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Abstract: Air travel appears as particularly hazardous in a pandemic situation, since infected people
can travel worldwide and could cause new breakouts in remote locations. The confined space
conditions in the aircraft cabin necessitate a small physical distance between passengers and hence
may boost virus transmissions. In our contribution, we implemented a transmission model in a
virtual aircraft environment to evaluate the individual interactions between passengers during aircraft
boarding and deboarding. Since no data for the transmission is currently available, we reasonably
calibrated our model using a sample case from 2003. The simulation results show that standard
boarding procedures create a substantial number of possible transmissions if a contagious passenger
is present. The introduction of physical distances between passengers decreases the number of
possible transmissions by approx. 75% for random boarding sequences, and could further decreased
by more strict reduction of hand luggage items (less time for storage, compartment space is always
available). If a second door is used for boarding and deboarding, the standard boarding times
could be reached. Individual boarding strategies (by seat) could reduce the transmission potential
to a minimum, but demand for complex pre-sorting of passengers. Our results also exhibit that
deboarding consists of the highest transmission potential and only minor benefits from distance rules
and hand luggage regulations.

Keywords: passenger boarding; aircraft cabin; airport operations; transmission scenarios

1. Introduction

The world is engulfed in a pandemic of the new coronavirus SARS-CoV2 and the respiratory
illness COVID-19 it causes. The virus was first identified in Wuhan, China, and in three months spread
throughout the entire world. To reduce the spread of the virus and prevent overload of local health
systems, most nations have introduced measures such as physical distancing, movement restrictions,
and temporary lockdown of both business and social activities. The global airline industry has been
hit particularly hard by the pandemic. Revenue passenger kilometers have temporarily dropped
by more than 90% in some regions and are only slowly recovering. Overall, the International Civil
Aviation Organization (ICAO) expects an unprecedented drop in passenger demand and a crisis in the
industry unseen before [1]. Air travel should be considered critical, as this globally well-connected
transport network could be part of new transmission chains to remote locations. The confined space
conditions inside the aircraft require a small physical distance between passengers and may, therefore,
encourage virus transmission. Current research and studies indicate that there is only a low probability
of transmission in aircraft, but also point out that activities before and after the flight could also
contribute significantly to the spread of disease.
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Unlike the first coronavirus now referred to as SARS-CoV1, the new coronavirus SARS-CoV2
cannot be annihilated any more. With more than 5 million confirmed infections worldwide at the
end of May 2020 and probably a three to tenfold higher number of unaccounted infected, complete
extinction of the virus is unlikely until a vaccination exists. Most affected nations have introduced
measures to control the spread and minimize the number of new infections. These measures are
primarily aimed at increasing the distance between people so that the virus cannot be transmitted.
Most governments have advocated a strategy of maximum containment until either a vaccine is
available or an effective medication is available to prevent a large number of seriously sick people
from overburdening the local health system. A particular feature of SARS-CoV2 and COVID-19 is
that infected persons become contagious before they develop the first symptoms [2]. The isolation
of apparently sick people (e.g., by measuring their body temperature) therefore does not sufficiently
reduce the spread. Early analyses have shown that about half of the infections occur before the infected
person develops symptoms. Another difficulty is that many people do not develop any symptoms at
all, but are still highly contagious [3]. Also, an effective containment strategy must be pursued for at
least one month, which will have a significant negative impact on (inter-) national economies if this
strategy has to be continued in the longer term.

We assume in our contribution that air travel will be re-established between regions that have
a sufficiently controlled situation with a low number of new infections. These regions will accept
passengers from other equally affected regions if two main conditions can be met (a) prevent as far as
technically possible the transport of infected people to prevent the start of new transmission chains
at their destination, and (b) minimize the risk that undetected infected persons transmit the virus to
other passengers during the travel and by that have “super-spreading” event with multiple infection
chains starting from a particular flight. The first condition can be met by looking for symptoms like
cough or fever and denying access to these affected passengers. This reduces the probability of having
infected people on board but does not fully eliminate it. A further step can be the use of contact
tracking technologies, as already introduced in some Asian countries (especially in China), to identify
possible transmission chains in advance. The safest measure would be the actual testing of passengers
before each flight. Current laboratory test methods based on polymerase chain reaction (PCR) require
roughly 4 to 6 hrs for processing if the (logistic) process is optimized [4]. But the costs for these tests
are substantial, Vienna airport offers a test for arriving passengers at 190 EUR (May 2020).

The development of appropriate capacities for rapid, reliable, and cost-effective testing is urgently
needed. Currently, there are many rapid tests on the market, but they mainly target antigen and
therefore only indicate whether someone has been exposed to SARS-CoV2 [5]. More affordable
PCR-based virus tests are currently under development to provide reliable results within one hour,
making them applicable to air travel [6]. If physical distance can be maintained during a flight,
the multiple testing of each passenger and the associated costs and time-consuming procedures could
be avoided. Flying in airplanes has the advantage over other means of transport that passengers can
be tracked down more easily because all passengers are thoroughly registered. When the physical
distance is required over an entire flight, the capacity of a standard single-aisle aircraft shrinks by 33%
when the middle seats are not used, or even more when only every second row is allowed. This would
prevent airlines from operating flights economically.

1.1. Review of Research on Virus Transmission in Aircraft

SARS-CoV2 is not the first pandemic disease that has confronted the modern world. Aircraft are
relevant for modern pandemics in two ways. First, they have always been identified as relevant for
transporting a disease through the entire world within a matter of days. Second, an aircraft may act as
a place of “super spreading”, enabling many transmissions from a single infected person. Both factors
combined mean that air travel during pandemic conditions is risky for containment and restricting air
travel is usually one of the first things done. Nevertheless, travel from the Wuhan region in China is
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likely the way how SARS-CoV2 has arrived in Europe and North America, probably as early as mid to
late January. As the first step a few terms are introduced:

1. Index Case: the first case of an infection chain.

2. Secondary Attack Rate: the percentage of people infected out of the number of all contacts.
A measure of how contagious a disease is, different from reproduction number R, which describes
how many people an infected person infects on average.

Pre-symptomatic: positively confirmed person, but before developing symptoms.

Symptomatic: an infected person has apparent illness symptoms like fever, coughing and other
5. Asymptomatic: positively confirmed the infected person who does not recognize any symptoms.

Ll

An overview study reviewed the knowledge regarding disease spreading in an aircraft [7].
The learning is that there is no proven model of how a disease spreads in an aircraft. A comparable
virus is the influenza virus, which is also transmitted via droplets. The study shows that transmissions
have been occurred in both cases seated close to and seated far away from the index case. The most
important finding is that the flight event itself is only one possible source of infection, the upstream
and downstream processes (contacts in the airport, boarding and deboarding, baggage collection)
could similarly lead to infectious contacts. The cited studies used contact tracing after the flights and
the actual relevant point of contact can usually not be re-enacted. A key technical fact is that cabin
air is constantly re-circulated at a high rate [4,7]. The recirculated air passes through High Efficiency
Particulate Air (HEPA) filters that remove above 99.9% of all virus and bacteria attached to droplets
(see Figure 1). The assumption is that as long as the environmental control system of the aircraft is
running in normal mode, the pure physical distance is not the key criterion that matters.
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Figure 1. (Left) Air ventilation pattern in a single-aisle cabin, here an Airbus A320. Note that other
types have similar flow patterns. (Right) High Efficiency Particulate Air (HEPA) filters being removed
in an Airbus A380 aircraft from Emirates.

Riser Ducts

Ventilation Ducts

A detailed study on SARS-CoV1 shows how different infection spreads can be [8]. The study
looked at three flights with contagious passengers. On the first flight, no additional infection was
identified, and only one new infection was reported on the second flight. But on the third flight, 22 new
infections were counted, which could be traced back to the index passenger. In this case, the physical
proximity to the index patient was related to the transmission. This was also indicated by a study,
which confirms a higher chance of infection when being seated within 2 rows of the index case [9]
and study focusing on inflight transmission of influenza during passenger movements [10]. However,
the probability of other passengers still reached about one-third of those being seated within two rows.
Thus, as a commonly accepted rule of thumb, each passenger seated two seats and two rows around
the index case shall be contacted for disease containment.

A very recent study documented the travel of a symptomatic index case flying a 15 h trip in
economy class [11]. All 25 passengers being seated within a range of 2 m of the index case were
contacted and closely monitored after the trip. Some of these developed symptoms, however, none
of those were tested positive for SARS-CoV2 (that particular time of the year sees many respiratory
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illnesses). The study specifically mentions the relevance of other shared events before the flight and
during boarding and deboarding. Another study from China reports 11 aircraft transmissions [12].
There are no further details provided. Yet another study from France suspected the infection of a patient
happened during a flight. This is not confirmed yet [13]. The IATA in contrast states that 1.100 infected
people flying have been traced and no secondary cases have been identified [4]. The probability
of infection while being seated appears to be rather low, up to being non-existing following some
research [4]. Contributing factors to this observation are listed in the following.

- The airflow in an aircraft cabin is from above downwards (see Figure 1), reducing the probability
that virus-laden air is ingested by other passengers,

- The air in an aircraft cabin is exchanged rather frequently, about 20 times an hour.

- The recirculated air is run through HEPA (High Efficiency Particulate Air) filters.

- The air is quite dry at cruising altitude, which is problematic for Corona-type viruses.

However, most of these observations are only valid when the ventilation system is running,
and some characteristics (like dry air) are only found when the aircraft is in cruise. When standing at
the gate, the cabin ventilation needs to be activated and this generally requires the auxiliary power unit
to run. This is usually not desired as it creates lots of environmental impact at the airport (e.g., noise,
air pollution), but in times of a pandemic, it might be a sensible operational procedure without too
much additional cost or other repercussions.

1.2. Passenger Boarding

Comprehensive overviews are provided for aircraft ground operations, passenger boarding,
and corresponding economic impact [14-20]. A common goal of simulation-based approaches for
passenger boarding is to minimize boarding time. Thus, the efficiency of different boarding strategies
was focus of the research activities [21-28]. These models are based on cellular automaton or analytical
approaches, but also other models were developed: mixed integer linear program [29], statistical
mechanics [30], power law rule [31,32], cellular discrete-event system specification [33], stochastic
approach covering individual passenger behavior and aircraft/airline operational constraints [16,26].

The quantity and quality of hand luggage determine the duration of boarding significantly.
Thus, research was conducted with a particular focus on the physique of passengers (maximum speed),
the quantity of hand luggage, and individually preferred distance [34], seat assigned passengers with
regards to hand luggage [28,35-37]. Furthermore, the fact that passengers travel in groups has an
impact on the boarding efficiency [16,38]. Other research is aiming at the evaluation of pre-boarding
areas [39,40], consideration of passenger expectations [41], use of apron busses [42], real-time seat
allocation [43,44]. The aircraft cabin layout and design with regards to their impact of passenger
boarding were focused on the following studies: aircraft interior design (seat pitch and passengers per
row) [45], aircraft seating layouts and alternative designs single and twin-aisle configuration [46,47],
impact of aircraft cabin modifications [48], novel aircraft configurations and seating concepts [49,50],
dynamic change of the cabin infrastructure [51].

Only a few experimental tests were conducted to provide data for the calibration of input
parameters and validation of simulation results, e.g., using a mock Boeing 757 fuselage [52], small-scale
laboratory tests [53], or a field trial configuration to get real operational and passenger data [54].
Particular test setups were used to provide data for the time to store hand luggage items in the
overhead compartments [55] or to evaluate passenger perceptions during boarding/deboarding [56].

1.3. Previous Fields of Applications

We use a stochastic, cellular automata approach to model passenger interactions and operational
constraints in the aircraft cabin. Details of the model are presented in Section 3. This particular
model was already applied in several fields of scientific and applied research. These fields are
namely the analysis and evaluation of common group dynamic behaviors, the modeling of passenger
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processes at the airport in regular and exceptional conditions, the egress characteristics of railway
coaches, and evaluation of infrastructural adaptations in the aircraft cabin during passenger boarding.
The dedicated model extension with a module for the evaluation of the transmission probability is
built upon these previous developments.

Pedestrian flows consist of mainly independent pedestrians possess a more homogeneous density
distribution and individually higher flexibility to change the speed and the direction of motion,
compared to flows consists of pedestrian groups [57]. Data conducted in the field point out that
the individual movement characteristic of each group member depends on the group constellation
(e.g., size, age). This results in a coordinated group movement (e.g., distance keeping, collision
avoidance) and a granular flow structure. Figure 2 depicts the position of individuals on a free
flow (left side) and congested environment (right side). In contrast to the classical V-formation of
birds, the social interactions of group members lead to a reversed V-formation, where everyone can
communicate from face to face (not behind one’s back, literally). If the group has to avoid obstacles,
the positions of the individuals change, with larger groups tending to split up and come back together
after passing.

2 1 1 1 1 1 1 1 1 | 1 I 1 1 1
2 15 -1 05 0 05 1 15 2 2 -15 -1 05 0 05 1 15 2

Group constellation with 2 and 4 members Change of inner group structure to pass obstacles

Figure 2. Position of individuals in groups depends on environmental conditions: free flow (left) and
congestion (right).

The coordinated group movement is often a result of a non-verbal, iterative consideration
of observations and anticipated behavior of group members around [57]. Pedestrians become
passengers in the context of transportation and use corresponding infrastructures and vehicles
to reaching their destinations. The tactical behavior enables (modeled) passengers to act with
environmental anticipation, including knowledge about processes, infrastructure layout (navigation),
and perception/processing of provided information [58-60]. Using the model of visual human
perception and modeling the necessary properties of signage components (see Figure 3) allows for a
valuable extension of the operational motion behavior approach.

Figure 3. Navigation in complex environments (airport terminal) under regular operational conditions,

such as path finding with limited information.

The model was also applied to non-normal situations (egress) where people cannot draw on
their experience. This is further complicated by the fact that special procedures usually have to be
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applied to these situations. For example, during evacuations, emergency exits must be used that
no one had previously used since they are not part of standard movement areas. In the case of fire,
the fractional effective dose model (FED [61]) allows the consideration of the human response in a
toxic gas atmosphere. Figure 4 shows the implementation of both the numerical simulation of a toxic
atmosphere during a fire and the passenger movement model inside a double-deck railway coach.

FED - staying 5 min at one position max. FED value of passgongers
3rd Coach Scenario: 15
lover deck  upper deck 0.100

0.5 0.050

D ARV R T IR A,
PR - -l N

Figure 4. Modeling and simulation of egress behavior considering fractional effective dose, a measure

of airborne contaminants absorbed. A fire starts at the lower-deck of the third coach and smoke
spreads through the whole coach. Passengers escape to the adjacent coaches. Affected passengers are
color-coded from green (less impacted) to red (toxic dose), blue indicates no impact.

The model and the simulation environment have been continuously improved and now also
enable the systematic development of appropriate passenger handling processes to take full advantage
of future technologies [51,62]. As an example, future aircraft cabins may contain dynamically adjustable
seat rows to provide a wider aisle if the corresponding seats are not in use at the current time (see the
concept of the Side-Slip in Figure 5). This additional space allows two passengers to pass each other
comfortably or offers the possibility to use more easily accessible seats for passengers with reduced
mobility (e.g., use of wheelchairs). Finally, integrated technology and process development open
up a further field of application for improving operating concepts and testing innovative products.
The on-going (data) revolution in aviation urgently requires these integrated approaches to unlock to
potential of fully-digital, connected technologies, and corresponding business models.

Boarding pattem

~ "
N
Oy "
‘ = om0

= =m0

Boarding Progress: 7 %

Side-slip seat approach Model development and implementation

Figure 5. Implementation of technologies for active control of aircraft cabin environment and
development of corresponding boarding procedures.

1.4. Focus and Structure of the Document

We provide an evaluation of current concepts of operations of passenger boarding with a special
focus on the transmission of SARS-CoV2 in the cabin. Therefore we derive a transmission model
to determine the individual transmission probability during several standard boarding procedures,
such as random or outside-in boarding strategies. Furthermore, we investigated the impact of limiting
the number of hand luggage items and the use of a second door for boarding. The results are based
on a reliable simulation environment, which was validated in the field and extended by the derived
transmission model. Our contribution is structured as follows. After the introduction and summary
of modeling the dynamic behavior of human beings in Section 1, we provide an overview of the
current knowledge about virus transmission in the context of transportation. Furthermore, we extend a
transmission model to our use case of passenger boarding in Section 2 and show the general mechanism.
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In Section 3 the derived transmission model is implemented in a fast stochastic model to provide a
high number of simulation runs for each selected scenario. The results of the scenario analysis are
presented in Section 4. Finally, our contribution ends with a conclusion and outlook (Section 5).

2. Derivation of Transmission Model

Knowledge about the characteristics of SARS-CoV2 is evolving quickly as more studies become
available. In this section, we derive a model for the transmission probability, based on three early
studies on SARS-CoV2 propagation and general characteristics.

2.1. Understanding of SARS-CoV2

In a study from Germany, a small cluster was researched in depth [63]. The relevant finding was
that the overall secondary attack rate was below 10% for close contacts. Even prolonged meeting
situations left some people without a transmission, while on another occasion a transmission happened
when a pre-symptomatic person sat back to back with another person and handed over a salt
dispenser. This demonstrates the relevance of even short contacts to contagious people. In particular,
the contagious person was pre-symptomatic and would not have been rejected for air travel by
symptom-based detection strategies. A study on the outbreak of COVID19 in the Italian town of Vo
shows that the number of asymptomatic cases was at roughly 45% out of the entire number of cases [64].
This means that even if symptomatic passengers are rejected from flying, the probability of having
contagious passengers is still considering if the virus is active in a population. This is considered the
most problematic characteristic of SARS-CoV2, next to the fact that also pre-symptomatic passengers
are contagious. A study from Guangzhou and Hong Kong estimated the incubation period as 5.2 days
on average and—more importantly—the onset of infectiousness 2 days before the start of symptoms [2].
The peak of infectiousness is estimated at half a day before symptoms onset. Thus, contagious people
are likely to travel despite their best intentions and pose a similar or even higher danger than infected
people with clear illness symptoms.

In general, the coronavirus will survive for some time on surfaces, especially metal and synthetic
material [65]. The contagiousness of surfaces touched by multiple passengers is hence of concern.
However, the virus load of asymptomatic or pre-symptomatic passengers likely puts on surfaces is
limited, as he does not cough or sneeze. The overall contribution of contact transmission to the overall
transmission is currently deemed low.

Key parameters of epidemic spread were analyzed to evaluate the contribution of different
transmission routes [66]. Therefore, a transmission rate of 45% from pre-symptomatic events and
5% from the asymptomatic event was assumed. The study further assumed the transmission risk
from contaminated surfaces at 10%. Consequently, a counter-infection strategy relying primarily on
eliminating contact infection (for example through repeated disinfection of the cabin interiors) will not
reduce infection risk sufficiently. However, the reduction of contact infections remains an effective
element of a comprehensive containment strategy and will also help to prevent the transmission of
other diseases.

2.2. Modelling Approach

Agent-based models allow for an efficient implementation of individual interactions in simulation
environments. Transmission models require several parameters, foremost the distance between agents
and the duration of the interaction [67,68].

A comparable work has been published, in which an agent-based mobility model of an entire city
was used to show the spread of SARS-CoV2 as a function of different public distancing measures [69].
The problem encountered was that the character of the individual contacts could not be modeled in its
entirety. That is, the time and distance between agents when being in the same place (e.g., in an office
or a public transport vehicle) is based on probabilities.
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Our approach of an agent-based model provides a more profound estimation of the quality of the
contact between passengers. The initial idea of the transmission model [67] is shown in Equation (1)
and specifically useful for diseases that spread via droplets or aerosols, such as SARS-CoV2.

Pn,t =1- exp (—GZ SRm,t inm,t tnm,t) (1)

The sum is performed for each person n over all contagious persons m, with the following
variables and parameters.

- P,;: the probability of the person n to receive an infectious dose. This shall not be understood
as “infection probability”, because this strongly depends on the immune response by the affected
person.

- 0: the calibration factor for the specific disease

- SRyt : the shedding rate, the amount of virus the person m spreads during the time step ¢

iyms : the intensity of the contact between n and m, which corresponds to their distance

- tumt: the time the person n interacts with person m during the time step ¢

The resulting probability has to be understood as a possible transmission event, or dangerous
contact. It is not the infection probability. Unfortunately, current research does not provide any data to
calibrate the model parameters for the SARS-CoV2 case. Besides the distance between the passengers,
further factors could impact the transmission and should be reflected carefully to derive a reasonable
parameter setting.

- If the cabin ventilation is active (which is highly desirable and probably mandatory in times
of pandemic air travel) the air is circulated and quickly replaced. The exhale of a person does
not remain in a place for very long. Hence the distance threshold is set lower than for other
interior settings.

- Droplets sink to the ground, and the cabin ventilation also injects fresh air into the upper part
of the cabin and extracts at floor level. Hence a passenger located at a lower position is more
susceptible to the virus exhaled from a passenger being located higher than vice versa. This is
relevant when people in the aisle pass seated passengers.

- The virus load increases with physical activity simply as more air is exchanged in the lungs.
Talking (especially very loud, or even singing) also increases virus load in the exhale. Hence,
the model considers moving passengers as having a higher shedding rate than seated passengers.
Shedding rates are even higher when passengers store luggage in overhead bins or squeeze
themselves into window seats.

In this context, the shedding rate and hence the infection probability is considerably higher,
when a passenger stands in the aisle, stowing his bulky carry-on luggage, in contrast to a seated
passenger at an aisle seat. The airflow characteristics of the aircraft cabin would further transport the
exhale of the standing passengers along with the seated one. The used boarding simulation offers
the advantage that it considers these events with increased detail due to their relevance for normal
boarding operations. In our approach, we define the shedding rate SR as a normalized bell-shaped
function (Equation (2)) with z € (x,y) for both longitudinal and lateral dimensions, respectively.

|z — cz|2bz -
SRy = [] (1+—— )
)

ze(xy z

The parameters are a (scaling factor), b (slope of leading and falling edge), and ¢ (offset) to
determine the shape of the curve. The parameters have been initially set to a;y = 0.6, by = 2.5,
cx = 0.25,a, = 0.65, by = 2.7, and ¢, = 0. This provides the spread in y-direction (lateral) a slightly
smaller footprint than in x-direction (longitudinal). The spread in x-direction is higher in front of the
index case than behind it (see Figure 6).
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Figure 6. (Left) Shedding rate of infected person. The increased rate is due to the relative positioning
and increased physical activity. (Right) Virus load depicted as contour plot around person as function
of distance.

Finally, the individual probability for virus transmission P, is corresponds to ©, the specific
intensity (dose) per time step (Equation (3)). As an example, if a passenger should reach a probability
of 1 after standing 10 s in the closest distance in front of an infected passenger (SRy, = 1) ® has to be
set to a value of 11—0.

Py = @ % SRyy (©)]

2.3. Calibration of Transmission Model

The behavior of actual diseases is deterministic and the model needs to be calibrated so that for a
combination of time and intensity (corresponding to distance) the transmission probability can be set.
Additional to the limited understanding of SARS-CoV2 transmissions in operational environments
comes the fact that different individual immune responses exist (some people are more susceptible than
other, for example as exposure to other corona-type virus has created a base immunity). This implies
that we are more likely to derive an estimated range for the input parameters than to provide a
well-founded calibration of the model. For this attempt, we use the case of Air China Flight 112 from
15 March 2003. On this flight from Hong Kong to Peking 22 passengers were being infected by a
single index case [8]. This particular flight was responsible for a considerable spread of SARS-CoV1
throughout Asia and is considered a super spreading event. But unfortunately, little is known about
this flight: 3 h trip length, Boeing 737-300 aircraft, no information about equipage with HEPA filter.
The subsequent contact tracing determined later that the transmission for all passengers most likely
happened during this flight event. There is no way to determine whether the infection happened
during the flight, during the boarding, or during any process before or afterward (for example when
boarded with buses).

For our calibration approach, we decided to have one index case seated at 14E in a virtual Boeing
737-300 (Figure 7). The initial values of the input parameters (see Equation (2)) are chosen to ensure that
about one-third of the total infections are probable. This setup was tested for 50 boarding-deboarding
scenarios and the results confirm both assumptions: (a) transmissions do happen far away from the
index case, and (b) the majority of infections would happen in proximity to the index case. Finally,
the value for © is set to 1/20 while the other parameters remain unchanged at their original values.
Furthermore, we will assume a doubled shedding rate during the storage of hand luggage items and
entering the seat row, since these are physical activities with a short distance to surrounding passengers.
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Figure 7. Calibrated viral load using the Air China Flight 112 from 15 March 2003. The numbers show
the infection probability 50 boarding-deboarding runs. Note that infections have occurred even in
remote seats, albeit the highest probability is close to the index case in 14E. The transmission probability
is color-coded with white (no-contact), orange (minor probability), red (highly probable), and black
(index case).

We are aware of the fact, that our calibration is a straightforward approach. Several assumptions
were taken and it is not proven that Air China Flight 112 is the single source for all transmissions.
It shall be stressed again that the resulting number is not the transmission probability, but a measure of
impact if the index case is highly contagious. This means that below a threshold of 100% we consider
a transmission as unlikely. If a person becomes infected depends on many factors beyond the viral
load itself.

In the following analyses, we consider always a single index case per aircraft, which is a 174 seat
single-aisle aircraft (29 rows). If the infection rate in a population is about 5 persons per week and
100,000 people (average rate in Germany between 18th and 25th of May 2020), the probability of having
an infectious person on board a fully booked 174 seat aircraft can be assumed to be less than 5%. This
considers the absence of apparently ill people but considers the pre-symptomatic and asymptomatic
cases. It further does not account for any contact tracing and subsequent quarantine. This rough
calculation is not provided herein detail as it does not influence the result, it is provided to explain
why we do not assume more than a single index case.

3. Passenger Boarding Model Using Operational and Individual Constraints

In our contribution, we use a cellular automata model, which is based on individual transition
probabilities to move to adjacent positions around the current position [70]. The model was developed
to provide a stochastic approach covering short (e.g., avoid collisions, group behavior [57]) and
long-range interactions (e.g., tactical wayfinding) [59].

3.1. Operational Constraints and Rules of Movement

To reflect operational conditions of aircraft and airlines (e.g., seat load factor, compliance to the
boarding procedure) as well as the non-deterministic nature of the underlying processes (e.g., amount
and distribution of hand luggage) a stochastic model was developed [46,71] and calibrated [54,72].
Herein, the passenger boarding can be understood as a stochastic, forward-directed, one-dimensional,
and discrete (time and space) process, which is mapped to a regular grid. An appropriate mapping
of the aircraft seat layout is shown in Figure 8 (Airbus A320, 29 rows, 174 seats). This regular grid
consists of equal cells with a size of 0.4 x 0.4 m, whereas a cell can either be empty or contain exactly
one passenger.

front door mseat Daisle rear door

EEEEEEEEEEEEEEEEEEEEEEEEEEEER
SN EEEE S S S EEE S S S EEEEEEEEEEEEN
EEEEEEEEEEEEE S S S EEEEEEEEEEEEN
EEEEEEN SN NN NN RN RN

@lllllllllllllllllllllllllllll
SN EEEE S S S EEE S S S EEEEEEEEEEEEN
EEEEEEEEEEEEE S S S EEEEEEEEEEEEN
1 3 5 7 seat row - 23 25 27 29 !

Figure 8. Grid-based simulation environment—Airbus A320 as reference.
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The boarding progress consists of a simple set of rules for the passenger movement: (a) enter the
aircraft at the assigned door (based on the current boarding scenario), (b) move forward from cell to
cell along the aisle until reaching the assigned seat row, and (c) store the baggage (aisle is blocked for
other passengers) and take the seat. The storage time for the hand luggage depends on the individual
number of hand luggage items. The seating process depends on the constellation of already used
seats in the corresponding row. The stochastic nature of the boarding model requires a minimum
of simulation runs for each selected scenario to derive reliable simulation results. In this context,
a simulation scenario is mainly defined by the underlying seat layout, the number of passengers to
board (seat load factor, default: 85%), the arrival frequency of the passengers at the aircraft, the number
of available doors (default 1 door), the specific boarding strategy (default: random) and the compliance
of passengers in following the current strategy (default: 85%). Further details regarding the model and
the simulation environment are available at [16].

In the simulation environment, the boarding process is implemented as follows. Depending on the
seat load, a specific number of randomly chosen seats are used for boarding. For each seat, a passenger
(agent) is created. The agent contains individual parameters, such as the number of hand luggage
items, maximum walking speed in the aisle (set for all agents to 0.8 m/s [43,54]), seat coordinates,
time to store the hand luggage and arrival time at the aircraft door. To create the time needed to store
the hand luggage, a stochastic distribution is used. The agents are sequenced concerning their seats
and the current boarding strategy. From this sequence, a given percentage of agents are taken out of
the sequence (non-compliant behavior) and inserted into a position, which contradicts the current
strategy (e.g., inserted into a different boarding block).

According to the exponential arrival time distribution and the boarding sequence, each agent
gets a timestamp to appear on the aircraft door queue. When the simulation starts, the first agent
of the queue always enters the aircraft by moving from the queue to the entry cell of the aisle grid
(aircraft door), if this cell is free. In each simulation step, all agents located in the row are moved to
the next cell, if possible (free cell and not arrived at the seat row), using a shuffled sequential update
procedure (emulate parallel update behavior [59,70]). If the agent arrives at the assigned seat row,
he blocks this position as long as the time needed to store the hand luggage. Depending on the seat row
condition (e.g., blocked aisle or middle seat or both), additional time is added to perform the seating
process (seat shuffle). The aisle is blocked for passing during the whole seating process. Each boarding
scenario is simulated 125,000 times, to derive statistically relevant results defined by average boarding
time (start with the first passenger arrives the aircraft and finished when the last passenger is seated)
and standard deviation of the boarding time.

In general, boarding strategies follow three basic approaches: boarding per rows (aggregated
to blocks), boarding per seat (window, middle, aisle), and sequences of specific seats. Figure 9 (left)
depicts how the boarding strategies and operational constraints are implemented in the boarding
model. The seats are color-coded to emphasize the order of aircraft seats. In our contribution we
will consider six different boarding strategies (and deboarding): random, back-to-front (based on
2 boarding blocks), optimized block (based on 6 boarding blocks), outside-in (window seats first,
aisle seats last), reverse pyramid (back-to-front plus outside-in with 6 blocks), and individual seating.
These strategies cover the most relevant operational and scientific approaches for passenger boarding.
For the random boarding, passengers arrive with no specific chronological order. Finally, the individual
boarding strategy is a specific solution of the optimized block (alternating rows) and outside-in strategy,
where each block contains only one seat. Figure 9 (right) additionally emphasizes how the operational
constraints of 1st class seats, passenger compliance to the boarding strategy, seat load factor, and the
existence of groups are covered by the boarding model.
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Figure 9. Overview of different boarding strategies: darker seats are boarded first, followed by black,
blue, and green (left). Implementation of operational constraints: darker seats are boarded first (right).

3.2. Model Adaption

The actual model for passenger boarding has to be adapted for considering different approaches
addressing a reduced transmission probability during boarding. These approaches primarily focus on
the two major concepts of distance keeping and reduction of contact times, where both concepts result
in a lower chance to get in close contact with a probably infected passenger. To get an initial picture
and a valid baseline about interactions in the aircraft cabin, all interactions between passengers will be
counted. The idea is to identify the number of individual contacts and the duration of these contacts.
The following rules are applied.

- A passenger is moving forward in the aisle, except the next position is blocked by another
passenger. This blocking is counted as interaction for both passengers.

- Entering the seat row demands a minimum of movements to reach the seat, which depends on
the already used seats. All involved passengers are marked as interacting.

- Each interaction is only counted one time (at the first appearance), to derive the number of
individual contacts.

Counting the individual contacts will provide the first indication about potential ways of
infections, but as introduced in Section 2, the severity (measured by distance) and the duration
of an individual contact have to be considered as well. Thus the introduced infection model provides
an additional quantification.

4. Scenario Analyses and Results

Before different boarding (de-boarding) strategies are evaluated, a baseline setup will be
introduced (cf. [16]). As Table 1 exhibits, each boarding strategy results in a specific boarding
time, which is measured by an average time value and standard deviation of the boarding time.
The boarding time mainly depends on the number of passengers and their interactions in the
aircraft cabin. Thus, an increased amount of interactions (contacts) also increase the boarding time.
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The random boarding is taken as the reference case and points out an average of 3.5 individual
contacts per passenger during boarding with a corresponding relative standard deviation (RSD) of
36%. The RSD is defined as the standard deviation divided by the average value. If block-based
strategies are applied, the average number of contacts only slightly changes from the random boarding.
More complex strategies addressing a minimized interaction during the seating process (outside-in)
and combination of both block and seat consideration (reverse pyramid) result in a decrease to
approx. 2.7 contacts on average. Finally, the approach for the individual-based sequence results in
2.2 contacts (RSD of 53). The deboarding case exhibits a significantly higher amount of individual
contacts since the passengers stand near the aisle and take their hand luggage out of the overhead
compartments whereas other passengers passing. This specific contact is counted for both passengers
standing, whereas passing seated passengers is not considered as direct individual contact in this
simplified approach. These indirect contacts (passing seated passengers) are considered in Section 4.3,
where the introduced transmission model is applied for a more accurate evaluation of the overall
transmission probability.

Table 1. Baseline simulation to determine regular boarding time and number of individual contacts by
using average values and relative standard deviation (RSD).

Boarding Strategy Boarding Time (%) Number of Contacts (%)

Average RSD  Average RSD

reference random 100.0 7.3 3.5 36
by block  back-to-front (2 blocks) 95.9 7.3 35 36
optimized block (6 blocks) 95.3 7.3 3.3 35

by seat outside-in 79.5 7.1 2.8 39
reverse pyramid 75.2 7.0 2.7 40

individual 65.8 7.4 2.2 53

deboarding 54.5 6.5 53 35

4.1. Distance Keeping

As already introduced and analyzed in detail [59,70,73], social and long-range interaction could
be reliably modeled by using a floor field. This field contains information about preceding passengers,
which allows for a long-range interaction even considering adjacent cells around the actual position.
So each passenger will leave a trace with a given length during movement to block the corresponding
cells and indicate the minimum distance required. As Figure 10 exhibits, an increasing physical distance
results and in a longer boarding time accompanied by a decreased standard deviation. Assuming a
minimum distance of 1.6 m, which corresponds to 4 grid cells in the stochastic model, the boarding
time is nearly doubled for random boarding.
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Figure 10. Characteristic of boarding time (left) and relative standard deviation of boarding time
(right) with increasing physical distance between passengers.
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The effect of physical distance superimposes all advantages by a significantly reduced arrival
rate and the completely coupling of the individual passenger movements. This is also indicated by
the reduced relative standard deviations, as depicted in Figure 10 (right). Furthermore, the increased
distance between passengers results in a worse performance of block-based boarding strategies.
This would be also true for the individual boarding, which follows the idea that each row is a block
and this block should be boarded with window seat first and aisle seat last (outside-in). The distance of
subsequently following blocks has to be adapted according to the required distance of the passengers.
Finally, each (optimized) block-based strategy will converge to this individual approach.

On the positive side, the introduced physical distance reduces the direct contact of a passenger in
the aisle to zero. As Table 2 shows, the remaining individual contacts result from the seating process.
When a passenger arrives at the seat row and some seats already used by other passengers then
these passengers have to stand up to allow entering the row if necessary, e.g., window seat to be
taken and the middle seat is occupied. This process is time-consuming, because the aisle is normally
blocked during this seat shuffle, and consists of close distances between the involved passengers.
The implementation of the outside-in boarding strategy leads to a minimum of these time-consuming
shuffles, because here first the window seats, then the middle seats, and finally the aisle seats are being
taken. As mentioned in Section 3, the passenger compliance to the boarding strategies will be not 100%
since passengers arrive late or family members will not be separated. Therefore the number of contacts
in Table 2 still show a value different from zero for all strategies.

4.2. Reduction of Hand Luggage Items

It will be assumed that the amount of hand luggage will be significantly reduced by the airline
to ensure a shorten time storing the hand luggage in the overhead compartment. If the average
number of hand luggage is reduced by 50%, the boarding time decreased by approx. 20% using
random passenger sequences [16]. Since we expect all SARS-CoV?2 related modification of the boarding
process will have a negative impact, we will implement a significant reduction of hand luggage
items (50%) in our scenarios to ensure that each passenger can store his items in the corresponding
overhead compartment at any time. As Table 2 points out, the average number of individual contacts is
significantly reduced but at the cost of the doubled boarding time. Thus, the random and block-based
strategies lead to an average of 0.9 contacts with an RSD of approx 85% (standard deviation of approx.
0.8). The seat-based strategies only show 0.2 individual contacts associated with RSD value higher
than 200% (standard deviation of approx. 0.5). The number of direct contacts during deboarding is
only reduced by 0.3 points.

Table 2. Impact of physical distance rules (1.6 m) on the number of individual contacts, boarding time,
and compensation of boarding time by 50% less hand luggage item. The reference boarding time equals
100% (random strategy), which corresponds to airline-specific implementations and reaches values
between 10 and 20 min [54].

Reference Keeping 1.6 m Minimum Distance in Aisle

Boarding Strategy Number of Contacts Number of Contacts Average Boarding Time (%)

Average RSD (%) Average RSD (%) 100% Carry-on 50% Carry-on
random 3.5 36 0.9 85 198 154
back-to-front (2 blocks) 35 36 0.9 86 220 169
optimized block (6 blocks) 3.3 35 0.9 85 279 210
outside-in 2.8 39 0.2 227 161 116
reverse pyramid 27 39 0.2 261 185 128
individual 22 53 0.2 271 114 104
deboarding 53 35 5.0 36 97 68

The approach to limit the number of hand luggage items to 50% of the standard amount mitigates
the effect of longer boarding times. In conclusion, the boarding time of today random boarding
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strategy could be reached with 1.6 m distance rule, using a passenger-wise, time-consuming presorting,
and 50% reduction of hand luggage items. The boarding time for the random strategy increases by
54% under the same conditions.

The often mentioned approach of having a free middle seat will also result in less interaction
during seating but also result in a 33% reduced seat load, which may result in efficient airline operations
from an ecological and economic perspective. This scenario could not be compared directly to the
random strategy since the number of passengers is intentionally reduced, which consequently reduces
the direct contacts as well.

4.3. Transmission Approach

At this stage, the interactions between passengers are only individually counted but not evaluated
against their probability to get passengers infected. Therefore Equations (2) and (3) are implemented
using the following parameters for longitudinal x (in the direction of motion) and lateral propagation
y (across to the direction of motion): maxy = 1, ay = 0.6, by = 2.5, ¢x = 0.25; maxy, = 1, a, = 0.65,
by = 2.7,c, = 0; ® = 1/20, one randomly selected passenger as SARS-CoV2 source. Furthermore,
we introduce an amplification factor of 2 to reflect the higher intensity of interactions during the
hand luggage storage and seating process. This factor is active if the infected passengers start to store
his luggage until he is finally seated. This approach opens up a more detailed assessment, but also
contains a high degree of uncertainty, because although we have chosen a reasonable approach, it is
not based on a reliable data set or scientific validation. We hope that upcoming research will help us to
gain additional insights into this highly dynamic process.

In the following Table 3 the necessity to distinguish between the simplified approach of counting
individual contacts in the aisle and the more differentiated approach of assessing possible transmissions
around an infected passenger is emphasized. In particular, the implemented back-to-front strategy
exhibits lower values for the transmission probability than the optimized block strategy. If passengers
board in blocks from the back to the front, the chance of passing an infected person is reduced to
a minimum, as confirmed by the calculated reduction of the transmission probability. This effect is
also a root cause of the low transmission probabilities of outside-in, reverse pyramid, and individual
boarding strategy. The table shows also the impact of distance keeping and reduction of hand
luggage, e.g., the reference case of random boarding initially shows an average value of 5.9 possible
transmissions which could be reduced by both operational changes finally to 1.1 possible transmissions.
All these reductions are accompanied by an increase in the RSD values. Again, deboarding shows only
minor changes.

Table 3. Evaluation of possible transmissions assuming one SARS-CoV2 passenger in the cabin and
one door operations (front door).

Possible Transmissions

0 m Distance 1.6 m Distance

100% Carry-on 50% Carry-on 100% Carry-on 50% Carry-on
Boarding Strategy Average RSD Average RSD Average RSD Average RSD

Value (%) Value (%) Value (%) Value (%)
random 59 68 42 83 1.6 124 1.1 145
back-to-front (2 blocks) 5.6 65 3.9 81 14 123 1.0 144
optimized block (6 blocks) 6.5 67 4.8 77 2.3 116 1.5 134
outside-in 3.5 62 1.7 97 0.4 226 0.2 329
reverse pyramid 3.0 56 1.3 99 0.2 291 0.1 467
individual 2.0 92 0.8 154 0.2 301 0.1 489

deboarding 10.0 36 8.0 42 9.7 34 7.8 43
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4.4. Two Door Operations (Front and Rear Door)

The left front door is regularly used during standard boarding procedures at gate positions.
Apron positions or special gate positions allow for the use of two doors for boarding and deboarding.
The approach of using two doors accelerates the boarding progress and also results in reduced values
for possible transmissions. Table 4 exhibits that the boarding time for two-door operations with a
reduction of 50% hand luggage items reaches the reference time for random boarding using one door.

Table 4. Evaluation of possible transmissions (Transm.) and boarding time assuming one SARS-CoV2
passenger in the cabin and two door operations (front and rear door).

0 m Distance 1.6 m Distance
Carry-on Carry-on Carry-on Carry-on
100% 50% 100% 50%
Boarding Strategy Average  Average Average Boarding Average Boarding
(Two Doors) Transm. Transm. Transm. Time (%) Transm. Time (%)
random 43 25 1.4 133 1.0 103
back-to-front (2 blocks) 3.9 24 1.2 153 0.8 116
optimized block (6 blocks) 5.5 34 1.5 166 1.0 125
outside-in 1.9 0.6 0.3 107 0.1 77
reverse pyramid 1.7 0.5 0.2 119 0.1 82
individual 1.0 0.3 0.2 103 0.1 74
deboarding 7.9 6.2 7.6 52 6.0 36

5. Discussion and Outlook

The new coronavirus SARS-CoV2 has demonstrated high contagiousness even before infected
people show any symptoms. Surface disinfection does not reduce the infection risk sufficiently as the
majority of transmission is observed as droplet-based. However, the transmission probability during
the flight itself is currently deemed low due to the airflow patterns in a cabin, the dry air, and the
effectiveness of filtering systems in the aircraft. Research on previous diseases has further shown the
relevance of the pre- and post-flight processes, such as boarding and deboarding. In our contribution,
we address this issue using a stochastic cellular automata model and a transmission model, which was
calibrated using an event from the previous SARS epidemic. The resulting transmission probabilities
are likely to be conservative (means: higher than in actual life). We are not considering face masks in
our model approach. The boarding and deboarding simulation were performed using a single-aisle
aircraft with 174 seats, representative for the majority of Airbus A320 and Boeing B737 family aircraft
in service. Several different boarding strategies are applied. There is a single infected person among
the passengers, its seat position and entry position are randomly set and the result averaged over
125,000 simulation runs.

The standard random boarding without additional distances and normal carry-on luggage results in
about 5-6 critical contacts between passengers. Changing the boarding procedure reduces the number of
contacts by more than half. Introducing a distancing of 1.6 m reduces the number of critical contacts for
the random boarding to about 1-2. Hence, distancing alone does not eliminate these contacts. Carry-on
luggage influences the time spent in the aisle at a high physical workload (high shedding rate). Reducing
the luggage by 50% reduces the number of critical contacts to about 1 for the random boarding. Boarding
procedures like outside-in or reverse pyramid have a profound effect and reduce the number of critical
contacts substantially below 1, even with normal carry-on luggage. Particularly, the use of the rear door
will reduce the transmission probability significantly for all boarding strategies.

The transmission probability during deboarding is only slightly influenced since physical
distancing is difficult if not impossible to impose. The number of contacts and the transmission
probability remain at a high level, which indicates deboarding as the critical process in the aircraft
cabin. To reduce the transmission probability, the timing of passengers entering the aisle during
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deboarding would need to be controlled. Further measures like having active ventilation after engine
shutdown should be discussed with experts on cabin ventilation. This study does make any statements
regarding the risk during normal seating. Cited studies have shown that the infection risk is very low,
also with normal seating densities. Reducing the risk through boarding and deboarding provides the
advantage, that remaining infection risk is limited to the passengers directly around the index case.

The used transmission model is not sufficiently calibrated to make a strong conclusion about
actual transmission probabilities. Therefore we introduce the term critical contacts. We interpret
our simulation results as such that we recommend boarding procedures that minimize interactions
between passengers. The application of seat-based boarding procedures recovers some of the additional
boarding time needed through the introduced physical distancing. The use of two doors for boarding
will provide a good solution for a reduced transmission risk inside and outside the cabin if near
apron stands could be used and passengers could walk from the terminal to the aircraft. This kind
of walk boarding also prevents passengers from standing in the badly ventilated jetway during the
boarding. Deboarding is difficult to control through procedures and passengers have demonstrated
little discipline and high eagerness to leave the aircraft. We think this event should be given increased
attention, and either procedural or technical solutions considered.

Carry-on luggage has substantial influence. It should be considered to limit the carry-on to
the amount which can be put into the overhead bins with little effort or increasing the carry-on
capacity in the cabin. Assigning a place in the overhead bin for each passenger with carry-on may
further reduce the storage time and reduce contacts. This should also have a favorable effect on
the boarding times, also after the pandemic has ended. Removing the carry-on luggage entirely
could be an option, but there is also a diametrical effect of increased interaction before and after the
flight. Although not modeled or discussed here, other hygienic measures need also to be considered.
SARS-CoV2 is not specifically known to easily transmit via contaminated surfaces. Therefore advanced
hygienic measures shall be applied, and shall be focused in places where passenger interaction happens
frequently, foremost the lavatories. This is specifically relevant for longer-range flights, and would
also help to contain other infectiousness diseases.

The infection risk of boarding and deboarding is substantial but can be addressed. This contributes
to the effort to ensure a very low and overall acceptable risk of infection when traveling by aircraft.
The procedural measures that are recommended do not add any cost or unacceptable inconvenience to
passengers. The reduction of critical contacts by additional physical distance alone does not eliminate
the risk if random boarding is continued. Distance and different boarding procedures remove the risk
for the boarding process. The not regulated passenger deboarding remains an issue. Carry-on luggage
and deboarding as a whole should receive further attention. The suggested changes to the boarding
process would also enhance the travel experience and reduce turnaround time in the hopefully not too
distant future when the pandemic has ended.
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