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Abstract: Cooperation between rescue teams is important to improve rescue performance. Vehicles
outside of the disaster area usually deliver rescue resources. A two-echelon rescue delivery model is
proposed, considering the isolated island of the disaster area where all the roads to the outside are
interrupted. This paper first presents a non-cooperation scenario and then a cooperation scenario
in an uncertain environment. Furthermore, two types of cooperative strategies to improve rescue
performance are provided in the paper. The two cooperative strategies are a reactive cooperative
strategy and an anticipatory cooperative strategy. Numerical experiments are used to evaluate the
rescue performances of the two cooperation strategies by comparing them with the non-cooperation
scenario. The results reveal that the anticipatory cooperative strategy performs the best in different
cases varying in size.

Keywords: cooperative strategy; emergency planning; vehicle routing problem; uncertainty

1. Introduction

Cooperation in disaster response is critical considering that catastrophes such as earthquakes,
floods, and hurricanes have devastating effects beyond human injuries and property damages.
Furthermore, disaster response to catastrophes requires the involvement of multiple organizations,
such as governments and Non-Governmental Organizations (NGOs).

However, cooperation among multiple organizations has to face the challenges of a variety of
uncertainties. Especially, designing a cooperation strategy is still challenging under an uncertain
environment, resulting in an incomplete view of the collaborative vehicle routing problem in uncertain
environments. Assuming that stochastic demands are known only when the vehicle arrives at
the customer location, Zhu (2014) [1] explored the impact of cooperation strategy on potential
benefits, and developed the paired cooperative re-optimization strategy. They found that the strategy
outperformed the paired locally coordinated scheme. In sum, due to the challenges brought about
by the enormous complexity, assessing collaboration potentials under uncertainties has received
little attention in the literature [2]. In order to address this research gap, we make the following
contributions in this article. First, we propose a new cooperation two-echelon rescue model under
specially accessibility uncertainty. The two-echelon logistics system is a general mode of a distribution
system [3]. In this study, we propose an uncertain two-echelon rescue delivery problem model for
humanitarian relief operations under the “isolated islands effect”. Rescue resources are first distributed
from outside to the Local Distribution Centers (LDCs) in disaster-affected areas, and then the resources
are distributed from the LDCs to the disaster victims. When the repair times of interrupted roads are
uncertain, designing a collaboration strategy is important to minimize the expected maximal relief
time from outside to the disaster victims. In this research, we propose two cooperative strategies
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and compared their performances with the non-cooperative strategy. Although Noyan (2016) [4]
explored accessibility uncertainty in a two-echelon rescue system, they just considered the network
accessibility’s uncertainty. They did not consider the uncertainty of rescue starting time on an “isolated
island”. In fact, isolated islands are often formed because of geological structure change and mud-rock
flow due to an earthquake, and in this way interruption between an external safety zone and the
interior disaster area is induced. When multiple roads to the disaster area are interrupted and all of
these roads are repaired at the same time, if the time for each road to resume traffic is uncertain, a new
problem of cooperation under this uncertainty will arise.

Second, we develop two cooperation strategies in uncertain rescue environments: the reactive
cooperative strategy and the anticipatory cooperative strategy. These strategies can enable a rescue
team to dynamically construct routes when another rescue team’s start time is uncertain. Third,
we conduct numerical studies that show the benefits in terms of the expected rescue times of our
cooperative strategies.

2. Literature Review

Horizontal cooperation can obtain more benefits than non-collaboration in varied deterministic
environments [5]. Cruijssen (2007) [6] found that general logistics service providers strongly believe in
the potential benefits of horizontal cooperation to increase their profitability. Perez-Bernabeu (2015) [7]
compared a full cooperative scenario and a non-cooperative scenario and found 8.9–29.3% savings
for a cooperative scenario via computational experiments of many instances. Cooperation among
logistic suppliers can also help to reduce delivery or routing costs in different scenarios. In terms
of distance-based costs as well as emission costs, the average gap between a collaborative strategy
and a non-collaborative one with the clustered policy is about 5%, while the average gap between a
collaborative strategy and a non-collaborative one with the scattered policy is up to 92%.

Although extra benefits can be obtained through cooperation, determining the proportion of
gains (costs) for each participant still impedes the widespread adoption of horizontal collaboration.
If a partner perceives its allocated share of the coalition cost to be too large, it might leave the
coalition [8]. Additionally, Dudek and Stadtler (2007) [9] argued that if the incentives are correctly
distributed, a solution can be obtained that is optimal for the total coalition instead of a solution that
is locally optimal for only one partner or one subset of partners. Thus, there has been increasing
research studying the cooperative mechanisms for horizontal collaboration, for example, cooperative
mechanisms in which reward flexibility increases the consolidation gains [10]. Cooperation methods
based on cooperative game theory, such as the Shapley value method, maximin core method, and the
Equal Cost Saving Method (ECSM), resulted in different solutions in an asymmetric example [11].
By comparing a coalition that adopts the Shapley value cost allocation rule and one who adopts
the compensation for non-delivery rule, Defryn (2016) [8] demonstrated that a decision made at the
operational (routing) level should affect the cost allocation result and vice versa. Fernández (2018) [12]
also found that a collaborative solution that adopts a compensating mechanism would encourage
collaboration and save coalition cost. Thus, it is necessary to explore a mechanism to provide an
incentive for each partner that benefits every member in the coalition. Chinh (2017) [13] proposed
a new collaboration strategy that helps logistics service providers to reduce the transportation costs
when they collaborate with each other. They found a fully collaborative strategy and a collaborative
strategy in which serving one’s own customer first could save 24% and 22% of costs, respectively.
The cooperative mechanism based on the Vehicle Routing Problem (VRP) is summarized in Table 1.
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Table 1. Cooperative mechanisms (strategies) based on the Vehicle Routing Problem (VRP) summary.

Problem Type Stochastic Variable Non-Cooperative
Scenarios Cooperative Scenarios Cooperative Mechanisms

(Strategies) Authors

PCVRP
(Periodic Capacitated

Vehicle Routing Problem)

The partner relaxes its
constraints, such as delivery
dates, order sizes, and order
splitting rules, in a coalition.

Cooperative mechanisms based on
how to share the gained benefits.

Especially, persuading companies
to relax their delivery terms by

rewarding flexibility.

Vanovermeire (2014)

Multi-depot VRP
Each player minimizes the
total transportation cost of

all their vehicles.

The players cooperate using
each other’s vehicles in order

to minimize their
transportation costs.

Cooperative mechanisms based on
how to assign the coalition cost.

Especially, allocation depends on
the amount that each player adds
to a coalition, and they receive a

percentage of cost-saving.

Zibaei (2016)

Selective VRP

Serving the customers of all
partners in one single logistic

operation to minimize
compensation for

non-delivery.

Cooperative mechanisms based on
how to assign the coalition cost.

Especially, partners that
consistently set high compensation

for non-delivery cost values for
their customers should be

penalized by being assigned a
relatively large share of the total

coalition cost.

Defryn, Sörensen,
and Cornelissens (2016)

Shared customer CVRP
Consumers demand from

every carrier only
delivered by the carrier.

The demand for each shared
customer can be delivered by

more than one company.

Cooperative mechanisms based on
how to reduce coalition costs
compared with the scenario

without collaboration.

Fernández (2018)

Multi-VRP

Strategy 1: LSPs (logistics service
providers) fully collaborate with
each other. Strategy 2: an LSP’s

vehicle can
serve customers from other LSPs

only after they finish serving their
customers.

Chinh et al. (2017)
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Table 1. Cont.

Problem Type Stochastic Variable Non-Cooperative
Scenarios Cooperative Scenarios Cooperative Mechanisms

(Strategies) Authors

VRPSD
(Vehicle Routing Problem

with Split Deliveries)
demands

A single pair of vehicles
cooperates to serve a set of

customer demands.

PCR (paired cooperative
reoptimization): multiple

customers are dynamically
assigned when each vehicle

completes the current assignment,
and trigger a sharing of

information. PLC (paired locally
coordinated): each pair of vehicles

serve customers sequentially in
opposite directions, following a

fixed route, and if one vehicle fails,
the remaining customers are

assigned to its partner.

Zhu (2014)

MDVRPSD (MDVRP with
Stochastic Demands)

Vehicle breakdowns;
traveling, loading,

and unloading times

Each manufacturer
distributes its own

products with its own car

Each manufacturer’s
products can be distributed

through vehicles of other
manufacturers or third-party

logistics companies

Sprenger (2012)

MDVRPSD (MDVRP with
Stochastic Demands) Stochastic demands Each company plans the

optimal routing plans.

Companies are involved in
the cooperation agreement,

which includes the sharing of
storage areas and vehicle

capacities.

Quintero-Araujo (2016)

Two-echelon VRP Accessibility

The vehicles of team 0 and
team 1 work together to

deliver supplies to LDCs,
and the vehicles of LDCs
work together to deliver

supplies to victims.

This paper
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In uncertain environments, it is intuitive that cooperation can obtain more benefits than
non-collaboration. Sprenger and Möonch (2012) [14] confirmed that a cooperative scenario outperforms
a non-cooperative one in a stochastic environment. However, they did not explore different cooperation
strategies. Similarly, Quintero-Araujo et al. (2016) [15] compared the solutions for a cooperative
scenario with a non-cooperative scenario. They found that the expected total costs and the expected
reliability of the cooperative scenario are better than the non-cooperative scenario. However, they did
not explore cooperative strategies in detail and only employed the marginal saving as the main rule for
potential customer allocation.

3. Problem Formulation

3.1. Basic Background

Accessibility uncertainty is one type of uncertainty in humanitarian relief. We consider a specific
accessibility uncertainty, which often appears in earthquakes. For example, after the 2008 Wenchuan
Earthquake in China, the town of Yingxiu was completely disconnected from the world and at least
12,000 people were trapped in it. In this situation, the “isolated islands effect” appeared because of
non-accessibility to the disaster area. Consequently, a new cooperative problem was encountered by
the rescue organizations to repair the interrupted roads.

In this paper, the term isolated island refers to the non-accessibility of the disaster area from the
outer area. The non-accessibility occurs because the roads connecting to the disaster area are broken.
The repaired road is uncertain because of many uncertainties, such as assessment of the damage and
availability of resources. We assumed that the island is connected by two roads A and B, which need
repair after the disaster. If interrupted road A is first repaired while interrupted road B is still in
maintenance, rescue team A has to consider how to cooperate with rescue team B in the uncertain
environment, as shown in Figure 1.
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Figure 1. Uncertain rescue delivery environment.

It is necessary to rapidly repair the broken road to transport relief materials to the people when
the “isolated islands effect” appears. At the same time, the rescue teams at every interrupted road
should adopt a reasonable cooperation strategy to deliver relief materials (e.g., food and water) in the
shortest time to all the survivors in the isolated island.

In sum, the research question of this paper is based on a new Two-Echelon Vehicle Routing Problem
(2E-VRP). A two-echelon vehicle routing problem is commonly found in logistics enterprises and express
delivery service companies for their multimodal freight transportation and hypermarkets products
distribution. Research has been done on developing heuristic methods to resolve 2E-VRP [16–22].
Furthermore, there have been further studies based on 2E-VRP, such as a time-dependent two-echelon
capacitated vehicle routing problem, and a two-echelon vehicle routing problem with simultaneous
pickup and delivery [23–25]. A detailed literature review can be found in [26].

In general, the two-echelon vehicle routing problem is a distribution system where intermediate
depots, called satellites or Local Distribution Centers (LDCs), are placed between a supplier and final
customers. In this paper, we assume that there are two suppliers (i.e., rescue team) in the system. Each
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supplier (i.e., rescue team) delivers rescue resources through one road to the LDC. At the same time,
the two roads accessible to the isolated island are interrupted simultaneously. The time it takes to
restore the two damaged roads to their original status is independently distributed on [0, TSi], i = A, B.
Once the damaged roads are restored to their original status, rescue teams distribute these goods to
LDCs, and the LDCs distribute these goods to victims using their vehicles.

Before presenting our model formally, we first list our assumptions regarding travel from the
rescue teams to the LDCs:

1. There are ns LDCs and nc disaster victims in the isolated islands.
2. Each LDC is only served by one rescue team’s vehicle.
3. When the vehicle of any rescue team is on the way from one LDC to the next LDC, which is

determined by a cooperative strategy, it is not allowed to take another new LDC as the next
destination during transportation.

For the second echelon of travel from the LDCs to the disaster victims, our assumptions are
as follows:

1. The demand for each disaster victim is known and cannot be split between the vehicles of
different LDCs.

2. The demands of disaster victims cannot be delivered by direct shipping from the rescue team but
must be consolidated in one of the LDC.

3. Each disaster victim is served by one LDC vehicle.
4. All LDC vehicles have the same capacity limitations.
5. The amount delivered by each vehicle cannot exceed its capacity.
6. Each LDC vehicle must begin and end at the same LDC.
7. The rescue resources received by an LDC are completely delivered to the disaster victims.
8. The overall capacity of all LDCs can fulfill the total demand.

We can then formulate the model as follows:

minλ =
∑

ψ∈{ψ1,···ψ2ns }

Pψλmax(ψ) (1)

λA
k (ψ) = X + δA

k (ψ),∀k ∈ VAs (2)

λB
k (ψ) = Y + δB

k (ψ),∀k ∈ VBs (3)

δk(ψ) ≤ δ
max(ψ),∀k ∈ Vs (4)

δA
k (ψ) = TA

k (ψ) + ηk(ψ),∀k ∈ VAs (5)

δB
k (ψ) = TB

k (ψ) + ηk(ψ),∀k ∈ VBs (6)

TA
k (ψ) =

∑
k∈Vs

tAlxAl(ψ) +
∑

k∈VAs

∑
l∈VAs

tlkxlk(ψ),∀k, l ∈ VAs (7)

TB
k (ψ) =

∑
k∈Vs

tBlxBl(ψ) +
∑

k∈VBs

∑
l∈VBs

tlkxlk(ψ),∀k, l ∈ VBs (8)

ηk(ψ) =
∑
j∈Vck

tk
kjy

k
kj(ψ) +

∑
i∈Vck

∑
j∈Vck

tk
jiy

k
ji(ψ) +

∑
i∈Vck

tk
ikyk

ik(ψ),∀k ∈ Vs (9)

∑
l∈Vs

xkl(ψ) =
∑
l∈Vs

xlk(ψ),∀k ∈ Vs (10)

∑
j∈Vc

yi j(ψ) =
∑
j∈Vc

y ji(ψ),∀k ∈ Vs,∀i ∈ Vc (11)
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∑
l∈Vs

xkl(ψ) = 1,∀k ∈ Vs (12)

∑
j∈Vc

yk
i j(ψ) = 1,∀i ∈ Vc (13)

∑
j∈Vc

d jyk
i j(ψ) = q,∀k ∈ K,∀i ∈ Vs ∪Vc (14)

xkl(ψ) ∈ {0, 1},∀k ∈
{
Vs,A, B

}
,∀l ∈ Vs (15)

yk
i j(ψ) ∈ {0, 1},∀k ∈ Vs,∀i{Vs, Vc},∀ j ∈ Vc (16)

ψ ∈
{
ψ1, · · ·ψ2ns

}
(17)

In the model above, we use the following notations:
Stochastic variables:

X is the time in which interrupted road A is restored to its original status.
Y is the time in which interrupted road B is restored to its original status.

Decision variables:

xkl a binary variable of the first-level routing that equals 0 if LDC k is visited before LDC l.
yk

i j a binary variable of the second-level routing that equals 1 if a second-level vehicle starts from LDC
k and goes from disaster victim i to disaster victim j.
Vck is a disaster victim set that is assigned to LDC k.
Vis is an LDC set that is assigned to the rescue team i ∈ {A, B}

Parameters:

VAB = {vA, vB} Rescue team.

Vs =
{
Vs1 , Vs2 , · · ·Vsns

}
Set of local distribution centers; ns = number of LDCs.

Vc =
{
Vc, Vc2 , · · ·Vcnc

}
Set of disaster victims; nc = number of disaster victims.

λi
k Relief time from interrupted road i ∈ {A, B} to victims through LDC k.

δi
k Travel time from interrupted road i ∈ {A, B} to victims through LDC k.

tAl Travel time from interrupted road A to LDC l directly.
tBl Travel time from interrupted road B to LDC l directly.
TA

k Travel time from interrupted road A to LDC k (through l).

TB
k Travel time from interrupted road B to LDC k (through l).

ηk Travel time from LDC k to victims.
tk
i j Travel time from disaster victim i to disaster victim j by vehicle k.

tkl Travel time from LDC k to LDC l.
d j Demands of disaster victim j.
q Vehicle capacity.
λmax Maximum rescue resource delivery time.
λk Rescue resource delivery time through LDC k.
ψ Stochastic restored time combination scenarios.
Pψ Probability of time combination scenario ψ.

λ Expected maximum rescue resource delivery time.
δi Travel time from rescue team i ∈ {A, B} to victims.

In the model, Constraints (2) and (3) demonstrate that the relief time includes the restored time and
the travel time. Constraint (4) shows that the total travel time cannot exceed the maximal travel time in
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each stochastic restored time scenario. Constraint (5) shows that the travel time from rescue team A
to LDC k TA

k and the routing time from LDC k to its corresponding disaster victims. Constraint (6)
shows that the travel time from rescue team B to LDC k TB

k and the routing time from LDC k to its
corresponding disaster victims. Constraint (7) shows that the travel time from A. Constraint (8) shows
that the travel time from B. Constraint (9) shows that the routing time from LDC k to its corresponding
disaster victim is set on the second level and back to LDC k.

The objective is to minimize the expected maximal relief time from the rescue teams to the disaster
victims. As the total demand for all of the victims is known in our research, we normalize the quantity
of each victim to be 1. Additionally, as every LDC tries its best to help local victims, it is appropriate to
assume that any LDC vehicle is fully loaded with quantity q and distributes the rescue resources to
q victims.

3.2. Research Question

In order to save as much time as possible, which victims need to receive resources first and the
specific routing plan from LDCs to the victims must still be well planned. After discussing the routing
at the second level, that is, from the LDCs to the victims, we return to the first level, from the rescue
teams to the LDCs. At this point, another critical issue arises—how to ascertain vehicle routes when
one interrupted road is restored and the other interrupted road is still in maintenance. This situation
affects the minimal expected maximal relief time.

Simply put, if team A is responsible for all rescue tasks and rescue team B is ignored, this problem
is a typical 2E-VRP. However, it is very difficult to make a decision, considering that it generally
includes an infinite number of scenarios for stochastic scenario ψ. In fact, defining a clear cooperation
strategy will simplify this problem. In the next section, we propose two cooperative strategies and
compare their rescue performances. That is, the research question is focused on cooperative strategies,
and cooperative strategies define one rescue team’s next delivery LDC and victim when another rescue
team is in an uncertain environment.

To simplify the decision-making process, we only make new decisions in each LDC when the first
level vehicles arrive at the LDC. Thus, infinite stochastic scenarios can be transformed into limited
scenarios. We begin to make a decision when one depot restores traffic. Assume that road A is restored
now, and the stochastic scenario of restoring road B includes the different time epochs encountered by
vehicle using road A. The scenario includes the travel to the first LDC, travel from the first LDC to the
second LDC, and so on, up to the last point. It generates a total of ns scenarios.

4. Non-Cooperation, Cooperation Strategies and Method

Strategic analysis exists in various fields, such as enterprise management, supply chain
management, and rescue management [27,28]. In this section, we focus on non-cooperation and
cooperation strategies analysis.

4.1. Non-Cooperation Situation

In a non-cooperative scenario, rescue teams (i.e., A and B) do not influence each other’s decisions.
Rescue team A (rescue team B) will take the nearest rescue target-based rule to find the routing plan.
That is, a rescue team will take the nearest LDC from the remaining LDCs as the next delivery target.
At the same time, the vehicle of each LDC will take the nearest victim from remaining victims as the
next delivery target once they get relief supplies when interrupted road A (interrupted road B) is
restored first.

Rescue team A (rescue team B) will repeat the decision when it arrives at a new LDC, whether
interrupted road B (interrupted road A) is restored or not. The arrangement is similar to the
non-cooperation situation in MDVRP, where each player (owner) minimizes the total transportation
costs of their own vehicle.



Sustainability 2020, 12, 5333 9 of 17

The non-cooperative situation can be considered as the worst-case scenario for relief operation.
In uncertain situations, the worst case can be used as a benchmark to compare other policies, such
as cooperative scenarios. It is a conservative strategy to perform some tasks that can be done in the
shortest time in the current uncertain environment.

4.2. Cooperation Strategies

In a cooperative scenario, rescue team A and rescue team B must coordinate their efforts by
considering the influence of the other team’s decision on the future rescue time. That is, rescue team A
(rescue team B) must decide which LDC should be visited based on the evaluation of interrupted road
B’s (interrupted road A’s) restored time when interrupted road A (interrupted road B) is restored first.
Rescue team A (rescue team B) will repeat the decision when it arrives at a new LDC until interrupted
road B (interrupted road A) is restored. When both roads are restored, the uncertain situation becomes
a deterministic situation and both rescue teams deliver the remaining LDCs together according to the
optimization solution.

We develop two cooperative strategies. One is the reactive cooperative strategy, which makes
decisions without incorporating knowledge of the future. The other is the anticipatory cooperative
strategy, which makes decisions incorporating information about the future.

Assuming that both rescue teams’ restored times follow certain distributions between [0, TSi], i =
A, B independently, we focus on the situation in which interrupted road A is restored first, as the
analysis is similar to the case where the interrupted road B is restored first. We explain the two
strategies as follows:

(1) Reactive Cooperative Strategy (RCS)

The reactive cooperative strategy is based on the nearest delivery rule in an uncertain situation.
Before road B is restored, rescue team A delivers its LDCs according to the nearest delivery rule. When
the LDCs obtain their resources form rescue team A, the LDCs’ vehicles visit their victims according
to the nearest delivery rule as well. When road B is restored, the problem becomes a deterministic
2E-VRP. In that situation, we can obtain the new optimized plan and ascertain the routing of remaining
LDCs and victims according to the optimized method (see Appendix A).

(2) Anticipatory Cooperative Strategy (ACS)

The anticipatory cooperative strategy focuses on how to incorporate future information in the
current decision. For the first echelon, when interrupted road A is restored at T0 (the corresponding
state is s0), we know that interrupted road B will be restored between T0 and TSB. We will adopt
the minimum expected value criterion and decide the first LDC of rescue team A before interrupted
road B is restored by incorporating future information. When rescue team A reaches the first LDC,
if interrupted road B has not been repaired, we repeat this decision process and determine the second
LDC until interrupted road B is repaired. If interrupted road B is restored when rescue team A
delivers resources from the origin to its first LDC, the problem becomes a deterministic 2E-VRP. We can
re-optimize the problem for the remaining LDCs and obtain the new solution according to the algorithm
described in Appendix A.

For the second echelon routing plan, we also adopt a minimum expected value criterion to choose
the solution. That is, when we choose an LDC as the first LDC at s0, we calculate all future states
according to Appendix A and get the first and second echelon routing plan of all possible states.
We choose the most likely state’s solution as the second echelon routing plan. When road B is restored,
the problem becomes a deterministic 2E-VRP. In this situation, we can obtain the new optimized plan
and ascertain the routing of remaining victims according to the algorithm described in Appendix A.
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4.3. Method for Anticipatory Cooperative Strategy

We focus on the method to decide LDCs and victims according to ACS as RCS. The key to
this method is how to incorporate future information in the current decision. In fact, incorporating
future information is important for most of the dynamic and stochastic vehicle routing problems [29].
In recent years, approximate dynamic programming (ADP) has become a powerful framework for
calculating the future impact of a decision and solving stochastic and dynamic problems typically
arising in the field of operations research. In studies related to a vehicle routing problem, Novoa and
Storer (2009) [30] examined an approximate dynamic programming algorithm for the single-vehicle
routing problem with stochastic demands from a dynamic perspective and confirmed the efficient
Rollout Algorithms (RAs) for solving the single VRPSD (Vehicle Routing Problem with Split Deliveries)
under a dynamic approach. Ulmer and Voß (2016) [31] analyzed how risk-aversion impacted solutions’
quality and variance by integrating risk-aversion into ADP methods. Ulmer (2018) [32] incorporated
temporal and spatial anticipation of service requests into Approximate Dynamic Programming (ADP)
procedures to yield dynamic routing policies for the un-capacitated single-vehicle routing problem with
stochastic service requests. Thus, in this work, we adopt a method based on an approximate dynamic
programming framework to resolve cooperation problems based on anticipatory cooperative strategy.

A fundamental challenge in approximate dynamic programming is identifying an optimal action
to be taken from a given state. In this work, we focus on LDC selection as an action via rollout
algorithms, which are forward dynamic programming-based look-ahead procedures that estimate
rewards-to-go through suboptimal policies [33].

In particular, we propose the method as follows. First, whether road A or B is repaired first,
the decision process is the same. Without loss of generality, we assume that road A is repaired first.
For the first echelon routing plan, we define the time point in which restored road A is repaired first as
decision epoch 0, the time point that the rescue team A arrives at the first LDC as decision epoch 1,
and so on. The last decision epoch K means that the interrupted road B will be restored when rescue
team A delivers resources form the Kth LDC to the (K+1)th LDC. The kth decision epoch marks the
beginning of the kth period, at which time the system occupies state sk in state space S, and at which
time the decision-maker chooses LDC from the set of feasible A(sk).

Sk means interrupted road B may be restored when rescue team A delivers resource to the (K+1)th

LDC or from the (K+1)th LDC to the (K+2)th, and so on, when rescue team A arrives at the Kth LDC.
A state transition from state sk in decision epoch k to state sk+1 in decision epoch k + 1 is a function of
the selected LDC and the set of random variables Wk+1 representing the random information whether
interrupted road B may be restored or not between decision epochs k and k + 1. We denote the state
transition as sk+1 = S (sk, a, Wk+1). As discussed in Powell (2011), we split the state transition into two
parts—a transition from pre-decision state sk to post-decision state sk

a and a transition from sk
a to

pre-decision state sk+1. We denote the deterministic transition to the post-decision state by the function
SA (sk, a), which means that the rescue team A has chosen the LDC as the Kth LDC. The decision
tree in Figure 2 provides a visual representation of the model elements. Square nodes represent
pre-decision states, solid arcs depict actions, round nodes are post-decision states, and dashed arcs
denote random information.

Because Wk+1 may be (not) realized when selecting LDC a and delivery rescue resource from
LDC a to the (K + 1)th LDC, we define the reward in decision epoch k as the expected reward, which
denotes the expected rescue time for selected LDC a, and considering that interrupted road B may be
restored in the future, and can be calculated by anticipatory optimization. For example, at decision
epoch 0, if we adopt a0 as the first LDC of rescue team A, interrupted road B may be restored at rescue
team A’s journey from the starting point to the first LDC, or from the first LDC to the second LDC,
and so on. We calculate the final value of each possible state and obtain the expected value when a0

is the first LDC. We can also obtain the expected value when b0 is the first LDC, and so on. Finally,
the LDC corresponding to the minimum expected value is taken as the first LDC.
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When rescue team A arrives at the first LDC, if interrupted road B is not restored, we adopt the
same decision process to identify the second LDC. If interrupted road B is restored when rescue team
A arrived at the first LDC, we resolve the problem at decision epoch 1 by using the deterministic
2E-VRP algorithm.

5. Test Set and Results

5.1. Test Set

In this section, we use numerical experiments to illustrate the implications of cooperative strategies
in a five-LDC disaster relief system. Without loss of generality, the instance set comprising 75 disaster
victims was obtained from Gulczynski’s dissertation (Table A1). The coordinates of the 75 disaster
victims are shown in Appendix C.

We also add the following information:

• The demand quantity of each disaster victim is 1.
• The capacity of vehicles at the second level is 15.

We get nine instances by setting the coordinates of the rescue teams, the LDCs’ coordinates, and the
victims’ coordinates. For instance 1, we set the coordinates of the rescue team to (0, 0) and (50, 70),
the coordinates of the LDCs to (20, 23), (60, 10), (18, 45), (45, 50), and (75, 40), and the coordinates of the
victims are from Gulczynski’s dissertation. For instance 2, the coordinates of the rescue team and the
victims are the same as in instance 1, except for the LDCs’ coordinates generated randomly within the
range (x: 0–50, y: 0–70); for instance 3, we set the coordinates of the rescue team to (−20, −20) and (70,
90), the coordinates of the LDCs to (20, 23), (60, 10), (18, 45), (45, 50), and (75, 40), and the coordinates
of the victims are generated randomly within the range (x: 0–50, y: 0–60); for instance 4, we set the
coordinates of the rescue team to (−10, −10) and (60, 80), the coordinates of the LDCs are the same as
in instance 3, and the coordinates of the victims are from Gulczynski’s dissertation. For instance 5,
the coordinates of the rescue team and the victims are the same as in instance 4, except for the LDCs’
coordinates generated randomly within the range (x: 0–50, y: 0–70); For instance 6, the coordinates of
the rescue team and the LDCs are the same as in instance 4, except for the victims’ coordinates, which
are generated randomly within the range (x: 0–45, y: 0–45); for instance 7, the coordinates of the LDCs
and the victims are the same as in instance 4, except for the rescue team coordinates, which are are
set as (−30, 30) and (90, 30); for instance 8, the coordinates of the rescue team and the victims are the
same as in instance 7, except for the LDCs coordinates, which are are set as (30, 40), (40, 20), (25, 50),
(40, 40), and (78, 30); for instance 9, the coordinates of the rescue team are the same as in instance 8,
the coordinates of the LDCs are the same as in instance 7, and the victim’s coordinates are generated
randomly within the range (x: 0–50, y: 0–60).
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5.2. Results

Assume that the vehicle travels at a speed of 60 kilometers per hour and that the distance unit
between every two points is in kilometers. We present the non-cooperation and cooperation results
when both interrupted roads’ restored times follow a uniform distribution between 0 and 2000 minutes
(Table 2).

Table 2. Results of the non-cooperation and cooperation strategies.

Instances
Non-

Cooperation
(NC)

Reactive
Cooperation

Strategy
(RCS)

Anticipatory
Cooperation

Strategy
(ACS)

RCS/NC RCS Saving
(1-RCS/NC) ACS/NC ACS Saving

(1-RCS/NC) ACS/RCS

Instance 1 611.82 298.09 277.21 0.49 0.51 0.45 0.55 0.93
Instance 2 892.78 279.02 258.06 0.31 0.69 0.29 0.71 0.92
Instance 3 1010.82 354.81 312.93 0.35 0.65 0.31 0.69 0.88
Instance 4 657.58 335.07 325.93 0.51 0.49 0.50 0.50 0.97
Instance 5 822.61 338.57 327.73 0.41 0.59 0.40 0.60 0.97
Instance 6 1135.63 361.51 342.78 0.32 0.68 0.30 0.70 0.95
Instance 7 465.00 293.12 272.57 0.63 0.37 0.59 0.41 0.93
Instance 8 505.19 283.66 256.06 0.56 0.44 0.51 0.49 0.90
Instance 9 483.74 274.28 263.23 0.57 0.43 0.54 0.46 0.96

From Table 2, we can find that the reactive cooperative strategy and anticipatory cooperative
strategy are always better than the non-cooperation strategy. In terms of the expected maximal relief
time, the reactive cooperative strategy (RCS) dominates its counterparts and can save 37–69% of the
expected relief time compared to the non-cooperation strategy, and can save an average of 43.4%
of the expected relief time compared to the non-cooperation strategy. The anticipatory cooperative
strategy (ACS) dominates its counterparts and can save 41–71% of the expected relief time compared
to the non-cooperation strategy (NC), and can save an average of 45.6% of the expected relief time
compared to the non-cooperation strategy. At the same time, the anticipatory cooperative strategy
(ACS) shows its advantage over an over-reactive cooperative strategy (RCS) from the last column,
which suggests that designing better cooperation strategies can complete rescue missions more quickly
in uncertain environments.

To illustrate the effect of cooperation strategies facing different uncertainties, we changed the
range uniform distribution from [0, 100] to [0, 500]. The results are shown in Table 3.

Table 3. Results from distribution interval change.

Instance Description
Non-

Cooperation
(NC)

Reactive
Cooperation

Strategy
(RCS)

Anticipatory
Cooperation

Strategy
(ACS)

RCS/NC
RCS

Saving
(1-RCS/NC)

ACS/NC ACS Saving
(1-RCS/NC)

1 [50, 50] 561.97 250.36 236.72 0.45 0.55 0.42 0.58
2 [100, 100] 570.12 279.55 275.56 0.49 0.51 0.48 0.52
3 [150, 150] 636.04 298.09 286.99 0.47 0.53 0.45 0.55
4 [250, 250] 660.18 299.42 292.55 0.45 0.55 0.44 0.56
5 [300, 300] 682.33 328.67 319.98 0.48 0.52 0.47 0.53
6 [350, 350] 681.05 313.58 310.33 0.46 0.54 0.46 0.54
7 [400, 400] 735.98 353.52 320.40 0.43 0.57 0.42 0.58
8 [450, 450] 729.70 356.87 338.48 0.49 0.51 0.46 0.54
9 [500, 500] 739.77 372.38 344.70 0.50 0.5 0.47 0.53

Average 0.53 0.55

According to random repair times of road A and road B, we simulated the uncertain accessibility
situation by using the process shown in Appendix B. From Table 3, we find that the reactive cooperative
strategy (RCS) can save an average of 53% of the expected relief time compared to the non-cooperation
strategy (NC). The anticipatory cooperative strategy (ACS) can save an average of 55% of the expected
relief time compared to the non-cooperation strategy (NC), which suggests that the anticipatory
cooperative strategy (ACS) is more effective than the reactive cooperative strategy (RCS), whether the
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uncertainty is high or low. The anticipatory cooperative strategy performs better because it can deal
with uncertainty better before the operation of the other team begins.

Our numerical analysis also provides valuable managerial insights. For example, if decision-
makers can smoothly incorporate the anticipatory cooperative strategy, it would dramatically improve
disaster relief performance. In fact, management could benefit from the anticipatory cooperative
strategy’s robustness in simplifying its decision process and execution procedures.

6. Conclusions

According to [15], a priori stochastic optimization means that random variables are modeled
according to a probability function during the planning process, which is later not changed during
the execution.

We also performed a priori stochastic control in each decision epoch based on the newly
obtained information.

However, as new information changes are obtained in each decision epoch, we changed the
remaining plans based on the already executed plans in the next decision epoch. In particular,
we developed two cooperative strategies—the reactive cooperative strategy and the anticipatory
cooperative strategy—to compare the performances.

According to the tests carried out using instances, the reactive cooperative strategy and anticipatory
cooperative strategy can contribute to a reduction in total times for all of the considered instances.
When considering a uniform distribution [0, 2000], the Reactive Cooperative Strategy (RCS) can save an
average of 43.4% of the expected relief time compared to the non-cooperation strategy. The Anticipatory
Cooperative Strategy (ACS) can save an average of 45.6% of the expected relief time compared to the
non-cooperation strategy. When the range of uniform distribution changes from [0, 100] to [0, 500],
the reactive cooperative strategy (RCS) can save an average of 53% of the expected relief time compared
to the Non-Cooperation strategy (NC), and the Anticipatory Cooperative Strategy (ACS) can save an
average of 55% of the expected relief time compared to the Non-Cooperation strategy (NC). Based
on our extensive numerical experiments, we find that the anticipatory cooperative strategy is the
most effective.

Our research is the first attempt to consider the cooperative strategies under the two-echelon
vehicle routing problem with uncertain times needed for the restoration of interrupted roads. Hence,
we focused on the feasibility and effectiveness of cooperative strategies. There are several possible
extensions of this work that can be considered in future research. First, in our analysis, we only
recommend two cooperation strategies. It would be meaningful to introduce other cooperative
strategies in logistics and supply chains. Second, more stochastic issues can be considered, such as
travel times between LDCs and victims. Third, cooperation vehicle routing problems in Autonomous
Driving Vehicles (ADV) environments can be studied, considering that ADVs will develop further in
the future [34,35].
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Appendix A

Box A1. The structure of the heuristic algorithm.

INPUT: VsVcXY
BEGIN
Initialize set VAs and VBs and generate first echelon routing randomly;
Assign consumer subset Vk

c of every LDC randomly and form initialized clusters;
REPEAT
Generate solution by genetic algorithm and get λk = max

{{
λA

k

}
,
{
λB

k

}}
;

Exchange one victim of LDC holds max
{
δA

k

}
with nearest victim belong to another LDC in VAs randomly;

Exchange one victim of LDC holds max
{
δB

k

}
with nearest victim belong to another LDC in VBs randomly;

Exchange one victim of LDC in VAs with nearest victim of LDC in VBs randomly;
Generate new solution by genetic algorithm and get new λ′k = max

{{
λA

k

}
,
{
λB

k

}}
and

If ′λk < λk replace {Vk
c }, first echelon routing and second echelon routing by new solution;

Else
Exchange the nearest two LDCs, which belong to VAs, VBs respectively;
End

UNTIL
A given stopping criterion (number of iterations or computing time) is reached.

END
OUTPUT: λk

Appendix B

Box A2. Simulation Process.

INPUT: the coordinates of rescue teams, LDCs and victims
BEGIN
REPEAT
Generate X and Y randomly according to known distribution;
IF X > Y

Repeat
Ascertain rescue team B’s first LDC according to RCS;
Ascertain rescue team B’s first LDC according to ACS;
Y← Y + TSLDC

UNTIL
X < Y

Call heuristic algorithm and get λ
End

Else
Repeat

Ascertain rescue team A’s first LDC according to RCS;
Ascertain rescue team A’s first LDC according to ACS;
X← X + TSLDC

UNTIL
Y < X

Call heuristic algorithm and get λ
End

End
UNTIL
A given stopping criterion (number of iterations) is reached.
End
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Appendix C

Table A1. The coordinates of disaster victims.

No. x y No. x y No. x y

1 22 22 26 41 46 51 29 39
2 36 26 27 55 34 52 54 38
3 21 45 28 35 16 53 55 57
4 45 35 29 52 26 54 67 41
5 55 20 30 43 26 55 10 70
6 33 34 31 31 76 56 6 25
7 50 50 32 22 53 57 65 27
8 55 45 33 26 29 58 40 60
9 26 59 34 50 40 59 70 64

10 40 66 35 55 50 60 64 4
11 55 65 36 54 10 61 36 6
12 35 51 37 60 15 62 30 20
13 62 35 38 47 66 63 20 30
14 62 57 39 30 60 64 15 5
15 62 24 40 30 50 65 50 70
16 21 36 41 12 17 66 57 72
17 33 44 42 15 14 67 45 42
18 9 56 43 16 19 68 38 33
19 62 48 44 21 48 69 50 4
20 66 14 45 50 30 70 66 8
21 44 13 46 51 42 71 59 5
22 26 13 47 50 15 72 35 60
23 11 28 48 48 21 73 27 24
24 7 43 49 12 38 74 40 20
25 17 64 50 15 56 75 40 37

Appendix D

Table A2. Explanation about Instances.

Instances Rescue Teams LDCs Victims

instance1 (0, 0) (50, 70) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Appendix C
instance2 (0, 0) (50, 70) Randomly within range (x: 0–50, y: 0–70); Appendix C
instance3 (−20, −20) (70, 90) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Randomly within range (x: 0–50, y: 0–60)
instance4 (−10, −10) (60, 80) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Appendix C
instance5 (−10, −10) (60, 80) Randomly within range (x: 0–50, y: 0–70); Appendix C
instance6 (−10, −10) (60, 80) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Randomly within range (x: 0–50, y: 0–60)
instance7 (−30, 30) (90, 30) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Appendix C
instance8 (−30, 30) (90, 30) (30, 40), (40, 20), (25, 50), (40, 40) and (78, 30) Appendix C
instance9 (−30, 30) (90, 30) (20, 23), (60, 10), (18, 45), (45, 50) and (75, 40) Randomly within range (x: 0–50, y: 0–60)
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