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Abstract: The failure mechanism analysis of dam foundations is key for designing hydropower
stations. This study analyses the rock masses in a sluice section, which is an important part of the
main dam of the Datengxia Hydropower Station currently built in China. The stability of the sluice
rock masses is predominantly affected by gentle through-going soft interlayers and steep structural
fractures. Its foundation failure mechanism is investigated by means of a numerical method, i.e.,
Universal Distinct Element Code (UDEC) and the geomechanical model method. The modeling
principle and process, and results for the rock dam foundation are introduced and generated by using
the abovementioned two methods. The results indicate that the failure mechanism of the foundation
rock masses, as characterized by gentle through-going and steep structural discontinuities, is not a
conventional type of shear failure mechanism but a buckling one. This type of failure mechanism is
verified by analyzing the deformation features resulting from the overloading of both methods and
strength reduction of the numerical method.

Keywords: buckling failure mechanism; rock dam foundation; UDEC; geomechanical model method

1. Introduction

To satisfy the enormous energy demands, many high gravity dams are being or will be built
in China [1,2]. The stability of a dam foundation is one of the crucial factors affecting its normal
operation [3,4]. Once the dam foundation suffers destruction, it will cause enormous losses. Therefore,
foundation stability analysis is essential, which forms an important part of the safety assessment for
gravity dams.

Three approaches are commonly executed for the mechanical and deformation analyses of dam
foundations: the limit equilibrium method, geomechanical model method and numerical method [5,6].
The computational process of the limit equilibrium method is simple and clear, and it provides a
simple stability index in the form of the safety factor [7–9]. Nevertheless, ignoring the deformation
compatibility conditions and stress–strain relation [10], it only considers the equilibrium conditions
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of the system under analysis by regarding the rock masses as a rigid body. The assumptions and
simplifications may not be sufficient for representing the real situations in complex geological conditions.
In order to investigate the deformation characteristics of rock masses and intuitively reflect failure
scenarios, the geomechanical model method is implemented in stability analyses [11–14]. Based on
similarity theory, the geomechanical model method can represent the spatial relationships of geological
structures. Considering the complexity and high cost involved in implementing the geomechanical
model, the numerical method [15–17] is becoming popular and is widely utilized with the rapid
development of high-performance computers. The advantages of using the numerical method lie in its
flexibility to model complex geometries and geologic conditions, and its ability to simulate a variety of
material behaviors and incorporate the influence of construction procedures. The advantages of both
the geomechanical model method and numerical method can be synthesized for effective utilization.
Consequently, complex engineering technical problems can be comprehensively analyzed and verified
from different perspectives.

Determining the failure mechanisms of gravity dams is crucial in stability analysis and reinforcement
measure selection [2]. For different failure mechanisms, the stability analysis methods are not exactly the
same, so we first need to determine the specific failure mechanism. At present, the failure mechanisms of
dam foundations include shallow shear sliding along the base interface between the concrete dam body
and rock masses, and deep shear sliding through the rock masses [4,18,19]. Shallow sliding mainly occurs
under conditions in which the strength of the rock masses is much larger than that of the concrete dam
body, and in which the rock masses are relatively complete with no massively weak structural planes
developing in it. In this case, the shear strength of the base interface is an important index to control
the design of the gravity dam [20,21]. In comparison with shallow sliding, deep sliding, which arouses
popular attention, is more complicated because of the difficulty of assessing rock mass structures and
the complexity of determining their shear parameters [4]. Even so, scholars have conducted substantial
research on the failure mechanisms of many large-scale dams [18,22,23].

Great progress has been made in the study of the failure mechanisms of gravity dams. However,
a type of geological structure, whose effects on dam stability are not emphasized, has always been
neglected. This type of geological structure is characterized by a combination of gentle through-going
and steep structural discontinuities. The former is always constituted by bedding surfaces, faults,
and soft interlayers, whereas the latter are embodied as structural fractures. These types of dam rock
mass structures remind us of the landslide buckling failure mechanism, which is always characterized
by steep through-going and gentle non-persistent discontinuities subjected to erect gravity [24,25].
Rotating the buckling force and geological structures equals our model, which may thus trigger
catastrophic rock mass failure as well. However, the buckling failure mechanism is totally different
from the shear failure introduced in the last paragraph. Therefore, an intensive study of this type of
rock mass structure with potential buckling failure is essential.

In this paper, we attempt to study the failure mechanism of the No. 28 sluice rock masses, which
are a part of the dam foundation of the Datengxia Hydropower Station. This station is the primary
project of the Chinese Ministry of Water Resources for 2016–2020, and the rock masses of the dam
(sluice) foundation are characterized by a combination of gentle through-going and steep structural
discontinuities. The purpose of this study is to ascertain the failure mechanism of the rock masses or
check if there is a completely new failure mechanism, such as buckling similar to landslide failure.
In order to ensure the reliability of the results, numerical modeling (discrete element method) and the
geomechanical model method are introduced in this paper. Consequently, the failure mechanism is
confirmed on the basis of the stress and deformation distributions in the rock masses. The results can
provide a scientific basis for practical project construction.
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2. Study Area and Data Acquisition

2.1. Study Area

The study area is located at the Pearl River Basin in Guiping City, Guangxi Zhuang Autonomous
Region, China (Figure 1a). The Datengxia Hydropower Station—whose important tasks are flood
control, shipping, power generation, and irrigation—is currently under construction in this area.
The normal water levels of the upstream and downstream reservoirs are 61.0 m and 22.7 m, respectively,
and the corresponding storage capacity is 2.81 × 109 m3. As shown in Figure 1b, the upstream reservoir
area belongs to the mountain area where the elevation is approximately 300 m to 500 m, with a V-shaped
gorge. In the downstream reservoir, the reservoir area belongs to the plain area whose elevation ranges
from 60 m to 130 m. The main dam, which is a concrete gravity type with a height of 80.01 m and
length of 1343.1 m, is located at the exit of the Datengxia gorge of the Qianjiang River (Figure 1b).
The sluice sections, consisting of Nos. 23–33, are important parts of the main dam (Figure 1c).
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Figure 1. Location and surrounding topography of the study area: (a) geographic location of Datengxia
Hydropower Station; (b) topography around the main dam; (c) positional relationship between the
main dam and the sluice.

The Nagaoling (D1n) and Yujiangian (D1y) formations, which belong to lower Devonian (D1),
crop out in the sluice sections. The rock strata are sedimentary rocks, including mainly limestone,
dolomitic limestone, siltstone and mudstone (Figure 2a). The rock strata dip at direction of 100◦–110◦

with dip angle of 10◦–15◦. There are many kinds of discontinuous planes in rock masses, i.e., faults,
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bedding surfaces, soft interlayers, and structural fractures. After reservoir impoundment, the sluice
will withstand greater water thrust force. Consequently, a further investigation of the safety level and
the failure mechanism of the sluice sections, with full consideration of the influence of unfavorable
geological conditions, is necessary for ensuring project safety.
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Figure 2. Main lithology types and soft interlayer in the rock masses of the sluice foundation: (a) exposed
sedimentary rocks; (b) a soft interlayer exposed by drilling exploration.

As shown in Figure 3, faults are found in the foundation, most of which are characterized by
crush zones with widths less than 1 m and steep dip angles. All these faults intersect the dam axis at a
relatively large angle. F216, which dips at N70◦ W, SW ∠75◦–85◦, is the largest fault passing through
the Nos. 29 and 30 sluice. The 9 m soft materials beneath the outcrop for F216 will be substituted by
concrete to highly increase its strength.
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Figure 3. Unfolded image of fractures and faults of sluice rock masses.

Bedding surfaces are developed, and a high proportion of them are filled by materials with mud
and debris, forming gentle soft interlayers (Figure 2b). The soft interlayers have thickness ranging
from 3 to 5 mm. Highly reduced strength makes the soft interlayers become a key factor influencing
the stability of the sluice rock masses.

The structural fractures in the rock masses are extremely developed, with the vast majority of
them dipping with angles of more than 70◦. Field observation shows that most fractures are not
extended through the soft interlayers as shown in Figure 4b–d, so the fractures can be regarded as
staggered with soft interlayers. The fractures’ characteristics, such as their trace length and orientation,
significantly vary across different regions (Figure 2). In the present study, the structural fractures in
one section of the sluice rock masses are introduced in Section 2.3 in detail.
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In the present study, two-dimensional (2–D) analysis with the 2-D profile perpendicular to the
dam axis is implemented, which will be discussed in the Discussion section. The fractures that strike
approximately perpendicularly to the dam axis act as the surface of separation and will not be displayed
on the 2-D profile so that they do not affect the results of the 2-D stability analysis. Figure 3 shows that
the size and number of the fractures developed in the No. 28 sluice are large. It also can be seen that a
considerable proportion of the fractures strike parallelly to the dam axis, which forms the outlet of rock
mass failure and then controls the stability analysis result for the rock masses. Therefore, the stability
of the No. 28 sluice should be paid special attention to.

2.2. Investigation of Soft Interlayers

The geological profile of the No. 28 sluice is shown in Figure 4a. The lithology in this sluice is
characterized by strata in D1n (including D1n12, D1n13-1, D1n13-2, and D1n13-3) and D1y (including
D1y1-1, D1y1-2, and D1y1-3). Extremely thin (3–5 mm) mud and debris fill the bedding surfaces,
forming through-going soft interlayers. These soft interlayers (Figure 4a, see black wavy lines) fill the
boundaries of two different strata. The stratigraphic boundary between D1y1-3 and D1y1-2 and that
between D1y1-2 and D1y1-1 are illustrated in Figure 4b,c. Apart from these stratigraphic boundaries,
the bedding surfaces in the strata of D1y1-1 and D1n are also filled with mud and debris, forming
developed soft interlayers with a spacing of 2–5 m. A soft interlayer developed in D1n13-2 is taken
as an example and shown in Figure 4d. The shear strength of the soft interlayers is much lower
than that of the intact rocks; thus, they form potential failure surfaces for the rock masses in the dam
(sluice) foundation.

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 20 

orientation, significantly vary across different regions (Figure 2). In the present study, the structural 
fractures in one section of the sluice rock masses are introduced in Section 2.3 in detail. 

In the present study, two-dimensional (2–D) analysis with the 2-D profile perpendicular to the 
dam axis is implemented, which will be discussed in the Discussion section. The fractures that strike 
approximately perpendicularly to the dam axis act as the surface of separation and will not be 
displayed on the 2-D profile so that they do not affect the results of the 2-D stability analysis. Figure 
3 shows that the size and number of the fractures developed in the No. 28 sluice are large. It also can 
be seen that a considerable proportion of the fractures strike parallelly to the dam axis, which forms 
the outlet of rock mass failure and then controls the stability analysis result for the rock masses. 
Therefore, the stability of the No. 28 sluice should be paid special attention to.  

2.2. Investigation of Soft Interlayers 

The geological profile of the No. 28 sluice is shown in Figure 4a. The lithology in this sluice is 
characterized by strata in D1n (including D1n12, D1n13-1, D1n13-2, and D1n13-3) and D1y (including D1y1-1, 
D1y1-2, and D1y1-3). Extremely thin (3–5 mm) mud and debris fill the bedding surfaces, forming 
through-going soft interlayers. These soft interlayers (Figure 4a, see black wavy lines) fill the 
boundaries of two different strata. The stratigraphic boundary between D1y1-3 and D1y1-2 and that 
between D1y1-2 and D1y1-1 are illustrated in Figure 4b–c. Apart from these stratigraphic boundaries, 
the bedding surfaces in the strata of D1y1-1 and D1n are also filled with mud and debris, forming 
developed soft interlayers with a spacing of 2–5 m. A soft interlayer developed in D1n13-2 is taken as 
an example and shown in Figure 4d. The shear strength of the soft interlayers is much lower than 
that of the intact rocks; thus, they form potential failure surfaces for the rock masses in the dam 
(sluice) foundation. 

 

Mud and debris 

Bedding surface 

(c) (d) 

Mud and 

Bedding surface 

Mud and debris 

Bedding 

(b) 
Fractures 

Fractures 

Fractures 

(a) 

Figure 4. Geological structures in rock masses of No. 28 sluice: (a) geological profile of No. 28 sluice;
(b) stratigraphic boundary between D1y1-3 and D1y1-2; (c) stratigraphic boundary between D1y1-2
and D1y1-1; (d) D1n13-2 with a soft interlayer.
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2.3. Data Acquisition for Fractures

The gentle through-going soft interlayers incline towards underground, lacking outlet planes for
an integral failure surface. As shown in Figure 4a and discussed in Section 2.1, structural fractures
developed in D1y1-1, D1y1-2, D1y1-3 and D1n13-3 may constitute the outlet planes. Consequently,
the structural fractures along the No. 28 sluice are collected. The sampling window method [26,27]
is applied to collect fractures with trace lengths larger than 0.5 m on a horizontally excavated rock
outcrop (Figure 5a). The X and Y coordinate axes of the measurement coordinate system are parallel
and perpendicular to the dam axis, respectively. The start and end coordinates, dip direction, dip angle,
aperture, surface morphology, and filling of fractures are recorded.
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Figure 5. Data acquisition for fractures in downstream rock masses: (a) collection area in the field;
(b) 2-D trace maps of fractures in D1y1-3; (c) 2-D trace maps of fractures in D1y1-2; (d) 2-D trace maps
of fractures in D1y1-1; (e) 2-D trace maps of fractures in D1n13-3.
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A total of 767 fractures are acquired in the field, of which 50, 50, 390, and 277 are developed in
D1n13-3, D1y1-1, D1y1-2, and D1y1-3, respectively (Figure 5b–e). The statistical results of the collected
fractures show that steep dip-angled fractures (higher than 70◦) prevail and that the apertures locate
between 1 mm and 3 mm. The contours of fracture orientation poles are shown in Figure 6, which
represents two sets of fractures consistent with the field observation.
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The grouping results are derived based on the method suggested by Shanley and Mahtab [28]
(Table 1). The results indicate that the mean direction of Fracture Set 1 intersects the dam axis at a low
angle, and Fracture Set 2, at a large angle. As previously discussed in Section 2.1, Set 1 has a majority
of fractures dipping upstream approximately perpendicularly to the bedding surfaces and plays an
important role in the 2-D stability analysis.
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Table 1. Grouping results for collected fracture in the field.

Strata Fracture Set Fracture Number Dip Direction (◦) Dip Angle (◦)

D1y1-3
1 158 298 79
2 119 200 82

D1y1-2
1 308 294 81
2 82 212 82

D1y1-1
1 33 299 78
2 17 208 80

D1n13-3
1 31 305 79
2 19 213 80

The spacing of Fracture Set 1 should be derived before conducting the 2-D stability analysis of the
No. 28 sluice. In the present study, twenty scanlines perpendicular to the dam axis are set to determine
the fracture spacing. There is little difference among the spacing values for D1y1-1, D1y1-2, D1y1-3,
and D1n13-3; thus, the fractures are used for the spacing calculation as a whole. The final results show
that the average fracture spacing along the No. 28 sluice profile direction is 2.07 m, which is eventually
adopted as 2 m. The values of the fracture spacing of D1n13-1, D1n13-2, and D1n12, which have little
influence on the 2-D stability analysis results (Figure 4), are also adopted as 2 m for convenience.

3. Numerical Modeling

Numerical methods are generally divided into continuum methods (CMs) and discrete methods
(DMs) [29]. CMs mainly include the finite element method, finite difference method, boundary element
method, and finite volume method [30]. DMs mainly include the distinct element method (DEM),
discontinuous deformation analysis, and the key block theory [31]. Numerous geological structural
planes are developed in the rock masses of the No. 28 sluice, embodying distinct discrete features
of geological materials. Eventually, the commonly used 2-D DEM of Universal Distinct Element
Code (UDEC) [32], which has been proved to have advantages in simulating the deformation and
destruction of rock masses with through-going discontinuities, is employed in the present study [33–37].
Notably, the non-persistent structural fractures are substituted by through-going fractures to meet the
requirements of UDEC, which will be discussed in Section 3.1.

3.1. Establishment of UDEC Model

The numerical model should be sufficiently large to overcome the boundary effect [1,38]. The UDEC
model simulates a domain with 3.5 times the sluice height (42 m) upstream, 3.0 times the sluice height
downstream, and 3.0 times the dam height beneath the sluice bottom. Eventually, the total size of the
model is 340 m (length) × 168 m (height) (Figure 6).

The strata are cracked by staggered fractures with a spacing of 2 m according to the geological
descriptions in Section 2.3. However, the deep-seated fractures have minor effects on the deformation.
Therefore, the spacing is increased to 10 m in consideration of the calculation speed.

In D1n and D1y1-1, the fractures are nearly perpendicular to the soft interlayers, and the sizes of a
large proportion of the fractures are larger than the soft interlayer spacing of 2–5 m; thus, the fractures
between two soft interlayers are usually thorough-going. The fractures developed in D1y1-2 and D1y1-3
are virtually non-persistent; however, they are presumed to be through-going for the application of
UDEC. It is believed that the possibility that a failure surface extends along these two hard strata far
from the sluice is relatively small. This presumption is reasonable if the conservative disposition does
not result in the failures of these two strata.

Fault F216, which is reinforced by hard concrete, is located upstream of the sluice and intersected
by the dam axis at a relatively large angle. Therefore, F216 has little influence on the 2-D analysis
results for the sluice rock masses. Consequently, F216 is not considered in the model. Besides, grout
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curtain, a barrier that reduces the influence of seepage on the foundation, is taken into account in the
numerical model.

The sluice is simulated as a solid block. Finally, a UDEC model of the No. 28 sluice is established
(Figure 7). The bottom and side boundaries of this model are assumed to be impermeable and to be
subjected to widely applied roller conditions, which are the boundary conditions in the plane strain
analyses [39,40]. The influences of sediment pressure and wave pressure are not considered in the
numerical method. Finally, hydrostatic pressures are applied to the sluice and on the rock masses
according to the designed water level (Figure 7).
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Figure 7. Numerical model and boundary condition of No. 28 sluice.

3.2. Material Properties

UDEC analysis requires the material properties of the intact blocks (including intact rocks and
sluice) and the discontinuities (including soft interlayers and structural fractures). A linear elastic
constitutive model with a Mohr–Coulomb failure criterion is applied to model intact blocks, for which
six parameters as shown in Table 2 are required. These parameters can be determined by performing
the pycnometric method, uniaxial compression test, direct shear test, and Brazilian splitting test [41].

Table 2. Material parameters of intact blocks.

Number Density,
ρ (g/cm3)

Elastic Modulus,
E (GPa)

Poisson’s Ratio,
λ

Friction Coefficient,
ϕ (◦)

Cohesion,
c (MPa)

Tensile Strength,
σt (MPa)

Sluice 2.4 25.5 0.2 54.8 3.18 1.54
D1y1-3 2.82 5.0 0.28 40.7 0.82 1.58
D1y1-2 2.82 8.0 0.26 41.3 0.85 1.58
D1y1-1 2.79 5 0.28 40.4 0.8 4.26
D1n13-3 2.75 5 0.26 39.0 0.79 6.1
D1n13-2 2.77 6 0.28 48.0 1.45 7
D1n13-1 2.73 8 0.26 50.9 1.63 5
D1n12 2.69 9 0.26 52.2 1.72 6.5

The Coulomb sliding model is used to describe the mechanical behavior of the discontinuities,
for which eight parameters as shown in Table 3 are required.
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Table 3. Material parameters of the discontinuities.

Type

Normal
Stiffness,

kn
(Pa/m)

Shear
Stiffness,

ks
(Pa/m)

Friction
Angle,
ϕj
(◦)

Cohesion
cj

(Pa)

Tensile
Strength,
σt

j
(Pa)

Permeability
Factor,

kj
(Pa−1s−1)

Aperture at
Zero Normal

Stress, a0
(m)

Residual
Aperture,

ares
(m)

Structural
fractures 4.2 × 1011 4.2 × 1010 26.5 0 0 83.3 2 × 10−3 1 × 10−3

Soft interlayers
(D1y1-2–D1y1-3) 4.0 × 1011 4.0 × 1010 16.7 3 × 104 0 83.3 3 × 10−3 1.5 × 10−3

Soft interlayers
(D1y1-1) 3.2 × 1011 3.2 × 1010 17.7 4 × 104 0 83.3 3 × 10−3 1.5 × 10−3

Soft interlayers
(D1n13-1–D1n13-3) 3.9 × 1011 3.9 × 1010 15.6 2 × 104 0 83.3 2 × 10−3 1 × 10−3

Soft interlayers
(D1n12) 5.5 × 1011 5.5 × 1010 14.5 1.5 × 104 0 83.3 2 × 10−3 1 × 10−3

3.3. Numerical Modeling and Its Results

In the present study, the overload method is applied to the UDEC analysis to check the plastic
zone development and the bearing resistance of the sluice and its foundation. This method is achieved
by increasing the hydrostatic pressure to Kp times its original value, where Kp is the overload factor.
As shown in Figure 7, a water level difference (a pressure difference) exists upstream and downstream,
which will lead to water flow along the discontinuities. Based on the steady state flow algorithm in
UDEC, the pore pressure of the dam foundation is obtained for later stability analysis. Therefore,
the hydro-mechanical coupling, which involves the interaction between hydraulic and mechanical
processes, is considered in the numerical modeling.

A large number of monitoring points are set in the sluice and its foundation rock masses, and nine
of them (Figure 7) from different locations are selected to describe the numerical analysis results.

The nine points (A–I) are used to illustrate the variation of the displacement with the overload
factor Kp (Figure 8). The displacements in the upward and downstream directions are positive, whereas
those in the downward and upstream directions are negative. It can be seen that the horizontal
displacements and vertical displacements of the monitoring points basically increase uniformly as
Kp increases from 1.0 to 6.0. On the whole, the horizontal displacements are larger than the vertical
displacements due to higher horizontal hydrostatic pressures. It is worth noting that the vertical
displacements of the sluice upstream point (A) are positive and those of the downstream points (B and
C) are negative (downward), which indicates that the sluice has been rotated.

Afterwards, the growth rate of the displacement increases when Kp rises from 6.0 to 7.0. The vertical
displacements of the downstream rock masses close to the sluice (points G, H, and I) have a tendency
to move upward. As Kp = 8.0, the displacements of the monitoring points keep increasing, and the
maximum unbalance force value is always in a state of fluctuation; that is, the model has been
breached [4].
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Figure 8. Displacement curves for monitoring points with overload factor KP: (a) sluice displacement
and (b) foundation displacement.

The variations in the mechanical properties of the rock masses during the increase in the overload
factor are recorded. When KP is equal to or smaller than 3.0, the whole model is within the elastic range
and no plastic zones are detected. When Kp is increased to 4.0, tensile plastic zones initially appear in
the upstream cutoff trench (Figure 9b). When Kp is 5.0, compressive plastic zones initially appear in the
rock masses adjacent to the dam toe and the downstream cutoff trench (Figure 9c). With the increase in
Kp, the tensile and compressive plastic zones all keep propagating. When Kp increases from 6.0 to 7.0,
plastic zones in the rock masses adjacent to the dam toe rapidly extend, indicating an increase in the
growth rate (Figure 8). In addition, the tensile plastic zones run through the sluice. The tensile and
compressive plastic zones propagate when Kp increases to 8.0, and the model is eventually destroyed
(Figure 9f).
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4. Geomechanical Model Test

4.1. Model Test Design

The physical sizes of the sluice and rock masses of the No. 28 sluice are reduced to generate
a geomechanical model to study their deformations with an increase in the overload factor.
The dimensions of the prototype for the geomechanical model are slightly different from those
of the numerical model, i.e., the upstream length and the downward depth are 1.0 and 2.0 times the
sluice height. The geomechanical model test is designed and operated according to the similarity
principles. The similarity relations between the prototype and the model should be met, which
include geometrical and mechanics parameters and the boundary and initial condition. In this study,
the geometrical similarity scale of the prototype to the model is set to 100. Considering that one sluice
section has a width of 31.3 m (Figure 3), a geomechanical model measuring 2.35 m × 0.31 m × 1.26 m
is produced (Figure 10). The unit weight Cγ is set to 1. Then, relevant similarity scales that are
essential for geomechanical model generation are derived in Table 4 according to similarity theory [42].
The material parameters shown in Table 3 can be redefined for geomechanical modeling based on the
relevant similarity scales. Finally, the results of the geomechanical model test can be converted to
actual prototype values.
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Table 4. Similarity scales of geomechanical model.

Geometric
Dimensions

Unit
Weight

Young’s
Modulus Stress Strain Displacement Cohesion Friction

Coefficient
Shear

Strength
Poisson’s

Ratio

CL Cγ CE Cσ Cε Cu Cc Cf Cτ Cµ

100 1 100 100 1 100 100 1 100 1
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Figure 10. Overall view of geomechanical model for No. 28 sluice: (a) construction in geomechanical
model; (b) monitor equipment.

The materials used for model construction are crucial for generating the geomechanical model
and producing acceptable test results. The sluice, downstream apron, and rock masses are composed
of barite powder, bentonite, cement, and gypsum powder. Barite powder is used as the weighting
material to make the density of the geomechanical model materials equal to that of the prototype
materials, and bentonite is used to reduce the Young’s modulus of the material. Cement and gypsum
powder are used as the cementing material [42]. Through the adjustment of the proportions of the
above components, model materials with different physical-mechanical parameters can be obtained,
respectively (Table 3). It should be noted that the density of the sluice is slightly raised to incorporate
the role of vertical hydrostatic pressure, which will be explained in the Discussion section.

The molds of the sluice and the downstream apron are produced by pouring according to the
procedures introduced in Fumagalli [11]. Consequently, molds are finely carved to the designed shape
and dimensions, as shown in Figure 10. The rock blocks are constructed by small block masonry [43],
with the length of each equaling 10 cm and the height equal to the corresponding soft interlayer spacing.

Structures, i.e., soft interlayers and structural fractures, are much softer and thus crucial for the
geomechanical test results. In this test, the cohesive strength of the soft interlayers, which is extremely
small, is ignored as a safety buffer. A slice of dewatered gypsum with craft papers is adopted to
simulate soft interlayer material [44]. The other concern is the structural fractures, which are considered
perpendicular to the bedding surface and have a spacing of 2 m in superficial layers and 10 m in deep
layers in the numerical modeling. A simplification operation is performed in which all the spacing is
set to 10 cm (10 m for the prototype) to simplify the masonry work.

Hydrostatic pressure acting on the sluice upstream face is simulated by two hydraulic jacks
(Figure 10a). Two sets of oil pumps and pressure control systems are used to control the pushing forces
of the jacks. Similar to in the numerical modeling, the sediment pressure and wave pressure are not
considered in the model test. In the process of overloading, the model test performs a step-loading
procedure with an incremental load of 0.2P0 (P0 denotes the normal hydrostatic pressure).

The deformation development processes of the sluice and foundation are monitored by displacement
sensors (Figure 10b). Forty monitoring points, with different locations as presented in Figure 10a,
are arranged in the model. The displacements in the horizontal and vertical directions of each monitoring
point are recorded by a high precision data acquisition system (UCAM-70A, Japan).
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4.2. Deformation Analysis

The locations of the selected monitoring points in the geomechanical model are the same as
those in the numerical modeling described in Section 3.3 (Figure 10a). The relationship between the
deformation of the sluice/foundation and the overload factor KP are investigated. Here, the deformation
regulations are the same as those in the numerical modeling.

As for the sluice, the horizontal displacements (Figure 11a) are always positive (downstream
direction) subjected to downstream-directed hydrostatic pressures, and the horizontal displacements
of the upstream point (A) are larger than those of the downstream points (B and C). Similar to in the
results of the numerical modeling, the sluice is also rotated, with positive vertical displacements of the
upstream points and negative vertical displacements of the downstream points.
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Figure 11. Displacement curves with different overload factor KP values: (a) sluice displacement curves
and (b) foundation displacement curves.

Figure 11b shows the developing process of the horizontal and vertical displacements of the
foundation rock masses with KP values. The horizontal displacements of the monitoring points (D–I) are
positive, and they gradually increase with an increase in KP. When KP increases from 1.0 to 5.6, the vertical
displacements of the monitoring points (D–I) are negative and have been increasing. When KP is 5.6,
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an inflection point appears in the vertical displacement curves of the downstream rock masses (points G,
H, and I), showing that the vertical displacement values are getting smaller (starting to move up). In the
process of overloading, when KP rises from 5.6 to 6.6, the soft interlayers and the structural fractures
gradually open, embodied as gradually increasing cracks.

5. Failure Mechanism Analysis

An overload with a KP equal to 6.6 results in a large number of cracks (Figure 12). The cracking
zones are distributed in rock masses near to the upstream cutoff trench and downstream rock masses
close to the sluice. It is likely that an integral shear failure is about to occur along the soft interlayers
and the structural fractures. However, a strange area (Zone II in Figure 12)—which exhibits a lack of
cracks and, consequently, separate crack Zones I and III—catches our attention. This phenomenon is
contrary to the fact that the shear zone is continuous, which can directly result in an integral failure of
the dam foundation. As a result, we suspect that the failure mechanism of this dam foundation is not
dominated by the traditional shallow or deep shear mechanism.
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Figure 12. Cracking status of the geomechanical model when KP is 6.5.

The strength reduction method is applied to further ensure the absence of the traditional shear
mechanism by carrying out the deformation analysis with gradually reduced shear parameters
(i.e., cohesion cj and internal frictional angle ϕj) of the discontinuities (structural fractures and soft
interlayers). Points D, F, and H, which are located in different areas in the foundation rock masses,
are chosen to exhibit the results of the strength reduction method, which is executed by means of UDEC.
The analysis results show that a larger reduction factor results in a greater deformation, as depicted by
the horizontal displacement in Figure 13. A distinct large reduction factor of 10, with the shear strength
of discontinuities 0.1 times their original values, results in no significant horizontal displacements.
Even a larger reduction factor (e.g., 30) will still not lead to an overall rock mass destruction, which
is not described in detail. This is a phenomenon that contradicts the shear mechanism. Meanwhile,
the other one arises when we reduce the elastic modulus of the intact rocks and plot it together with
the horizontal displacements. The results show that the reduction of the elastic modulus of intact rocks
leads to a much larger deformation than that of the shear strengths of the discontinuities (Figure 13).
It is plausible that the rock masses of the sluice are not predominantly affected by shear displacement
but are subjected to compression forces leading to intact rock deformation.
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Since the shear failure mechanism of the rock dam foundation has already been ruled out, a reasonable
mechanism should then be examined. Overload with small KP values (1.0–7.0 and 1.0–5.6 for numerical
method and geomechanical model methods, respectively) results in the negative (downward) vertical
displacement of monitoring points (Figures 8 and 11) due to the sluice-transmitted compression along the
rock layer. Increasing the KP for different points leads to various deformation development conditions.
On the whole, all the points deform downward except those in the downstream rock masses (points G,
H, and I), which start moving upward, since KP is larger than 7.0 and 5.6 for the numerical method and
geomechanical model method, respectively. The velocity vector map recorded by the numerical method
is further used to depict the deformation of the sluice and the rock masses (Figure 14). The results in
Figure 14 shows that the sluice has a tendency to rotate, and the rock masses close to the cutoff trench
have a tendency to move along the rock layer. Most importantly, the direction of the velocity vector of the
downstream rock masses is upward, consistent with the previously described displacement.Sustainability 2019, 11, x FOR PEER REVIEW 17 of 20 
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Combined with the above analyses, it could be concluded that the pressure transmitted through
the sluice results in the compression along the rock layer. This phenomenon causes not only downward
displacement components but also expansion in the direction perpendicular to the bedding (upward)
due to the Poisson effect. When KP is small, the downward displacements are larger, leading to a
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downward integral velocity vector. However, the rock masses in a compressive plastic state with
a larger Kp rapidly expand, resulting in integral upward displacement. Notably, the expansion of
rock masses in the upstream cutoff trench, which are also turned into a compressive plastic state,
can hardly be embodied due to the gravity of the sluice. The upward displacements will easily make
the downstream rock masses buckled, similarly to the landslide flexural-buckling failure mechanism.

In summary, the rock masses of the dam foundation fractured by gentle through-going and steep
structural discontinuities are characterized by upward displacements of the downstream rock masses.
Their failure is probably not dominated by the shear mechanism but the buckling mechanism.

6. Discussion

A three-dimensional (3-D) simulation result is an authentic reflection of the practical deformation
and destruction of the foundation rock masses [33,45]. Although sustained efforts and significant
progress have been made, accurate 3-D analysis still seems to be difficult in terms of the current
technology level [46,47]. The most important reasons for this difficulty come from the uncertainties of
the discontinuities and the complexity of he calculation. Only discontinuities in 2-D rock outcrop can
be collected; thus, the vast majority of discontinuities are invisible, easily resulting in a large error.
However, this error also exists in 2-D analysis, and can be reduced by the elaborative prospecting
of the various scales of discontinuities. Due to such a tremendous number of discontinuities, a 3-D
calculation is always faced with the dilemma of eliciting a timely result in practical engineering projects,
especially involving extremely complex structural fractures [6]. The present study involves the research
of structural fractures, a huge number of which clearly slow down the calculation. Consequently,
3-D analysis becomes extremely difficult or even impossible. Eventually, 2-D analysis is applied in this
study; even so, 3-D analysis will be our prospective endeavor.

The modeling results of the numerical method and geomechanical model method, which are
regarded as the most important techniques for analyzing foundation rock masses, seem to be coincident
with each other. However, there are still a number of discrepancies in their implementation processes,
which are mainly embodied by the exerted forces and model configuration. In the light of the difficulty
that forces such as those shown in Figure 7 exerted on the geomechanical model, two hydraulic jacks
are applied to exert converted horizontal hydrostatic pressures, and the vertical hydrostatic pressures
are added to the sluice gravity. In addition, the seepage forces are not considered in the geomechanical
model due to the absence of currently available devices. The discrepancies related to the model
configuration are embodied by the upstream model size, the downstream apron, and the structure
spacing. The upstream model extends to 3.5 times the sluice height so as to accomplish seepage and
hydro-mechanical coupling analyses in the numerical modeling. On the other hand, the absence of
seepage analysis in the geomechanical model causes the upstream length to be 1.0 times the sluice
height. Deep rock masses have little influence on stability; thus, the downward depth extends to
2.0 times the sluice height in the geomechanical model. The downstream apron, a facility for protecting
the river bed from water erosion, is not considered in the numerical method because it always serves
as a safety reserve in practical engineering projects. However, the geomechanical model considers this
apron as a necessary component part for reconstructing the sluice structures. Possible errors resulting
from the inconsistent spacing can be reduced or eliminated by placing the structural fractures in the
downstream cutoff trench and dam toe because the deformation and destruction of the rock foundation
easily occur there. Nonetheless, despite the abovementioned differences, the failure mechanism
reflected by two methods is consistent. That is, the failure mechanism of the No. 28 dam foundation is
not a traditional shallow or deep shear failure but a buckling failure mechanism.

7. Conclusions

This study takes the Datengxia Hydropower Station, which is a primary project of the Chinese
Ministry of Water Resources for 2016–2020, as a research object. Specifically, the failure mechanism of
the rock masses of the sluice, which is an important part of the main dam, is researched via adopting
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the numerical method and geomechanical model method. Consequently, a new failure mechanism
(buckling) for the dam foundations is deduced. The main conclusions are as follows.

(1) The buckling failure mechanism is prone to occurring in a type of geological structure
characterized by a combination of gentle through-going and steep structural discontinuities. The former
is characterized by soft interlayers, bedding surfaces, or faults, and the latter are always structural
fractures. This type of failure mechanism is manifested by the fact that the failure is not predominantly
affected by shear displacement but is subjected to compression forces leading to intact rock deformation
and upward displacements of downstream rock masses. Therefore, the crack zones are disconnected,
and the shear parameters of the discontinuities have much less influence on the foundation deformation
and mechanical characteristics than the rock modulus.

(2) The synthetic application of the numerical method and geomechanical model method can
efficiently determine the failure mechanism of the rock dam foundation. The geological conditions
of the rock dam foundation are highly complicated, and simplification for the geomechanical model
is inevitable. However, the geomechanical model method can provide a fundamental means for
qualitatively analyzing the failure mechanism, which is meaningful when combined with the numerical
method. Therefore, these two means could be capable of verifying each other to some extent.

The 2-D analysis used in this study is an efficient means, which is especially applicable to
practical engineering projects involving complex structural fractures. However, the 3-D approach,
whose accuracy can be improved by means of refining the structure prospection and computer
algorithm/efficiency, is still of great importance. This approach will be the direction for our future efforts.
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