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Abstract: Advances in establishing real-time river water quality monitoring networks combined
with novel artificial intelligence techniques for more accurate forecasting is at the forefront of urban
water management. The preservation and improvement of the quality of our impaired urban
streams are at the core of the global challenge of ensuring water sustainability. This work adopted a
genetic-algorithm (GA)-optimized long short-term memory (LSTM) technique to predict river water
temperature (WT) as a key indicator of the health state of the aquatic habitat, where its modeling is
crucial for effective urban water quality management. To our knowledge, this is the first attempt
to adopt a GA-LSTM to predict the WT in urban rivers. In recent research trends, large volumes
of real-time water quality data, including water temperature, conductivity, pH, and turbidity, are
constantly being collected. Specifically, in the field of water quality management, this provides
countless opportunities for understanding water quality impairment and forecasting, and to develop
models for aquatic habitat assessment purposes. The main objective of this research was to develop a
reliable and simple urban river water temperature forecasting tool using advanced machine learning
methods that can be used in conjunction with a real-time network of water quality monitoring stations
for proactive water quality management. We proposed a hybrid time series regression model for
WT forecasting. This hybrid approach was applied to solve problems regarding the time window
size and architectural factors (number of units) of the LSTM network. We have chosen an hourly
water temperature record collected over 5 years as the input. Furthermore, to check its robustness,
a recurrent neural network (RNN) was also tested as a benchmark model and the performances
were compared. The experimental results revealed that the hybrid model of the GA-LSTM network
outperformed the RNN and the basic problem of determining the optimal time window and number
of units of the memory cell was solved. This research concluded that the GA-LSTM can be used as an
advanced deep learning technique for time series analysis.

Keywords: sequential model; water temperature; LSTM; genetic algorithm

1. Introduction

The impact of urbanization on urban streams has been well established, with the term urban stream
syndrome (USS) commonly used to describe the detrimental effects of high urbanization on the aquatic
health of streams. The symptoms of USS include a complex web of changes, including decreases in
biodiversity; a flashier flow response; increased erosion; and changes to the geomorphology, chemistry,
and nutrient cycles [1–4]. The levels of urbanization that can cause stream impairment are relatively
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low, with effects significant at 10–12% imperviousness [5,6]. The reduction of habitat quality in urban
streams in the Greater Toronto Area has been observed, with a dramatic loss of species in the most
developed areas [7].

Temperature is an important factor in the impairment of aquatic habitat suitability within urban
streams [8–10]. Increased temperatures can impact streams in multiple ways, such as by increasing
chemical and biological processes, which in turn reduces dissolved oxygen and causes stress in the
aquatic organisms [11,12]. Fish species in cold-water streams are particularly vulnerable to rapid and
chronic temperature increases since it increases their susceptibility to diseases and parasites, reduces
reproductive success, and retards the growth of juveniles [13–15]. Members of the Salmonidae family,
such as brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), require low temperatures
to survive. Brook trout, which is common in Southern Ontario, has a chronic temperature limit of
19 ◦C and a critical thermal maximum (CTMax) of 29 ◦C [16]. One species of fish is listed under the
Endangered Species Act 2007 in Ontario, namely, the redside dace (Clinostomus elongates). The redside
dace is a small fish in the minnow family that inhabits cool- and cold-water streams with a target water
temperature of less than 24 ◦C [17]. The ability to forecast stream temperature is therefore crucial to
the protection of cold- and cool-water habitats from anthropogenic heat sources.

Stream temperature models can be grouped into three main categories: statistically based,
deterministic, and empirical [18]. The statistical models rely on a regression analysis of separate
variables to develop a mathematical relationship. The simplest method is a linear regression between
air temperature and water temperature. This method has been shown to produce errors within 0.5–3 ◦C
for daily temperature (depending on the location) due to the over-reliance on seasonal correlations,
which occur at a much larger temporal scale [19–22]. These statistical methods are prone to errors
when the temperature is influenced by non-climatic factors, such as groundwater inputs, changes
in riparian vegetation, and stormwater discharge. The timescales for these models are in the order
of days; therefore, they are not accurate for predicting temperature on a finer scale (such as a rapid
temperature increase as a result of a stormwater pond discharge [23]).

The second category is composed of deterministic thermal models, which rely on mathematical
formulations of the heat balance in the stream by considering solar radiation, evaporation, groundwater,
vegetation cover, and runoff [24–30]. The last category consists of empirical-based methods, which
are also known as “soft computing” methods. These methods include artificial neural networks
(ANNs), gene expression programming (GEP), and hybrid models that combine both deterministic or
regression-based methods and stochastic processes. These models perform well in locations where it is
difficult to determine the physical processes of the stream systems [14,31–35].

Machine learning is frequently used to model the complex non-linear relationships in natural
systems, including soil moisture, soil temperature, and stream habitat assessments [36–39]. Both ANN
and GEP models have been developed to model the impact of anthropogenic heat sources, such as
stormwater management ponds and impervious surfaces, on the receiving stream temperature [40–43].

This study adopted a novel hybrid deep learning sequential approach to forecast river
water temperature (WT) one hour ahead. We have used a WT database to test the novel
genetic-algorithm-optimized long short-term memory (GA-LSTM) and compared it with a benchmark
recurrent neural network (RNN) sequential model. An LSTM model is a variant of an RNN with a
gating mechanism. An LSTM model consists of several parameters, such as the number of hidden
layers, number of epochs, batch size, learning rate, number of units, and window size (previous time
steps). Training the sequential model heavily depends on the skill and experience of the modeler.

The most difficult problems occur during the selection of the optimal window size and number of
units. Many researchers have investigated these two parameters based on trial and error to obtain
the highest r2 value between the observed and forecasted values or the lowest root mean square error
RMSE. Bedi and Toshniwal have used LSTM models to forecast electricity demand by considering an
input window size of 16 with different units of an LSTM cell [44]. Zhang et al. randomly selected the
window size and number of units for forecasting sea surface temperature [45].



Sustainability 2020, 12, 5374 3 of 17

Most recently, Kumar et al. investigated an LSTM model with different combinations of window
size and the number of units of memory cells to provide better model performances [46]. From the
above critical appraisal, the largest difficulty arises due to the selection of the window size and the
number of units. Therefore, this research investigated this problem through a genetic search. In this
search, we applied a genetic algorithm to find the optimal window size and number of units based on
the lowest RMSE, and the best window size and number of units were fed into an LSTM model to train
the dataset. To our knowledge, this paper presents the first time a GA-LSTM framework has been
applied to river temperature data at the hourly timescale.

2. Theoretical Background of the Model

2.1. Recurrent Neural Network (RNN)

An RNN model is an extension of a feedforward neural network (FFN), which consists of edges
that span the adjacent time steps to denote time in the model. The basic difference between an FFN and
an RNN is that an RNN does not have cycles among the conventional edges, where this is replaced by
adjacent time steps that are recurrent edges. These recurrent edges form cycles that are self-connected
by nodes across time. An RNN is a sequential model that consists of memory cells, which act as a
hidden state. These memory cells iterate the sequential elements in a loop and maintain its state in
vector form, which is known as the state vector [47]. Figure 1 represents the workflow of an RNN
model. The current hidden state (st) is a function of previous hidden state (st−1) and the current input
(xt). The value of the current hidden state can be calculated using Equation (1):

st = φ(st−1, xt), (1)

where st and st−1 represents the hidden state values at the current timestep (t) and the previous timestep
(t− 1), and the current timestep input value is denoted as xt. Through a looping mechanism, the output
value is fed back into the hidden state to calculate subsequent time steps. Furthermore, an RNN model
consists of three hidden nodes having a weight matrix (U, V, W), as shown in Figure 1. The temporal
dynamics of an RNN model can be calculated using Equation (2):

st = φ(Wst−1 + Uxt),ot = ψ(Vst). (2)
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Figure 1. Unfolded recurrent neural network (RNN) in time [41].

The recurrence equation (Equation (2)) filters the weighted sum of inputs and states using a
non-mapping activation function. The output value of each time step (ot) contains information about
the previous time step and the current time step in a 2D tensor, which is carried forward to the next
subsequent time step to form recurrent edges.
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In Equation (2), φ and ψ denote the activation functions at the inputs and output, respectively.
The selection of these activation functions depends upon the problem statement. The interested reader
can find more details about this model in Lipton et al. [48].

2.2. Long Short-Term Memory (LSTM)

An LSTM is a variant of an RNN architecture proposed by Hochreiter and Schmidhuber that
was developed to model sequences and long-term dependencies more precisely than an RNN [49].
The gating mechanism enables an LSTM model to regulate information across the network to overcome
the problem of exploding and vanishing gradients [50]. The architecture of a single LSTM block is
shown in Figure 2.
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The memory block of an LSTM model consists of four units: input gate, forget gate, carry state,
and output gate, which regulate the temporal relationship of the previous time series values by
remembering or forgetting. The input gate (i) and forget gate ( f ) regulate how much information
passes through the current cell and how much information is to be forgotten from the previous memory
(ht−1), the carry state (ct) modulates the writing of new information to the next memory cell (ht), and
the output gate (o) decides how much information will pass to the next cell from the current cell.
The workflow and gating mechanism of this process is presented in Equation (3):

i= σ(Wiht−1 + Uixt)

f= σ
(
W f ht−1 + U f xt

)
o= σ(Woht−1 + Uoxt)

g= ψ
(
Wght−1 + Ugxt

)
ct= ψ(ct−1 ⊗ f ) ⊕ (g⊗ i)

ht= φ(ct) ⊗ o

(3)

where c, f, i, and o denote the carry state and the forget, input, and output gates, respectively.
The hidden state (g) present in the memory cell is assessed by the current input (xt) and the

previous hidden state (ht−1). The forget gate replaces the previous memory with the new input, whereas
the hidden state (ht) is considered after the multiplication of o and ct. More details can be found in
Bandara et al. [51].
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2.3. Genetic Algorithm (GA)

A GA is a natural-evolution-inspired stochastic optimization technique, which is one of the most
commonly applied metaheuristic algorithms [52]. A GA process includes evolutionary principles,
such as crossover and mutations of chromosomes. Each chromosome behaves as an individual
solution to the target problem, which is articulated in a binary string form. The initial population of
chromosomes is generated randomly, and the one that gives a better solution to an assigned target is
chosen to reproduce [53].

The whole process of optimization is divided into six stages: initialization, fitness calculation,
termination via a condition check, selection, crossover, and mutation. Figure 3 denotes the detailed
process of a GA. During the process of fitness estimation, only the chromosomes displaying an excellent
performance are preserved for further reproduction. This selection and reproduction process is iterated
several times to obtain a high probability of superior chromosomes. In the next step, the superior
chromosomes generate offspring by interchanging string parts and gene combinations during the
crossover process, which results in a new solution. In the mutation process, one of the chromosomes is
selected to change a randomly selected bit through arbitrary swapping. The fitness of the generated
solution is estimated and checked against the termination criteria. When the termination criteria have
been satisfied, the GA process terminates.
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2.4. Genetic Algorithm Long Short-Term Memory (GA-LSTM)

This section describes the hybrid approach of an LSTM sequential model integrated with a GA to
find the customized window size and number of units (memory cell) in an LSTM model for water
temperature time-series predictions. Since the performance of sequential models (i.e., LSTM) relies on
past information from the training phase, the selection of an appropriate or optimized time window
plays a vital role in obtaining a more accurate model. For example, if the window is small, there is a
chance of important information being neglected, and on the other hand, if the window time is large,
the model will overfit during the learning process. Figure 4 shows the flow diagram of the GA-LSTM
model used in this study. The learning process consisted of two stages. The first stage was used to
design the appropriate network parameters for the LSTM model. To keep the architecture simple,
we adopted a single hidden layer, and the optimum number of memory cell units was searched for by
the GA. The hyperbolic tangent function was used as an activation function at the inputs and hidden
nodes to scale the inputs between −1 and 1, and a linear output function was used as the activation.
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Furthermore, to adjust the initialized random weight of the network, a gradient-based Adam optimizer
was used [54].
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In the second stage, to obtain the optimal window size and network parameters, an evolutionary
GA was used. The population of chromosomes with a possible solution was initialized with random
values. The generated chromosomes were encoded in binary bits, which represented the size of
the window and the number of memory cells. The solution of the model was evaluated based on
the pre-defined fitness function (RMSE) and strings with a higher performance were retained for
reproduction. If the termination criteria were satisfied, the near-optimal solution was calculated by the
model. The performance of the model was dependent upon the population size, crossover rate, and
mutation rate. In this research, the population size, crossover rate, and mutation rate were selected
to be 4, 0.7, and 0.15, respectively. Furthermore, for the stopping condition, the total number of
generations was selected to be 10. Pseudo-code of the GA-LSTM is shown in Algorithm 1.

Algorithm 1: GA-optimized LSTM

1. Split the data into training and test data;
2. Training data is used to evaluate the LSTM.
3. Initialize the chromosome length (binary type), population size (4), and number of generations (10);
4. Set the RMSE as the fitness function;
5. While it == number of generations
6. Crossover of chromosomes with probability 0.7;
7. Mutation of a new chromosome with probability 0.15;
8. Evaluate the fitness of the newly generated chromosome;
9. End while
10. Select the best individual chromosome, which is the optimized input window size and number of hidden

units in the LSTM layers;
11. Use the optimal input window size and number of hidden units settings to predict the unseen

data/test data;
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3. Research Data and Methods

3.1. Description of the Data Used

The Credit Valley Conservation Authority (CVC) operates a network of real-time water quality
monitoring stations within the Credit River watershed. Temperature data from the Mississauga Golf
and Country Club (MGCC) station located in Mississauga, Ontario (43◦33′17.2” N, 79◦37′12.9” W), was
chosen for this study (Figure 5). This station is located on the lower Credit River, approximately 3.5 km
upstream from Lake Ontario. The Credit River watershed has an area of 1000 square kilometers with
land use comprising 31% urban, 34% agriculture and open space, and 35% natural areas [55]. At this
point, the Credit River has a mean discharge of 8.1 m3/s according to the Water Survey of Canada
station 02HB002 (Credit River at Erindale), which was operational from 1945 to 1993. The water quality
was monitored using a Hydrolab DS5X multiparameter sonde. The temperature sensor in the sonde
was a variable resistance thermistor with an accuracy of ±0.1 ◦C and a resolution of 0.01 ◦C. Sensor
data was polled every 15 min and transferred via the intelligent SODATM telemetry platform to a
central database. The water temperature sensor was housed within a perforated pipe mounted to a
bridge pier. The Credit River is 2 to 3 m deep in winter months at this station. The depth of the sonde
was positioned such that the sonde was submerged during low flows. Over the winter, this would
normally be below any potential ice cover if it had occurred. This watershed is heavily urbanized and
large amounts of road salt are used on roads and parking lots for winter de-icing operations. High
chloride concentrations prevent the formation of ice in urban streams. The CVC data quality and
validation procedures removed periods where the data was not reliable. The Hydrolab sonde was
exchanged monthly for calibration and quality assurance/quality control (QA/QC) validation of the
data. Figure 6 shows the time series of the water temperatures.

3.2. Model Development, Performance Assessment, and Forecast Quality Metrics

This section describes the model development of the GA-LSTM and RNN models. To achieve the
stated objectives, fully connected RNN and LSTM models were developed for the water temperature
modeling using the raw data. The model proposed here was an ensemble of time delay sequential
modeling. The RNN and GA-LSTM models were built in TensorFlow using “Keras: The Python Deep
Learning library” [57,58]. Since this study formulated the water temperature prediction as a sequence
prediction, we adopted the historical data to predict the future temperature.

The investigation also focused on determining how long the historical data (previous time steps)
could be used to predict future temperatures. The architecture of the LSTM model consisted of the
number of LSTM layers (lr), a fully connected layer (lfc), and the number of hidden units (units_r),
which determined the complete structure of the LSTM of the network. Considering all the above
aspects, we first designed the simplest layered LSTM model. We fixed lr and lfc to be 1, while units_r
was determined through optimization. Once the structure was determined, there were still unknown
model parameters that were required to train the model, i.e., the learning rate, batch size, optimizer,
and activation function. The determination of these control parameters heavily depends upon the skill
and experience of researchers. The conventional optimization method uses stochastic gradient descent
(SGD), which is a batch version of the gradient descent that helps to speed up the convergence of the
network during the learning process.

Kingma and Ba have developed the Adam optimizer, which adds an adaptive learning rate
parameter for the training of large-scale neural networks, where it was found that Adam is more robust
than SGD [54]. We used the Adam optimizer with a default learning rate of 0.001 in all our experiments,
with a batch size of 10. We chose the ReLu activation function, which has been the subject of some
recent attention and has shown significant improvement in terms of performance [59]. The optimal
window size and units_r were selected based on the root mean square error of the validation set,
which was used as the fitness function for the GA. Setting the GA consisted of a binary representation
of a solution of length 10, which was randomly initialized using the Bernoulli distribution [60].
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The final setting for the GA was population size = 4, number of generations = 2, and gene
length = 10, which was used to obtain the best window and units_r by considering five-fold
cross-validation. The elitism technique was utilized to obtain the best solution from the population
pool, which was then passed on to the next generation; further iterations of this process took place until
the termination criteria were satisfied. The division of the data into training and testing sets varies
with the problem of interest. Many researchers in the past have used different divisions: Kurup and
Dudani adopted 63% of the available data used for training [61], Boadu used 80% of the available data
for training [62], Coulibaly and Baldwin used 90% of the data for training [63], and Pal used 69% of the
available data for training [64]. In this study, the entire dataset was divided into a training set (first 90%
of the whole, where 20% was taken for validation) and a testing set (last 10% of the whole data set).

In general, the performance of the model was assessed using the minimum prediction error
criteria. To evaluate the performance of the developed model, two types of forecasting quality metrics
were selected since both correlation and variance affect a model’s performance. Type 1 errors account
for the accuracy of the mean and the closeness of the forecasted time series to the target time series,
while type 2 errors account for the closeness of the forecasted mean to the mean of the target values.
Therefore, we used the coefficient of determination (r2), mean absolute error (MAE), root mean square
error (RMSE), ratio of the RMSE to the standard deviation (RSR), modified Nash–Sutcliffe efficiency
coefficient (mNSE), modified index of agreement (md), and Kling–Gupta efficiency (KGE) as fitness
indices to evaluate the models’ performances (Equations (4)–(9)):

r2 =


∑l

i=1

(
WTEi −WTEi

)(
WTOi −WTOi

)
√∑l

i=1

(
WTEi −WTEi

)2 ∑n
i=1

(
WTOi −WTOi

)2


2

, (4)
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√∑k
i=1

(
WTEi −WTOi

)2

k
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=

√∑l
i=1

(
WTOi −WTEi

)2√∑l
i=1

(
WTOi −WTEi

)2
, (6)

mNSE =

1−

∑l
i=1

∣∣∣∣∣(WTEi −WTOi

) j
∣∣∣∣∣∑l

i=1

∣∣∣∣∣(WTOi −WTOi

) j
∣∣∣∣∣
, j = 1, (7)

md = 1−


∑l

i=1

(
WTEi −WTOi

)2

∑l
i=1

(∣∣∣WTEi

∣∣∣− ∣∣∣WTOi

∣∣∣)2

, (8)

where WTEi is the ith hourly water temperature estimated using the models, WTOi is the ith observed
hourly water temperature, WTEi

is the average of the estimated hourly water temperature, WTOi
is the

average of the observed hourly water temperature, l is the number of observations, and STDEVobs is
the standard deviation of the observed hourly water temperature.

The Kling–Gupta efficiency is calculated as follows:

KGE = 1−
√(

s[1] × (r− 1)2 + (s[2] × (α− 1))2 + (s[3] × (β− 1))2
)
, (9)

where r is the Pearson product-moment correlation coefficient; and s[1], s[2], and s[3] are the scaling
factors used for re-scaling the criteria space before computing the Euclidean distance. The factor β
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represents the bias (β = µE/µO) and α represents the variability between the estimated and observed
values (a = σE/σO).Sustainability 2020, 12, x FOR PEER REVIEW 17 of 17 
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4. Results and Discussion

Table 1 shows the optimal window size and the number of units of the memory cell searched by
the GA based on the lowest RMSE. The best window size (34) and number of units (9) were used to
train the model. In addition, we trained the RNN models with a similar model architecture to compare
their performances. Figure 7 shows the plot of the mean square error for the models during the training
and validation period.

Table 1. Selection of optimal window and number of units by GA.

Cross-Validation Window Size No. of Units MAE

1 28 2 0.07218
2 14 8 0.05517
3 44 3 0.05312
4 42 2 0.06185
5 34 9 0.04136

MAE: Mean absolute error.
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From the analysis, it was evident that the models were well trained as the model performance
did not improve as the number of epochs increased. Moreover, the mean square error for the RNN
model had inherent noise while converging during the validation period. From this finding, we could
conclude that the LSTM model had a better gradient flow for longer time steps than the RNN model
and had an improved performance for long-term dependency tasks. The performance of both models
was tested by considering the forecast quality metrics (Table 2). As mentioned above, two types of
errors were evaluated for both models. Slightly higher coefficients of determination were recorded
for the GA-LSTM (r2 = 0.999) than the RNN (r2 = 0.998) during the training period, whereas during
validation and testing, both the models showed similar performances.

Table 2. Model performance in terms of different forecast quality metrics.

Quality Metric
Training Validation Testing

RNN GA-LSTM RNN GA-LSTM RNN GA-LSTM

RMSE (type 1) 1.049 0.654 1.097 0.467 1.07 0.755
RSR 0.118 0.073 0.119 0.072 0.131 0.093

mNSE 0.881 0.929 0.878 0.93 0.867 0.913
md (type 1) 0.937 0.963 0.935 0.964 0.929 0.955

r2 0.998 0.999 0.999 0.999 0.998 0.998
KGE (Type 2) 0.889 0.933 0.887 0.932 0.878 0.923

RMSE: Root mean square error, RSR: Ratio of the RMSE to the standard deviation, mNSE: Modified Nash–Sutcliffe
efficiency coefficient, md: Modified index of agreement, and KGE: Kling–Gupta efficiency.
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A scatter plot was drawn for better visualization for both the models for the three phases
(Figure 8a,b). Furthermore, the performance of other metrics clearly created a distinction between the
two models; in terms of RMSE, smaller values were found for the GA-LSTM compared to the RNN
in all three phases. In general, the lower the error, the better the model, where the GA-LSTM model
showed a smaller error (RMSE = 0.755, RSR = 0.093) than the RNN (RMSE = 1.07, RSR = 0.131) during
the testing phase. In addition, the KGE was also calculated to assess the relative importance of the
three components (correlation, bias, and variability), while also providing a decomposition of NSE and
MSE, which comes under the type 2 error category [65]. Based on these fitness metrics, the GA-LSTM
model outperformed the RNN model during all three phases (Table 2). The superior performance of
the GA-LSTM model was supported by the modified index of agreement (md), which also showed the
highest values. Figure 9a shows that both models were well trained during the training and validation
periods and the GA-LSTM model was very capable of forecasting the diurnal temperature peaks.
In Figure 8b, it can be easily seen that the GA-LSTM model was good enough for the prediction of
water temperature.

A violin plot is used to visualize the distribution of the error and the probability density produced
by models [66]. Its summary statistics show the mean/median and interquartile ranges with a full
distribution of the error produced. Figure 10 shows that the RNN model had more outliers and its
distribution of error occurred more in the lower quantile range, which was in contrast to the GA-LSTM,
where the errors were approximately equally distributed in the upper and lower quantiles. Therefore,
it can be concluded that the GA-LSTM model performed better and the selection of the optimal
window and number of units by the genetic search was validated. This research finding concluded
that GA-LSTM can be used as a better option compared with an RNN and even an LSTM.
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5. Concluding Remarks

This study addressed the applicability of a genetic algorithm integrated with an LSTM model
(GA-LSTM) to forecast river water temperatures and to solve the long-standing problem of determining
the optimal number of memory units and the window size. The LSTM network used in this study was
composed of a single layer with nine memory units that utilized 34 previous time steps to forecast a
one-step-ahead value. To validate the effectiveness of this approach, a benchmark model (RNN) with
the same input configuration was tested as a comparative study. To further test the robustness, different
forecast quality metrics were tested. The overall result demonstrated that a GA-LSTM approach can be
an effective method for time series analysis and can capture all the features during learning.

This study suggests that a GA-LSTM can help in designing the architecture of an LSTM and its
variants for the detection of temporal patterns in data. Future research in this regard can include
other tuning parameters of an LSTM model for prediction performance that depends upon other
hyperparameters. Further testing and setting of control parameters of the GA, such as the crossover
and mutation parameters, can also be improved to enhance model performance.

The application of these deep learning techniques is encouraged since such models present the
possibility of exploiting the benefit of understanding the temporal relationships and sequential nature
of time series, which in turn helps in achieving higher accuracies.

This research focused on the use of hybrid and series decomposition techniques to improve
forecasting accuracy. The proposed GA-LSTM framework achieved a significant forecasting accuracy
in comparison with a benchmark RNN model when applied to the water temperature dataset. From
the analysis of the results, it was evident that the GA-LSTM model can be a good replacement without
compromising accuracy.

The development of real-time water quality monitoring networks for predicting and detecting
toxic spills and other adverse events is a potential application for the use of the GA-LSTM framework
proposed in this paper [67–70]. As more urban watercourses become instrumented, fast and effective
forecasting tools will be required to predict and respond to adverse water quality events.
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