D j +

∑
j

λ2 jD j +
∑

k

∑
j

∑
t

(
CtTkjχµiZt

jiY
t
k j

)
+

∑
j

∑
i

∑
t

(
CtS jiχµiZt

ji

)
, (10)

∑
k

∑
t

Yt
k j ≤ X j,∀ j, (11)

∑
j

∑
t

Zt
ji = 1,∀i, (12)

Zt
ji ≤ X j,∀ j, i, t, (13)∑

t

Yt
k j ≤ 1,∀k, j, (14)

∑
t

Zt
ji ≤ 1,∀ j, i, (15)

D j =
∑

i

∑
t

µiZt
ji,∀ j, (16)

X j, Yt
k j, Zt

ji ∈ {0, 1},∀i, j, k, t. (17)

The objective function (10) minimizes the total cost of the distribution network for EMU
maintenance components and warrants further explanation. The first term is the fixed cost of
opening a DC to operate at site j. The second term indicates the inventory cost at the opening DCs,
which includes fixed ordering cost, holding cost of the cycle and the safety stock for each DC. The third
term is the penalty cost of stockout. The last two terms represent the transportation cost from supplier
k to opening DC j and from opening DC j to EMU depot i.

Constraints (11) state that a DC is only serviced by a supplier; constraints (12) show that each
EMU depot is only serviced by a DC. Constraints (13) stipulate that the DC-serviced EMU depots are
open. Constraints (14) and (15) ensure that the maintenance component can only use one transport
mode in transit. Constraints (16) compute the mean daily demand for each open DC. The domains of
the decision variables are defined in constraints (17).

4. Adaptive Genetic Algorithm

Heuristic algorithms are the most appropriate approaches that are used to solve the proposed
mixed-integer nonlinear programming (MINLP). There are some classical heuristic methods, such
as simulated annealing (SA), tabu search (TS), and genetic algorithm (GA). Each algorithm has its
own strengths and weaknesses. GA, based on survival of the fittest and population genetics, is the
most widely used in optimal NP-hard problems. Since the LIP is essentially an NP-hard problem,
this paper adopted a GA to solve it. Starting from a set of feasible solutions, a GA finds better solutions
by simulating the mechanism of selections and genetics in the natural world, such as crossover and
mutation processes, and evolves according to the regulation of nature—survival of the fittest. The GA
encodes the problem parameters into genes in the chromosome for optimization, and the resolution
process starts with a population rather than an individual. Thus, one of the best features of a GA is
that with implicit parallel search, the possibility of falling into a local optimal solution is reduced.
Therefore, in this paper, we chose the GA to solve this INLP because of its performance in parallel
search and avoiding location-optimal solutions.
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However, undesirable effects and low efficiency are always found when using a GA to solve the
LIP because of the initial solution, imperfect coding of chromosomes, and inappropriate crossover and
mutation rates. In our adaptive genetic algorithm, we randomly generated the initial solution and
adopted multi-matrix coding of chromosomes to improve the speed and enhance the legitimacy of the
chromosomes to reduce the probability of illegal solution.

4.1. Chromosome Representation

In GAs, the conversion method that converts the feasible solution of a problem from a model
variable to the search space that the GA can handle is called coding. The encoding and decoding of
chromosomes determine the rate of solution. In this paper, the decision variables of the proposed
model consist of three binary variables, and two vectors and four matrices make up the code for
each chromosome. To facilitate the description of the encoding and decoding process, Figure 2 is
presented with the scale of the three suppliers, five distribution centers, and five EMU depots. The two
vectors represent the binary allocation decisions of the supplier–distribution center and distribution
center–EMU depot. The four matrices represent the economic order quantity between suppliers and
distribution centers (S-DC Quantity), the transport mode between suppliers and distribution centers
(S-DC Transport mode), the economic order quantity between distribution center and EMU depot
(DC-E Quantity), and the transport mode (DC-E Transport mode). A visual description of these
matrices is shown in Figure 2; the former number represents quantity and the latter number represents
transport mode. The rows and columns of each matrix are determined by suppliers, distribution
centers, or EMU depots. The volume of EMU maintenance components is a real number, and the mode
of transportation is considered only as an integer.
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First, under the condition that an EMU depot is only serviced by one distribution center,
the distribution center randomly serves the EMU depots in the DC-E echelons and repeats this
allocation process until the demand of each EMU depot is assigned and the relevant transport modes
are selected.

Subsequently, in the S-DC echelons, the similar allocation procedure between suppliers and
distribution centers is repeated, and the volume of EMU maintenance components is the total demand
of each EMU depot serviced by the open distribution center. In this echelon, the supplier-serviced open
distribution center and the corresponding transport flows and transportation modes are determined.

This form of representation facilitates the manipulation, search, and expression of chromosomes
in the evolutionary process.

4.2. Genetic Operator

Genetic operators are an important part of GAs, including selection, crossover, and mutation
operators used to produce the offspring. To diversify the population, the three major operators were
employed to select individuals with good fitness, crossover, or mutate in a current population with a
certain probability.
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4.2.1. Selection

In this paper, we used a combination of roulette and optimal individual preservation to select
excellent individuals from the population and eliminate individuals with low fitness. This combination
selection strategy can inherit the contemporary optimal individual into the next generation population.
In this way, we could avoid the influence of crossover or mutation on its chromosome structure,
while the remaining individuals who survive as the fittest are determined by roulette to enter the next
generation. This method can not only make the individual generation of the largest fitness in the
population better than the first generation but also ensure the individual diversity in the population
and choose whether to inherit the next generation according to the ratio of the fitness function value.

The roulette operator is also called the proportional selection operator, assuming that
∑
u

fu is the

sum of the fitness function values of a certain population, and fu is the fitness function value of the u
individual; then, Pu is the probability that the individual is selected and their genes are passed to the
next generation for (18):

Pu =
fu∑

u
fu

, u = 1, 2, . . . , popsize. (18)

That is, the probability of selection and inheritance in the next generation is directly proportional
to the individual fitness value. By simulating the roulette, the number of times each chromosome is
present in the population is obtained, and the genetic purpose is achieved. Combined with the best
individual preservation strategy, individuals with the largest fitness function value in the population
can be directly copied to the next generation, and to ensure their superiority, they do not participate in
crossover and mutation operations.

4.2.2. Crossover

In this paper, a partially matched crossover (PMX) was used to randomly select two intersections
in a chromosome, thereby obtaining a partial matching region and then exchanging the region between
two intersections in the parent to obtain two offspring chromosomes.

Step 1: Determine whether an individual has to crossover;
Step 2: Determine the crossover section;
Step 3: Determine the crossover position, namely, which columns to exchange;
Step 4: Modify the relationship between individual fragments. If there are sections that do not

meet the condition, then reconstruct upstream, and the process is similar to the initial solution.
The crossover procedure is shown in detail in Figure 4.

4.2.3. Mutation

In this section, we used the method of interchange mutation to exchange new genes to obtain
new chromosomes.

Step 1: Determine whether an individual has to mutate;
Step 2: Determine the mutated section;
Step 3: Determine the mutated position, namely, determine which lines to exchange;
Step 4: Modify the relationship between individual fragments. If there are sections that do not

meet the condition, then reconstruct upstream, and the process is similar to the initial solution.
The mutation procedure is shown in detail in Figure 3.
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4.3. Adaptive Probabilities of Crossover and Mutation

In the genetic algorithm, the choice of the crossover probability Pc and the mutation probability
Pm will affect the performance and effectiveness of the algorithm. Unreasonable parameter selection
may result in the algorithm not converging to the global optimum and falling into the local optimum.
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The traditional genetic algorithm presets the crossover and mutation probability to a specific value,
which is calculated by the probability in the whole genetic process. When the iteration reaches a
certain level, it is obviously unreasonable to cross or mutate with a certain probability. To affect
the performance of the algorithm, Srinivas and Patnaik [50] proposed an adaptive genetic algorithm
through a large number of experimental studies. In recent years, many scholars have improved the
genetic probability and proposed different adaptive genetic algorithms. In this paper, the improved
formulas for calculating the adaptive crossover ratio and mutation ratio are shown in (19) and (20):

Pc =


k1(Favg−F′)+k2(F′−Fmin)

Favg−Fmin
F′ < Favg

k2(Fmax−F′)+k3(F′−Favg)
Fmax−Favg

F′ ≥ Favg
, (19)

Pm =


k4(Favg−F)+k5(F−Fmin)

Favg−Fmin
F < Favg

k5(Fmax−F)+k6(F−Favg)
Fmax−Favg

F ≥ Favg
, (20)

where k1, k2, k3, k4, k5 and k6 all lie in the interval (0, 1) and k1 > k2 > k3, k4 > k5 > k6; F represents the
individual fitness value; Fmin, Fmax and Favg represent the minimum, maximum, and average values of
all the individual fitness functions in the contemporary population, respectively; and F′ represents the
larger individual fitness function value at the intersection of individual operations.

4.4. Process of the Genetic Algorithm

Based on the above description, we can conclude the main process of the adaptive genetic algorithm:
Step 1: Initialize parameters. Set the population size, encoding and decoding methods, and the

maximum number of iterations of the genetic algorithm.
Step 2: Generate the initial population. Two vectors and four matrices are used to randomly

generate the initial population and obtain the chromosomes in line with the population size.
Step 3: Obtain the fitness function value. The fitness function is used to calculate the fitness value

fu, u = 1,2, . . . popsize.
Step 4: Selection operation. The combination of elite strategy and roulette strategy is adopted

to determine whether the individual performs the selection operator. If the elite strategy is satisfied,
the individual will be directly inherited to the next generation without crossover or mutation; otherwise,
roulette will decide whether to enter the next step or not.

Step 5: Crossover operation. Use the improved adaptive crossover probability formula to obtain
the current crossover probability Pc and compare it with the number generated randomly between
[0, 1] to decide whether to perform the partial matching crossover operation.

Step 6: Mutation operation. Adopt the improved adaptive variation probability formula to obtain
the current variation probability Pm and compare it with the number generated randomly between
[0, 1] to decide whether to perform the swap mutation operation.

Step 7: Termination. Determine whether the maximum number of population evolutions is
satisfied. If so, the final solution is obtained; if not, return to Step 4.

The algorithm flow chart is shown in Figure 5.
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5. Computational Implementations and Discussion

5.1. Computational Implementations

In this section, we considered 52 EMU depots of the China Railway Administration as customers.
Meanwhile, because the EMU maintenance component distribution center is usually built close to the
EMU depot, 52 EMU depots were also regarded as distribution centers. Four suppliers provided the
EMU maintenance components. The above optimal model of n in Section 3.3 and the corresponding
algorithm mentioned in Section 4 were applied to solve this two-echelon EMU components distribution
network. The corresponding parameters are shown in Table 2.
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Table 2. Parameter value table.

Parameters Description Range
[minimum, maximum]

f j Fixed operating cost of opening a distribution center j (¥10,000) [52.50, 124.75]
Ct Unit transportation cost by transport mode t (¥10,000 /kilometer) [0.00005, 0.0003]
Tkj The distance from supplier k to distribution center j (kilometer) [27.2, 3858.4]

S ji
The distance from distribution center j to EMU depot i
(kilometer) [0, 4709.9]

µi Mean of daily demand at EMU depot i (unit) [2, 43]
σ2

i Variance of daily demand at EMU depot i (unit2) [1.01, 1.97]
χ Days worked in a year (day) 365

LT j Lead time for distribution center j to order from supplier k (day) [1, 4]

OCt
j

Fixed ordering cost at distribution center j by transport mode t
(¥10,000 /time) [0.1, 0.3]

HC j Holding cost at distribution center j (¥10,000 /day) 0.004
SC j Shortage cost at distribution center j (¥10,000 /day) 0.7
α j Service level for distribution center j 0.9
Zα Safety factor 1.29

To verify the effectiveness of the algorithm, we set six experiments with different sizes by standard
genetic algorithms (SGAs) to compare with proposed adaptive genetic algorithms (AGAs). The basic
parameter settings of the algorithm are shown in Table 3.

Table 3. Basic parameters of the algorithm.

Parameter Value Parameter Value Parameter Value

popsize 200 k3 0.7 k6 0.01
k1 0.9 k4 0.05 Pc 0.99
k2 0.8 k5 0.03 Pm 0.1

The computational tests were conducted on the MATLAB R2012a platform, the Intel (R) Core
(TM) i5-8250U CPU @ 1.60 GHz CPU, 8.00 GB RAM, 64-bit operating system laptop.

Experiments were named as follows: S-DC-E, S, DC and E, representing the number of suppliers,
distribution centers, and EMU depots, respectively. Because the EMU depots discussed in this paper
were both distribution centers and themselves, the values of DC and E were the same. Comparing the
SGA with the AGA, the following results were obtained.

Table 4 and Figure 6 show that when the scale was small, the results of the SGA and the AGA
were relatively similar, but the larger the scale, the better the AGA was over the SGA. On the scale of
4–60–60, the difference between the AGA and the SGA was 969.32 × ¥10,000. Although the running
time of the AGA was longer than that of the SGA, the difference was acceptable within 30 s.

Table 4. Results of the SGA and the AGA.

Experiment
SGA AGA

Total Cost Running Time Total Cost Running Time

4-10-10 370.03 21.80 238.88 26.22
4-20-20 780.16 31.12 496.70 43.49
4-30-30 1327.44 45.07 794.71 53.47
4-40-40 1863.50 47.40 1121.57 56.37
4-50-50 2257.70 57.18 1433.65 79.35
4-60-60 2781.73 72.60 1812.41 86.81
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The geographical locations of four suppliers and 52 EMU depots are shown in Figure 7. The figure
also shows the allocation and transportation modes from supplier to distribution center and distribution
center to EMU depots. Assume that transportation modes 1 to 3 are air, high-speed rail, and road
transportation, respectively.
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In the actual study, there were four suppliers and 52 EMU depots. Four suppliers: Tianyi Shangjia
High-tech Materials Co., Ltd.; Knorr Vehicle Equipment Co., Ltd.; CRRC Qishuyan Locomotive Co.,
Ltd.; Changsha Boke Metal Products Co., Ltd. were respectively represented by suppliers 1–4. Fifty-two
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EMU depots: Hongqiao, Nanjing South, Nanxiang, Shanghai South, Hangzhou East, Hefei South,
Nanjing, Guangzhou South, Shenzhen North, Changsha South, Huizhou, Guangzhou East, Foshan
Xike, Foshan West, Changzhutan, Guangzhu, Sanya, Beijing South, Tianjin, Shijiazhuang, Beijing
West, Beijing, Xiamen North, Fuzhou South, Nanchang West, Fuzhou, Nanchang, Longyan, Shenyang
North, Dalian North, Shenyang South, Changchun West, Chengdu East, Guiyang North, Chongqing
North, Wuhan, Hankou, Jinan, Qingdao North, Qingdao, Nanning, Guilin, Harbin West, Xi’an North,
Zhengzhou East, Zhengzhou, Taiyuan South, Kunming South, Urumqi, Lanzhou West, Xining, Hohhot
were respectively represented by DC 1–52 and Depot 1–52. See Tables 5 and 6 for detailed allocation.

Table 5. Situations of suppliers serving distribution centers.

Suppliers Served Distribution Centers and Transportation Mode

Supplier 1 DC19 by air, DC20 by high-speed rail, DC21 by high-speed rail, DC44 by high-speed rail
Supplier 2 DC1 by air, DC2 by highway, DC5 by highway, DC35 by highway, DC51 by high-speed rail
Supplier 3 DC7 by air, DC13 by high-speed rail, DC40 by high-speed rail, DC43 by highway

Supplier 4 DC10 by high-speed rail, DC15 by high-speed rail, DC18 by highway, DC25 by highway,
DC26 by highway, DC39 by high-speed rail, DC41 by highway, DC47 by high-speed rail

Table 6. Situations of distribution centers serving EMU depots.

Selected Distribution Center Served EMU Depots

DC1 Depot 11 by high-speed rail, Depot 22 by highway, Depot 49 by highway
DC2 Depot 23 by air, Depot 32 by highway
DC5 Depot 4 by high-speed rail, Depot 12 by highway
DC7
DC10 Depot 3 by highway, Depot 9 by air
DC13 Depot 14 by high-speed rail
DC15 Depot 29 by high-speed rail
DC18 Depot 34 by highway, Depot 45 by air
DC19 Depot 38 by high-speed rail
DC20 Depot 37 by highway
DC21 Depot 52 by air
DC25 Depot 27 by high-speed rail, Depot 33 by highway
DC26 Depot 24 by high-speed rail
DC35 Depot 8 by highway
DC39 Depot 42 by highway
DC40 Depot 28 by air, Depot 30 by highway
DC41 Depot 48 by highway
DC43 Depot 6 by highway, Depot 36 by highway
DC44 Depot 16 by highway, Depot 31 by high-speed rail
DC47 Depot 17 by highway, Depot 46 by air, Depot 50 by air
DC51

According to the results of Tables 5 and 6, in the first stage from a supplier to a distribution
center, because shipment sizes were large and the distances were long, the road transportation mode
was selected 10 times, followed by the high-speed rail transportation mode eight times, and the air
transportation mode was selected the least, three times. In the second stage, from a distribution center
to an EMU depot, there were fewer shipment sizes. Even if the distance was long, the road was selected
more often than the high-speed railway.

From the perspective of the total cost, Figure 8 shows that the proportion of the fixed operating cost
(FC) account was the largest, which was 53.44%, followed by the penalty cost (PC), which was 22.37%,
and the transportation cost (TC) and inventory cost (IC), which were 21.11% and 3.08%, respectively.
It can be seen that with the exception of the fixed operating costs, the penalty costs caused by stock
shortages were the largest. Next, we will discuss the parameters related to the stock shortage cost.
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5.2. Discussion

5.2.1. Impact of Service Level for Total Cost and Transportation Mode

To explore the impact of penalty costs on total costs and modes of transportation, this section
used service levels as variables to derive management decisions about the impact of changing service
levels on decisions. Then, we focused on how transportation mode decisions were subject to different
service levels for each DC and EMU deport.

Figure 9 shows the optimal solution for the model at different service levels. As the service level
increased, the total cost first decreased and then increased. The service level at the lowest total cost of
the model was 95%.Sustainability 2020, 12, x FOR PEER REVIEW 19 of 27 
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Combining Table 7 with Figure 10, in the first stage from a supplier to a distribution center,
the proportions of choosing air and high-speed rail transportation modes increased slightly, while the
proportion of road transportation gradually decreased.

Table 7 and Figure 11 show that in the second stage from a distribution center to an EMU depot,
because of the medium distances, the high-speed rail transportation mode was faster than the road,
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the cost was lower than the air mode, the advantages appeared, the proportions of the air and road
transportation modes gradually decreased, and the proportion of the high-speed rail transportation
mode gradually increased. However, the inexpensive road transportation mode still accounted for
approximately half.

Table 7. Proportions of different transport modes at different service levels.

Service Level S-DC Echelon DC-E Echelon

Proportion of
Air

Transportation

Proportion of
High-Speed Rail
Transportation

Proportion of
Road

Transportation

Proportion
of Air

Transportation

Proportion of
High-Speed Rail
Transportation

Proportion of
Road

Transportation

0.90 11.5% 23.1% 65.4% 25.0% 19.2% 55.8%
0.91 17.4% 30.4% 52.2% 21.2% 13.5% 65.4%
0.92 19.2% 30.8% 50.0% 25.0% 26.9% 48.1%
0.93 14.3% 38.1% 47.6% 15.4% 30.8% 53.8%
0.94 21.1% 31.6% 47.4% 17.3% 25.0% 57.7%
0.95 18.2% 31.8% 50.0% 13.5% 34.6% 51.9%
0.96 12.5% 33.3% 54.2% 26.9% 30.8% 42.3%
0.97 20.0% 28.0% 52.0% 19.2% 23.1% 57.7%
0.98 17.4% 26.1% 56.5% 13.5% 34.6% 51.9%
0.99 17.4% 34.8% 47.8% 15.4% 34.6% 50.0%
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The findings show that (i) adjusting the service level can achieve the purpose of reducing the total
cost of the distribution network, but the concept of safety first does not apply to the inventory, and the
higher service level is not better. Although the higher the service level is, the smaller the stockout cost,
the transportation cost is higher. (ii) In addition to changing the shipment size and allocation situation,
it is feasible for the China Railway Administration to appropriately adjust the transportation mode in
the maintenance component distribution network. When choosing the ratio of air, high-speed rail,
and road transportation as approximately 2:3:5, the total cost is the smallest.

5.2.2. Impact of Unit Stockout Cost on Total Cost and Transportation Mode

To explore the impact of unit stockout cost on the total cost and the choice of transportation method,
we performed a simulation analysis to study the sensitivity of the cost to changes in different service
levels and unfulfilled demand costs. Assume that the stockout costs are 0.4, 0.7, and 1.0 × ¥10,000,
respectively. The results are shown in Figure 12.
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As we expected, Figure 12 shows that the optimal service level increased with increasing unit
stockout cost. When the stockout cost was 0.4, the optimal service level was 0.93. When the unit
stockout costs were 0.7 and 1.0, the best service level was 0.95.

Except for changes in total cost, we analyzed the proportions of different transportation modes at
the optimal service level for different stockout costs.

Table 8 and Figure 13 show that with the increase in the unit stockout cost, in the first stage,
the proportion of choosing aircraft transportation increased greatly. Although the proportions of both
high-speed rail and road transportation modes declined, the decreased proportion of the latter was
greater than that of the former. This implies that the operator of China High-Speed Railway would
rather choose air transportation with expensive transport costs and ordering costs than high-speed rail
or road transportation if there existed a higher cost of out-of-stock maintenance components because
the penalty cost on the out-of-stock cost was much more than the total of the above two costs (i.e.,
transport cost and ordering cost).

Table 8 and Figure 14 show that, in the second stage, the proportions of transportation modes did
not change significantly. Consistent with the conclusions reached in Section 5.2.1, the air, high-speed
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rail, and road transportation methods remained at a ratio of 2:3:5, respectively, with minimal total cost.
However, when the maintenance components reached the DC, the distances from DC to the EMU
depot served were not far and the demand batch was not large, the impact of the unit shortage cost
was less than that of the transportation cost and the order cost. Therefore, when the unit shortage cost
changed, the proportions of the different transportation modes had fewer changes.

Table 8. Proportions of different transport modes at different shortage costs (SCs).

S-DC Echelon DC-E Echelon

Proportion of
Air

Transportation

Proportion of
High-Speed Rail
Transportation

Proportion of
Road

Transportation

Proportion
of Air

Transportation

Proportion of
High-Speed Rail
Transportation

Proportion of
Road

Transportation

SC = 0.4 4.6% 31.8% 63.6% 13.5% 30.8% 55.8%
SC = 0.7 18.2% 31.8% 50.0% 13.5% 34.6% 51.9%
SC = 1.0 28.0% 24.0% 48.0% 19.2% 30.8% 50.0%Sustainability 2020, 12, x FOR PEER REVIEW 23 of 27 
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The findings show that (i) there is a correlation between unit stockout cost and optimal service
level. The higher the stockout cost is, the higher the optimal service level, the greater the proportion of
air transportation options with high transportation costs and high order costs. (ii) Even at the optimal
service level, the higher the unit stockout cost is, the larger the proportion of choosing expensive and
fast transportation methods. The China Railway Administration can improve the supply chain. If a
low stockout cost is set, the total cost can be reduced by reducing the optimal service level.

6. Conclusions and Future Work

This paper addressed an integrated optimization model of the location–inventory problem for
EMU component distribution that incorporates the location cost of a DC, the inventory cost, the linear
transportation cost from the distribution center to the EMU depot, and the penalty cost. The proposed
problem needed to solve the following three key questions: (i) the number and locations of distribution
centers; (ii) the allocations from suppliers to the distribution centers and from the distribution centers
to the EMU depots, and the choice of transportation modes; and (iii) the distribution center optimal
order quantity, reorder point, and safety stock.

To solve the above optimal model, an adaptive genetic algorithm was given. The performance
of the proposed adaptive genetic algorithm was evaluated by comparing it with a standard genetic
algorithm. Moreover, a real-world case study based on the EMU maintenance component distribution
network design of the China High-Speed Railway was employed to verify the effectiveness of the
above optimization model and its algorithm.

The main management insights of this study are shown as follows: (i) The higher service level is
not necessarily the better, although the higher the service level is, the smaller the stockout cost, but the
transportation cost is higher. When higher service levels are required, faster transportation methods
are needed, so the cost of the entire supply chain will rise. (ii) In addition to the optimal service level,
the China Railway Administration must determine the unit stockout cost; the higher the unit stockout
cost is, the larger the proportion of choosing expensive and fast transportation methods. (iii) It is
reasonable to choose the mode of transportation and set the proportions of transportation modes. Air,
high-speed rail, and road transportation modes are optimal at a ratio of 2:3:5.

Although we used our best efforts to reflect the actual situation of the EMU maintenance component
distribution network design, in order to facilitate the theoretical solution we simplified it appropriately.
There are many extensions that should be studied in the future. First, we hope to develop the cases with
multiple items. The China Railway high-speed train has nine types of body models composed of more
than 140 systems and approximately 40,000 parts. Second, we would like to consider the problem of
location inventory transportation and make strategic, tactical, and operational decisions simultaneously.
This needs to take into account the schedule of various modes of transportation or vehicle routing
problems. Moreover, we need to combine the actual situation, considering the sharing of maintenance
components between railway bureaus. Finally we would like to improve the performance of the AGA
by embedding with other heuristic algorithms (e.g., tabu search, local search, simulated annealing)
and to investigate more comparison or benchmarking instances in the future studies.
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