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Abstract: Developing environmentally friendly and sustainable nitrogen (N) fertilizer management
strategies is crucial in mitigating carbon dioxide (CO2) emission from soil. How N fertilizer
management practices influence soil CO2 emission rates under different crop rotations remains
unclear. The aim of this study was to assess the impact on soil CO2 emission and soil physicochemical
properties of three N fertilizer treatments including traditional rate (TF), optimized rate (0.8TF), and no
fertilizer (NF) under three different crop rotation treatments: wheat-fallow (WF), wheat-soybean
(WS), and wheat-maize (WM) over two years in a field experiment in northwest China. The rates were
5.51, 5.60, and 5.97 µmol·m−2

·s−1 of mean soil CO2 emission under the TF, 0.8TF, and NF treatments,
respectively. Mean soil CO2 emission rates were 21.33 and 26.99% higher under the WM rotation
compared with the WF and WS rotations, respectively. The WS rotation showed higher soil nutrient
content and lower soil CO2 emissions, and reduced fertilizer application. Importantly, soil organic
carbon (SOC) concentration in the topsoil can be maximized by including either a summer legume
or a summer maize crop in winter wheat rotations, and by applying N fertilizer at the optimal rate.
This may be particularly beneficial in the dryland cropping systems of northern China.
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1. Introduction

Agricultural practices contribute significantly contribute to global climate change, and agricultural
soil is a major source of greenhouse gases globally [1]. Agriculture is also considered to increase soil
organic carbon (SOC) and net primary production of plants during the growth period to mitigate
net greenhouse gas emissions from soil [2]. CO2 emissions from the soil are determined by various
environmental factors. (1) Physical properties, such as the activity, communities and function of
soil microorganisms [3,4], the quality and amount of organic matter in the soil [5], and texture [6];
(2) environmental conditions of soil such as moisture, pH value, ventilation and temperature [6,7];
and (3) management practices such as land-cover types [8,9], tillage [10], crop rotation [11], irrigation
and fertilization [12,13], have been identified as the most important factors influencing soil CO2

emissions. Because soil is a living biological system, CO2 emission is a complex problem, and limited
information exists for different rotation and nitrogen (N) fertilizer treatments.
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Fertilizer is a key tool in enhancing crop production and is necessary to ensure food security in
China [14,15]. The increasing population in China demands much food, but farmland has decreased
and water resources are scarce [16]. Farmers are trying to maximize yields, and therefore are compelled
to apply more fertilizer, leading to an over-application of N fertilizers [17]. This has become a
common problem in village regions in most areas in China [18], and has led to low nutrient use
efficiency, which has negative impacts on the environment, and threatens the long-term sustainability
of Chinese agriculture [17,19]. After half a century of development, China’s N fertilizer production
and consumption rank first in the world, and alone approximately account for around 38% of global
N fertilizer applications [20]. Management practices that accumulate soil nutrient resources, such as
intercropping practices, and crop rotation, have been gradually discontinued [18]. Farm management
has shifted towards a dependence on mineral fertilizers to ensure adequate N supply for crops,
and much more N fertilizer than is required is often added to the soil [21]. Average N surplus in
crop fields in China has been modeled at 184 kg/ha for rice, 144 kg/ha for wheat, and 120 kg/ha for
maize [22]. The greenhouse gas emissions from N fertilizer production, transport, and consumption
constitute a large part of the total agricultural emissions in China [19]. Therefore, improvements in N
use efficiency in crop production will have significant implications for reducing fertilizer inputs and
environmental protection [23,24].

Previous studies have documented that effectively designed and managed crop rotation systems
can improve conditions for soil organisms, and reduce the amount of agro-chemical application [25].
Crop rotation is beneficial for agriculture and can improve soil structure, water availability, and root
penetration, ultimately improving the fertility of soil and maintaining high productivity [26]. Rotations
that include a summer crop and a winter wheat (Triticumaestivum L.) crop are regular in western
China and have been used for thousands of years. There has been some research that evaluates the
influence of change in SOC concentrations and soil CO2 emissions under long-term cropping system
experimentation. However, few studies have investigated soil CO2 emissions under different fertilizer
applications in winter wheat plus summer crops such as soybean, maize, and fallow crop rotation.

Knowledge of soil CO2 emissions and the influencing factors, such as biotic and abiotic processes [4],
and land-cover types [8], are necessary to further research the response of soil carbon dynamics to soil
respiration change. This has been widely adopted in the field of sustainable development in agriculture
with agronomic functions such as fertilizer application and crop rotations [25]. A recent study showed
that crop rotation with no tillage improved soil microbial biomass compared to fallow fields during
winter due to more residue being returned to the soil [26]. However, there has been limited evidence of
soil CO2 emission, which is important to soil carbon management in arid regions [27]. The management
of crop rotations and fertilizer application increases the productivity of yield and biomass and has a
large impact on soil CO2 emission and SOC concentrations, all of which influence soil quality [13].
To find more economically effective and sustainable agriculture systems of using crop rotation and
fertilizer rate in the drylands of northwest China, the aims of the current study were to: (1) verify the
influences of these practices on soil temperature, soil moisture, soil nutrients, SOC content, and soil
CO2 emission dynamics, and (2) determine the relationship between SOC and CO2 emissions and the
influencing factors.

2. Materials and Methods

2.1. Site Description

This experiment was conducted in the drylands of Yangling village (34◦12′N and 108◦7′ E, at 520 m
altitude), Ghuanzhong region, Shaanxi Province, northwest China. The site has an annual mean air
temperature of 12.9 ◦C and an average annual rainfall of 630 mm. The warmest time occurred from
July to September, which also had the highest rainfall (Figure 1). The saturated soil water percentage
and field capacity were 42.8 and 23%, respectively. The soil texture is silt clay loam, and the soil is
classified as Lou soil (anthrosol), with a bulk density of 1.49 g·cm−3. In 2008, at the beginning of the
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experiment, the soil was found to contain 0.86% organic matter, 12.74 mg·kg−1 alkali-hydrolysable N,
21.72 mg·kg−1 available phosphorus, and 54.52 mg·kg−1 available potassium.
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Figure 1. Mean monthly air temperature and rainfall from January 2011 to June 2013 during the
growing seasons at the experimental site.

2.2. Experimental Design and Management

The field experiment (established for more than 10 years) was a split-plot design (three replications)
with rotation in the main plot and fertilizer treatment in the subplot (Figure 2). The measurements
were carried out from June of 2011 to June of 2013. Three rotation strategies that are common in the
uplands of this region were used in this study. These included a winter wheat and summer fallow
(WF) rotation, a winter wheat (Triticumaestivum L.) and summer soybean (Glycine max L.Merr.) rotation
(WS), and a winter wheat and summer maize (Zea mays L.) rotation (WM) (Figure 2). The growing
season of summer crops in this area is generally from June to September. The winter wheat growth
period is from October to June of the following year (Figure 1). Three fertilizer application treatments
were used: (1) the local farmers’ traditional practice rate (TF), in which a base fertilizer was applied
once during the winter wheat season providing phosphorus pentoxide (P2O5) at 300 kg·ha−1 and urea
(CON2H4) at 300 kg·ha−1, and the WM rotation system had a top-dressing fertilizer providing 300 kg
of urea (CON2H4) ha−1, similar to the local farmers’ practice rate and times; (2) optimized fertilization
(0.8TF), corresponding to 80% of TF fertilizer amount; and (3) no fertilizer application (NF) (Figure 2).Sustainability 2020, 12, x FOR PEER REVIEW 4 of 14 
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2.3. Soil CO2 Emission Measurements

Soil CO2 emission was measured using the open-flow dynamic method described by Kong
and Wang [28–30]. Soil CO2 emission was measured during the growing seasons from 9 August
2011 to 24 May 2013. All measurements occurred between 9:00 and 11:00 a.m. once every 2 weeks.
The measurements were delayed by 1–2 days if it was raining on measurement day. The system
consisted of a chamber and an infrared CO2 analyzer (Huayun Co. Ltd., Beijing, China; model
GXH-3010E1). The chamber was made of PVC, which was 16 cm in diameter and 15 cm in height,
and was inserted 4 cm into the soil. Soil CO2 emission was determined as described by Kong and
Wang [29,30].

Soil moisture and soil temperature were measured adjacent to the chamber. Soil temperature
was measured at depths of 5, 10, 15, 20, and 25 cm in the middle of the crop rows using a buried
geothermometer. After crops were harvested, soil cores were taken from 0–100 cm of the topsoil at three
points in each plot. Soil samples from three repetitions at the same level were mixed to form a composite
sample. Soil samples were air-dried in a room, and then passed through a 0.25 mm mesh, similar to
the method described by Kong and Wang [28,30]. The gravimetric soil water content was determined
as described by Wang in which soil samples were dried at 105 ◦C for 48 h [30]. SOC constants were
measured using the K2Cr2O7 oxidation method as described by Liu [1]. Alkali-hydrolysable N was
analyzed by alkaline hydrolysis [31]. Available phosphorus in the soil at the experimental site was
analyzed using the Mo-Sb colorimetric method [32]. Available potassium was analyzed by flame
photometry after NH4OAc extraction according to the method by Cambardella et al. [31].

2.4. Statistical Analyses

All data collected from the different treatments were subjected to analysis of variance (ANOVA)
using SPSS software (version19.0, Amos Development Corporation, Wexford, PA, USA). Rotation and
N fertilization treatments were fixed effects, and the average date of each crop growth period was a
repeated measure variable in the mixed-model analysis which was used to evaluate the contribution
of individual factors of fertilizer treatments and crop rotation modes. The statistical significance
of variance and normality tests was determined using the data (p < 0.05). Correlations between
soil moisture, soil temperature, SOC, and soil CO2 were determined using CANOCO 4.5 (Biometris,
Wageningen, Netherlands) [33].

3. Results

3.1. Soil Temperature and Moisture Content

Soil temperature in the 0–25 cm soil layer was similar between N fertilizer and rotation treatments
(Figure 3a,b, Figure S1). The mean soil temperature under WF, WS, and WM was 17.24, 17.21,
and 17.19 ◦C, respectively, and the soil temperature under NF, 0.8TF, and TF, was 17.49, 17.06, and
17.09 ◦C, respectively. The average soil temperature under the NF treatment was higher than that
under the other two fertilizer treatments during the growth period of winter wheat. The average
soil temperature under the WF rotation was higher than that under the other two rotations during
the summer crop growth period. During the 2011 summer crop, 2011–2012 winter wheat, and 2012
summer crop growing seasons, soil temperature significantly differed among the three rotation modes,
but there were no significant differences between the three fertilizer treatments.
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treatments. However, N fertilizer showed no significant differences in mean soil moisture content. 

3.2. Soil Organic Carbon (SOC)  

Figure 3. Mean temperature and water content of soil under different N treatments and crop rotation
during different crop growth periods. (a) Mean soil temperature under different fertilizer treatments
(traditional practice rate or TF, optimized fertilization or 0.8TF, no fertilizer or NF), (b) mean soil
temperature under different crop rotations (wheat-fallow or WF, wheat-soybean or WS, wheat-maize
WM), (c) mean soil water content under different fertilizer treatments (TF, 0.8TF, NF), and (d) mean
soil water content under different crop rotations (WF, WS, WM). Bars show mean ± standard error.
Different lower case letters indicate significant differences at p < 0.05.

The mean soil moisture content of the WS and WM rotation modes was lower than that of the
WF rotation under the same rainfall conditions (Figure 3c,d, Figure S2). Average soil moisture was
15.90, 15.43, and 15.62% under WF, WS, and WM, respectively. The average soil moisture levels were
15.72, 15.72, and 15.52% under the NF, 0.8TF, and TF treatments, respectively. Soil moisture content
was 17%–21% during the summer crop growth periods over the two years, since this was the season
when precipitation increased (Figures 1 and 3). Soil water content during the maturity stage of winter
wheat, when wheat growth requires extra water, was 8%–15%. Mean soil moisture varied significantly
under the 2011 summer crop and the 2012–2013 winter wheat among the three rotation treatments.
However, N fertilizer showed no significant differences in mean soil moisture content.

3.2. Soil Organic Carbon (SOC)

The mean SOC content in the 0–100 cm soil layer varied under different rotations and N fertilizer
treatments. Under the WF rotation, the SOC content was 5.45, 5.31, and 5.41 g/kg, under the WS
rotation it was 5.53, 5.68, and 5.42 g/kg, and under the WM rotation it was 5.72, 5.47, and 5.66 g/kg for
the N fertilizer treatments NF, 0.8TF, and TF, respectively (Figure S3). After 10 years under the crop
rotations and N treatments, treatments showed significant differences with respect to SOC content.
The mean SOC content increased by 24.56, 20.44, and 5.58% under the MF, MS, and MW rotations mode
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over the study period in the 0–10 cm soil layer, and by 10.30, 20.12, and 20.17% under the TF, 0.8TF,
and NF treatments, respectively (Figure 4). During the 2011 summer crop period, significant differences
in SOC were found between the three rotation modes in the 0–10 cm and 11–40 cm soil layers.
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3.3. Soil CO2 Emission

Soil CO2 emission under the three N fertilizer treatments and three rotation treatments followed
similar trends over time (Figure 5, Figure S4). High soil CO2 emission rates occurred when soil
temperature was high, and low soil CO2 emission rates occurred when soil temperature was low
(Figure 5). The average soil CO2 emission was 5.51, 5.60, and 5.97 µmol·m−2

·s−1 under the TF, 0.8TF,
and NF treatments, respectively. The average soil CO2 emission rate under the WF, WS, and WM
rotation modes was 5.39, 5.15, and 6.54 µmol·m−2

·s−1, respectively (Figure 5). Except for during
winter wheat growth in the 2011–2012 season, there were no significant differences in average soil CO2

emission rate between the three rotation modes or between the N treatments. During the study period,
mean soil CO2 emission under the WF and WS rotations decreased with increasing amounts of N
fertilizer, while under the WM rotation it increased with increasing amounts of N fertilizer.
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Figure 5. Mean soil CO2 emission rate during different crop growth periods under different rotation
and nitrogen fertilizer treatments.

During the summer crop growing seasons (Figure 5), the soil CO2 emission differed significantly
(p = 0.0095 and p = 0.03 in 2011 and 2012, respectively) between the three rotation modes. The average
soil CO2 emission rate of the WF rotation mode was the lowest of the three rotation modes, and the
WM rotation was the highest. During the summer growth period of 2011, the average CO2 emission
rates were 2.75, 4.96, and 6.12 µmol·m−2

·s−1 under the WF, WS, and WM rotation modes, respectively.
The average CO2 emission rate was 4.69, 4.61, and 4.53 µmol·m−2

·s−1 under the TF, 0.8TF, and NF
treatments, respectively. The average soil CO2 emission rate during the 2012 summer growth period
under the WF, WS, and WM rotation modes was 6.57, 4.73, and 7.01 µmol·m−2

·s−1, respectively, and it
was 6.16, 5.94, and 6.20 µmol·m−2

·s−1 under the TF, 0.8TF, and NF treatments, respectively.
The results of this study show that the three rotation modes produced significant differences in

soil CO2 emission rates during the 2012–2013 winter wheat growing season, but there was no effect of
N fertilizer treatment (Figure 5). The mean soil CO2 emission rate under the WF, WS, and WM rotation
modes was 9.39, 10.64, and 12.52 µmol·m−2

·s−1, respectively in the 2011–2012 winter wheat growing
period, and 2.27, 1.29, and 1.70 µmol·m−2

·s−1, respectively, during the 2012–2013 winter wheat growing
season. The mean soil CO2 emission in the 2011–2012 winter wheat growing period under the TF,
0.8TF, and NF treatments was 10.21, 10.56, and 11.77 µmol·m−2

·s−1, respectively, and it was 1.63, 1.85,
and 1.77 µmol·m−2

·s−1, respectively, during the 2012–2013 winter wheat growing period.
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3.4. Soil Nutrients

The alkali-hydro N, available phosphorus, and available potassium concentrations varied under
different crop rotations and N fertilizer treatments in the 0–40 cm soil layer over the two years
(Figure 6). No significant difference in alkali-hydro N concentration between the two years was found.
The mean alkali-hydro N concentrations were 24.22, 24.72, and 23.87 mg/kg under the TF, 0.8TF, and NF
treatments, respectively, and 23.66, 25.29, and 23.86 mg/kg under the WF, WS, and WM crop rotations,
respectively. The mean available phosphorus concentrations were 10.68, 8.67, and 10.65 mg/kg under
the TF, 0.8TF, and NF treatments, respectively, and 10.01, 10.18, and 9.82 mg/kg under the WF, WS, and
WM crop rotations, respectively. The mean available potassium concentrations were 158.31, 153.05, and
150.77 mg/kg under the TF, 0.8TF, and NF treatments, respectively, and 154.52, 160.41, and 147.20 mg/kg
under the WF, WS, and WM crop rotations, respectively.
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3.5. Relationship between Soil Organic Carbon and CO2 Emission and Treatment Factors

Crop and soil variability affected soil CO2 emission. The relationship between soil temperature
and soil CO2 emissions was identified by a redundancy analysis (RDA) (Figure 7). Soil temperature
was strongly correlated with soil CO2 emission rate and SOC concentration during the two-year study
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under the three N fertilizer treatments and the three rotation modes, and explained 16.8, 47.40, and
24.10% of variation in the WF, WS, and WM rotations, respectively. Correlation analysis showed that
soil CO2 emission rate was negatively correlated with soil water content, and that soil water content
may decrease the release of CO2 from deep soil.
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4. Discussion

4.1. Effect on Soil Temperature, Soil Moisture, SOC, and Soil CO2 Emission in the Rotation Mode

It has been reported that adopting intensified rotation can lower the carbon footprint in semiarid
areas [34]. Winter wheat plus summer soybean or summer maize are the most common double
cropping systems in the Ghuanzhong region, Shaanxi Province in north-central China [35]. A previous
study found that the yields of crop residue varied under different rotation modes [36]. The quality
and quantity of crop residues returned to the soil changes with the different cropping structures, with
the C/N ratio of the residues varying with the different crop rotation modes [37], which can influence
CO2 emissions, and concurs with previous findings [38]. The current study shows that the average
CO2 emission from the WM and WF rotation modes was higher than that from the WS rotation during
the growing seasons over the two-year study period. The soil CO2 emission rate was low during the
summer crop growth period under the WF rotation mode, possibly due to the lack of plants during this
period. The average soil CO2 emission rate decreased with increasing amounts of N fertilizer under
the WF rotation mode, while the average soil CO2 emission rate under the WM rotation increased
with increasing amounts of N fertilizer. The average soil CO2 emission rate was similar under the
WS rotation among N fertilizer treatments. A crop rotation strategy that included a legume reduced
carbon losses, which is in line with the findings of Miao [18].

Crop communities are drivers of soil CO2 emissions [39]. Soil CO2 emission rate had a stronger
correlation with SOC under the WF rotation mode in the 0–10 cm soil layer than the correlation under
the WS and WM rotations (Figure 7). The main reason for this is that the WF rotation did not include
crops during the summer period, contrary to the WS and WM crop rotation, leading to a decrease in
crop root CO2 emission. Soil CO2 emission under the WF rotation came from the transformation of
organic matter and microbial CO2 emission, which is a source of CO2 emissions [40]. Microbial activity
is positively influenced by soil organic matter content and climate change [41]. Soil microbial activities
are enhanced when legumes and non-legumes are grown together compared to non-legumes grown
alone [42], and legume and non-legumes grown individually [43]. Soil CO2 emissions are strongly
affected by plant roots [4], which was reflected in the differences between the summer crop soils and
the summer fallow soil in the current study.
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Changes in land use might affect efforts to improve the quantity and activity of the SOC pool [44].
In the current study, SOC in the topsoil (0–10 cm) increased over the two-year study period under all
three rotations. Early data have shown that proper adoption of crop rotation can improve soil chemical
and physical properties, increase the quality of SOC and soil environmental conditions, limit soil
erosion, and increase agricultural productivity, thus contributing to sustainable agriculture [11]. Higher
SOC content under the WM rotation than WF and WS rotation indicates that soybean, a leguminous
crop, decreased SOC content despite increasing soil N content, which concurs with previous studies [11].
Ardell (2012) also reported that the rate of gain in SOC under continuous corn rotations was higher
than that under a corn–winter wheat–grain sorghum–soybean rotation [37]. This might be due to
different crop rotations influencing the amount of crop root residue and root exudation that is returned
to the soil, which in turn affects C and N content, and can be used to increase SOC [30]. However, soil
organic matter changes slowly over time [11].

Temperature was the main factor driving variation in soil CO2 emission rates [30]. This may
be due to its effect on the decomposition of plant residues and SOC by microbes, the diffusion of
enzymes, and root CO2 emission [30,41]. A redundancy analysis (RDA) showed that soil temperature
at 10 cm was positively correlated with soil CO2 emission. The main reason for this might be that the
temperature of soil at 5 cm was affected by air temperature. Soil temperature was measured between
9:00 and 11:00 a.m., and soil temperature at 5 cm increased with air temperature, while the response in
soil temperature at 10 cm was delayed.

Soil moisture plays an integral role in determining CO2 emissions; a prolonged period with
deficient or excess water in the soil can cause soil CO2 emission rates to fall [45]. The rate of soil CO2

emission under winter wheat in 2011–2012 was higher than that in 2012–2013, which may be due to
the low level of soil moisture in 2011–2012 compared with 2012–2013, and the soil temperature was
higher in 2011–2012 than it was in 2012–2013. During the winter wheat growth period, precipitation
was below average, and thus, the soil was almost dry with minimal water content. Soil water
can restrict the diffusion of soil CO2 in soil pores, and lower temperatures reduce the activity of
microorganisms [6]. Redundancy analysis (RDA) showed that soil CO2 emission was negatively
correlated with soil moisture and positively correlated with soil temperature. However, soil water
responded to precipitation events during the summer crop period with higher water levels. Water
content was greater in the WF rotation than in the WS and WM rotations, which may be due to the
absence of plants during the fallow period, which reduces the consumption of soil water, which is in
line with the observations made in previous studies [38].

4.2. Influence of N Fertilizer on Soil Organic Carbon (SOC), Soil Temperature, Soil Moisture, and Soil
CO2 Emissions

China’s N fertilizer production exceeds its consumption, and N fertilizer application rates exceed
crop requirements for maximum yield, which is a common problem in the North China Plain [46].
Small-scale farmers lack knowledge of N management, and hand application of fertilizers (to increase
yield) has led to excessive application and low fertilizer use efficiency in farming systems in China [18].
Improving fertilizer use efficiency in crop production is a key issue for addressing the triple problem of
food security, environmental degradation, and climate change, and has major ramifications for global
emissions [22,23]. Agricultural CO2 emissions are augmented by N fertilization [19,47]. This is probably
due to increased root CO2 emission, large amounts of crop root residue, and root exudations, which
increase carbon substrate availability, and lead to soil organic matter decomposition and enhanced
microbial activity [47]. However, N fertilization can have variable effects on CO2 emissions [48].
Compared to unfertilized soil, another study showed that N fertilization decreased CO2 emissions by
27–42% [49]. In the current study, the soil CO2 emission rates under different N fertilizer treatments
were in the following order: NF > 0.8TF > TF. This indicates that N application can reduce CO2

emissions from croplands. This is likely due to reduced soil organic matter mineralization [49].
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Due to lack of fertilizer treatment, decomposition of native soil organic matter was likely to have
occurred [19,48].

Plant yield, biomass, tiller number, and leaf size of wheat are affected by N fertilizer application
and result in different soil temperature and water moisture levels [14]. Crop height, tiller height, and
leaf area of winter wheat under N fertilizer application was significantly greater than it was with no
N fertilizer application. In the current study, average temperature across the winter wheat growth
periods was higher under the NF treatment than the 0.8TF and TF treatments. The temperatures of soil
under NF treatment were higher than those under the 0.8TF and TF treatments, because the shading
of straw in the NF treatment was lower than it was under 0.8TF and TF treatments, in agreement
with Sainju et al. [38]. Crop production is limited by soil water content in dryland agriculture in
China [50]. There were no significant differences in average soil moisture levels under the three N
fertilizer treatments.

A previous study found that enhancing soil carbon sequestration can improve soil quality,
increase net primary productivity of plant biomass, and reduce agriculture’s contribution to soil CO2

emissions [34]. The results demonstrated that the concentration of easily decomposed SOC is the
main factor affecting the soil CO2 emission rate, which is influenced by N fertilization. A similar
conclusion was reached by Ding [48]. However, it is debatable whether N fertilizer application is
beneficial for SOC sequestration. Limited N application may reduce total crop biomass [23], whereas
optimized N application can improve plant growth and increase the amount of residues returned
to the soil. We found that optimized N application can increase soil organic matter content and
carbon sequestration [51]. In this study, SOC content in the 0–10 cm soil layer increased by 10.30,
20.12, and 20.17% between the summer of 2011 and the summer of 2013 under NF, 0.8TF, and TF,
respectively. However, chemical fertilizer application can accelerate the decomposition of original
SOC [47]. As a result, the average SOC content in the 0–10 cm soil layer of the 0.8TF treatment under
all the three rotation modes was higher than that under the other two fertilizer treatments.

5. Conclusions

This research demonstrates that crop rotations and N fertilizer application can affect soil CO2

emission and SOC in the field. The different crops in the three rotations under the three N fertilizer
treatments led to different soil CO2 emission rates, soil temperatures, and soil water moisture levels,
with the soil CO2 emission rate under the WM rotation higher than the WF and WS rotations. The mean
soil CO2 emission rate under the NF treatments was higher than those under the TF and 0.8TF
treatments. Based on this, it is concluded that under the WS rotation the soil CO2 emission rate
was lower and the N use efficiency was higher because of the leguminous summer crop, which
produces symbiotically fixed N. In the future, WS rotation with higher soil nutrient content, lower soil
CO2 emissions, and reduced fertilizer application will be the most effective protocol for sustainable
agriculture, as well as being a better option in this region.
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s1—Figure S1: Changes in soil temperature under different crop rotations and N fertilizer treatments. Bars
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treatments. Figure S3: Soil organic carbon content of the 0–100 cm soil layer under three N fertilizer treatments
and three rotation treatments. Figure S4: Changes in soil respiration rate under different crop rotations and
fertilizer treatments.
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