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Abstract: The paper presents an innovative lightweight design solution for the rear crash management
system of a C-class car, developed within the AffordabLe LIghtweight Automobiles AlliaNCE
(ALLIANCE) EU research project. The innovation provides that the reference version of the module,
based on conventional steel components, is revolutionized through the introduction of extruded
6000/7000 series aluminum alloys. The two competing alternatives are described and compared in
relation to design and technological solutions, including also a sustainability analysis which assesses
the entire Life Cycle (LC) of the system on the basis of a wide range of environmental indicators.
The lightweight solution allows achieving a large mass reduction (almost 40%), while providing
improvements in terms of strength, production efficiency and design freedom. On the other hand,
the introduction of new materials and manufacturing technologies entails contrasting sustainability
effects depending on impact category, thus not allowing to affirm that the novel alternative is
unequivocally preferable under the environmental point of view. However, the comprehensive
evaluation of all sustainability aspects through a multi-criteria decision analysis (TOPSIS method)
reveals that the environmental profile of the innovative design is slightly preferable with respect to
the conventional one.

Keywords: eco-design; lightweighting; structural integrity; sustainability; life cycle assessment

1. Introduction

One of the main objectives of the European community policies is the mitigation of Greenhouse
Gas (GHG) emissions by 60% compared to the 1990 levels by 2050 [1]. To achieve this ambitious
objective, several legal community restrictions have been established in recent years, such as the
GHG emission targets according to the European Union (EU) directive 443/2009 [2]. On this aspect,
a decisive contribution is expected from road transportation, since this sector is responsible for about
20% of total CO2 emissions within the European area [3]. Despite the encouraging results of certain
measures already taken at the EU level, substantial further progresses are needed both in research and
technological industry development.

To date, a widespread approach to meet the described requirements is the application of lightweight
design, especially for body vehicle parts. Automotive lightweighting is in the forefront of research
and industry development activities for several reasons. First of all, weight reduction provides
improvement in terms of vehicle technical features and performances, such as higher speed and
acceleration [4,5]. At the same time, lower mass means best stability and handling as well as shorter
braking distance, thus providing a substantial contribution to meet the continuously rising legal
safety requirements [6,7]. Last, but not least, weight reduction has an important role in both lowering
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the Fuel Consumption (FC) and the associated exhaust gas emissions which involve positive effects
under a series of different perspectives: material and energy resources protection, cheap, clean and
convenient fuel supply chain, as well as reduction of environmental impacts in compliance with the
very strict and rigorous legal restrictions [8,9]. Lightweighting is a design strategy aimed at improving
the load-bearing capacity of car components in order to decrease the overall vehicle mass without
downgrading (or even increasing) its performances or compromising any of the components’ functions.
The approach is based on a combination of different scientific disciplines (such as advanced mechanics,
material science, product and process development) which are interrelated through the application of
higher computer-aided engineering modelling methods.

Historically, mild cold rolled steel has been a very popular construction material adopted for
car body structure, as the sheet metal forming is the most important manufacturing process [10].
However, in the last two decades, the need for mass reduction had launched a series of dynamic
and multidirectional developments [11,12]. In particular, the recent periods have witnessed the
diffusion of several lightweight composite materials which are increasingly being used in the most
disparate applications such as Body-In-White (BIW), outer skin components and wheel rims [13].
These are mainly Carbon or Glass Fiber Reinforced Plastics (CFRPs, GFRPs) where the most common
matrices are thermoset resins (such as polyester or epoxy) and thermoplastic polymers (such as
polyamide or polypropylene) [14]. Composites are also widely used in combination with metals to
form hybrid, multi-material and sandwich structures through the adoption of joining technologies
(such as adhesive bonding [15], rivets [16] or new forms of mechanical joining [17]) to combine
different materials on a part level. These types of solutions offer a great potential of mass decrease
which, in turn, lead to significant improvements in terms of vehicle performance, safety and cost.
On the other hand, the introduction of composite and hybrid materials has contrasting effects when
considering the environmental aspects [18]. Indeed, despite the undeniable benefit in the use stage
due to lower FC and exhaust air emissions, CFRPs and GFRPs show serious environmental hotspots
in raw material provision and manufacturing [19]. This is mainly caused by a significantly larger
demand for energy and resources in the respective stages when compared to metal alternatives [20].
Additionally, the combination of different materials and the variety of joints applied give considerable
problems in the separation and recycling at End-of-Life (EoL) [21,22]. In fact, existing disassembly and
recycling technologies do not allow achieving satisfactory recovery rates as well as acceptable quality of
the recycled fraction [16]. As a consequence, use phase energy savings through weight reduction may
only partially compensate these added impacts, often resulting in higher environmental burdens when
considering the entire LC (Life Cycle) of the components [23]. With respect to manufacturing processes,
Additive Manufacturing (AM) constitutes a great innovation for automotive design, with lattice
structures representing the main field of application of such a technology [24]. The ability to locally
print complex shapes and geometries offers great potentiality in terms of weight reduction and design
freedom with respect to conventional processes (i.e., high-speed machining), along with reduced tool
wear and lower surface quality deterioration [25]. Additionally, AM enables to decrease production
time while guaranteeing rapid prototyping and highly decentralized production. Another advantage
is the reduction in material waste and fuel/energy consumption, which translates into resource-saving
and lower environmental impacts [26]. That said, the environmental profile of AM technology strongly
depends on the specific case study and it needs to be extensively examined through future studies
that increase the current knowledge level [27]. Against the benefits cited above, the main drawbacks
of AM are constituted by limitation in the size of components, reduced range of materials, and high
cost of production, machinery and tooling. In addition to the development of novel composites and
hybrid materials, nowadays, automotive lightweighting is also re-discovering advanced designs based
on metals. This includes innovative high-strength steel and 6000/7000 aluminum series alloys [10,28],
new topologies, as well as adapted manufacturing processes [10,29]. The combination of novel materials
with different manufacturing technologies enables to reduce the thickness of car structural components
without compromising the structural integrity, thus achieving a wide spectrum of mechanical properties



Sustainability 2020, 12, 5243 3 of 20

with respect to the intended applications [30,31]. In general, average mass reductions of about 10–30%
are provided through high-strength and advanced high-strength steels. Some examples of lightweight
steel design are represented by the replacement of frame constructions with shell designs made by
stamping and welding or the introduction of tailor-rolled blanks [32]. On the other hand, aluminum
shows even higher lightweight potentials with respect to steel, thanks to the considerably lower
specific mass. Indeed, the comparatively lesser strength is compensated by thicker structural parts
without significantly increasing vehicle mass. A very promising application of aluminum lightweight
design is the construction of car spaceframe structures through extruded sections [33]. Concerning the
environment, high-strength metals show an eco-profile which is qualitatively similar with respect
to composites and hybrid materials: greater specific impacts (per kg of material used) upstream
to the operation phase if compared to low-alloyed steels [34,35] and, on the other hand, lower FC
and greenhouse gas emissions during use [36]. The difference lies in the fact that the drawback in
production is usually not so high for advanced metals, so that FC saving during use is able to offset
the negative effects at relatively low life cycle distances (less than 100,000 km) [37,38]; on the contrary,
the relevant impact increase in raw material provision for composites and hybrid materials makes
that the environmental benefits during operation are not enough to achieve a break-even point within
the assumed LC mileage [39]. In this regard, a crucial point is represented by the share of secondary
sources used for material provision, on the basis of which the system-level payback times can shorten
or extend significantly [40]. High-strength metals allow achieving environmental benefits also at
EoL, especially if compared to composites. Indeed, currently available technologies enable high
separability and recyclability rates for steel and aluminum, which mean lower demand for primary raw
materials [41–43]. Anyway, the required quantity of material with respect to functional requirements
and mass reduction obtained need to be evaluated separately for each case study, since they are both
decisive in order to quantify the impacts in raw material acquisition and EoL stages, but represent,
as well, critical elements for assessing the abatement of environmental burdens during operation.

This paper presents a re-engineering activity performed on the rear Crash Management System
(CMS) module of a C-class car and it is a follow-up of [44]. Starting from the reference steel-based
CMS module, a lightweight variant made of ultra-high-strength aluminum extrusions is obtained
which provides significant weight reduction while maintaining performance, safety and functionality
level. The novel solution is assessed and compared to the baseline in terms of lightweight potential
as well as design and sustainability improvement. The implications of lightweighting are critically
discussed through an assessment approach based on several environmental aspects, which allows
interpreting potential opposite effects as well as combining results in order to define the optimal
solution. The design and research activity has been carried out within the AffordabLe LIghtweight
Automobiles AlliaNCE (ALLIANCE) European research and innovation project [45], whose objective
is developing innovative advanced materials and manufacturing technologies to reach 25% full-vehicle
weight reduction while decreasing the global warming impact by 6%.

2. Materials and Methods

2.1. Module Design

Table 1 provides an overview of the main design features for both baseline and lightweight CMS
versions: data are reported for each component including material, thickness and manufacturing
process as well as an image of the overall module. The reference vehicle for the CMS use phase is a
gasoline C-class car.
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Table 1. Overview of design solutions for the CMS (Crash Management System) module.

Reference CMS Lightweight CMS

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 21 

Sustainability 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sustainability 

 

- maximum deformation and energy absorption during RCAR low-speed structural crash test 
protocol for rear impact [48] and  

- bending moment when applying a deformation in the center of the beam.  

Further imposed requirements (valid for both design alternatives) are that no breakage occurs 
at 105 mm intrusion in the mentioned bending load case as well as meeting OEM strength and 
durability requirement for the towing attachment. The innovative solution is composed by the same 
parts of the baseline and, since its footprint is very similar to the one of the reference CMS, it does not 
require any modification of the surrounding components. The base material for the lightweight 
module design is ultra-high-strength aluminum alloy with a total mass of about 2.4 kg. The newly 
developed beam component consists of an open beam extruded profile made of the precipitation 
hardenable high-strength aluminum alloy 7003, with a thickness which ranges from 1.8 to 2.0 mm. 
The open extruded profile design combined with a special forming concept offers the best 
compromise between weight savings, costs and robustness against crash. Crash box and backplate 
are also aluminum alloy 7003 extruded parts, with a thickness respectively of 2.1 and 4.0 mm. A very 
ductile high-strength version of the alloy AW7003 in a slightly overaged temper (T7) is used for the 
crash boxes, due to the very high ductility requirements of these components. Even though 6000 
alloys allow to achieve the same adjusted strength of AW7003, this alloy provides increased 
performances in terms of resistance to crack initiation, deformability and stability of mechanical 
properties in large-volume production, thus combining high-strength level with good ductility 
behavior and high production efficiency. For the beam profile, the chosen alloy is trimmed to a 
slightly higher strength as for the other two components. Beam, crash box and backplate components 
provide satisfactory properties in terms of mass reduction, strength, production efficiency and design 
freedom thanks to the choice of a very ductile aluminum extrusion alloy. The towing system is made 
of the aluminum alloy 6082, a precipitation hardenable high-strength alloy of the 6000 series. Overall, 
design choices implemented in the lightweight design (material change, application of heat treatment 
and use of tailored extruded blanks) allow achieving a weight reduction of nearly 40% with respect 
to the reference CMS version while maintaining the same performance, safety and functionality 
requirements.  

Table 1. Overview of design solutions for the CMS (Crash Management System) module. 

Reference CMS Lightweight CMS 

  

1. Backplate; 2. Crash Box; 3. Beam; 4. Towing System 
 Material Mass (kg) Manufacturing Process 

Reference 
CMS 

Backplate HCT600X 0.787 

3.989 

Cold stamping 
Crash box HCT600X 1.370 Cold stamping 

Beam HCT980X 1.614 Cold stamping 
Towing 
system 

HC420LA/HC260L
A 

0.218 Cold stamping 

Lightweigh
t CMS 

Backplate EN AW7003 LS 0.296 
2.416 

Extrusion, Punching 
Crash box EN AW7003 LS 0.787 Extrusion, Milling 
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1. Backplate; 2. Crash Box; 3. Beam; 4. Towing System

Material Mass (kg) Manufacturing Process

Reference CMS

Backplate HCT600X 0.787

3.989

Cold stamping
Crash box HCT600X 1.370 Cold stamping

Beam HCT980X 1.614 Cold stamping
Towing system HC420LA/HC260LA 0.218 Cold stamping

Lightweight
CMS

Backplate EN AW7003 LS 0.296

2.416

Extrusion, Punching
Crash box EN AW7003 LS 0.787 Extrusion, Milling

Beam EN AW7003 HS 1.202 Extrusion, Forming, Punching
Towing system EN AW6082 0.131 Extrusion, Milling, Punching

Mass reduction
Reference—Lightweight

1.573 [kg]
39.4 [%]

The baseline design version is made of cold stamped steel with a mass of about 4 kg and it
is composed of four main component typologies: beam, crash box, backplate and towing system.
Steel grades are selected based on achieving optimal performance whilst staying in the economically
favorable cold stamping material range. The lightweight CMS is designed to meet the performance of
the baseline version with regard to two criteria:

- maximum deformation and energy absorption during RCAR low-speed structural crash test
protocol for rear impact [46] and

- bending moment when applying a deformation in the center of the beam.

Further imposed requirements (valid for both design alternatives) are that no breakage occurs at
105 mm intrusion in the mentioned bending load case as well as meeting OEM strength and durability
requirement for the towing attachment. The innovative solution is composed by the same parts of
the baseline and, since its footprint is very similar to the one of the reference CMS, it does not require
any modification of the surrounding components. The base material for the lightweight module
design is ultra-high-strength aluminum alloy with a total mass of about 2.4 kg. The newly developed
beam component consists of an open beam extruded profile made of the precipitation hardenable
high-strength aluminum alloy 7003, with a thickness which ranges from 1.8 to 2.0 mm. The open
extruded profile design combined with a special forming concept offers the best compromise between
weight savings, costs and robustness against crash. Crash box and backplate are also aluminum alloy
7003 extruded parts, with a thickness respectively of 2.1 and 4.0 mm. A very ductile high-strength
version of the alloy AW7003 in a slightly overaged temper (T7) is used for the crash boxes, due to the
very high ductility requirements of these components. Even though 6000 alloys allow to achieve the
same adjusted strength of AW7003, this alloy provides increased performances in terms of resistance
to crack initiation, deformability and stability of mechanical properties in large-volume production,
thus combining high-strength level with good ductility behavior and high production efficiency. For the
beam profile, the chosen alloy is trimmed to a slightly higher strength as for the other two components.
Beam, crash box and backplate components provide satisfactory properties in terms of mass reduction,
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strength, production efficiency and design freedom thanks to the choice of a very ductile aluminum
extrusion alloy. The towing system is made of the aluminum alloy 6082, a precipitation hardenable
high-strength alloy of the 6000 series. Overall, design choices implemented in the lightweight design
(material change, application of heat treatment and use of tailored extruded blanks) allow achieving a
weight reduction of nearly 40% with respect to the reference CMS version while maintaining the same
performance, safety and functionality requirements.

2.2. Sustainability Assessment

The objective of this section is comparing from an environmental point of view the baseline and
lightweight design solutions for the CMS module. The sustainability assessment is performed through
the Life Cycle Assessment (LCA) methodology [47], which allows to evaluate the environmental
impacts associated with a product, process or service according to the environmental management
standards ISO 14,040 [48].

2.2.1. System Boundaries and Impact Categories

The analysis takes into account the entire LC of the module subdivided into production, use and
EoL stages, and it is carried out considering the following impact categories assessed through the ILCD
Life Cycle Impact Assessment (LCIA) method [47]:

- Acidification midpoint (A) [Mole of H + Equation];
- Climate Change midpoint (CC) [kg CO2 Equation];
- Ozone Depletion midpoint (OD) [kg CFC-11 Equation];
- Particulate Matter/Respiratory inorganics midpoint (PM) [kg PM2.5 Equation];
- Photochemical Ozone Formation midpoint, human health (POF) [kg NMVOC Equation];
- Resource Depletion, mineral, fossils and renewables, midpoint (RD) [kg Sb Equation].

2.2.2. Functional Unit

The Functional Unit (FU) is defined as the CMS module installed on the reference vehicle with a
LC mileage of 230,000 km [49], and assuming that reference and innovative design options provide
unaltered mechanical and functional performances. The assessment of FC and exhaust air emissions
during operation is based on the Worldwide Harmonized Light-Duty Test Procedure (WLTP) [50].

2.2.3. Life Cycle Inventory (LCI)

Data collection is performed for each one of the three main LC phases in terms of materials/energy
consumption, waste production and emissions to the environment which are modelled through LCI
processes and elementary flows from the GaBi dataset [51].

Concerning production, the inventory is carried out separately for raw material acquisition
(which takes into account the entire production chain of materials, from primary material extraction
up to the production of semi-finished products) and manufacturing (which incorporates activities for
converting semi-finished products into the final module components) sub-phases. For both materials
and manufacturing steps, the inventory is performed through the break-down approach [35] which
has been already applied in ENLIGHT [52] and e-LCAr [53] projects. Such an approach provides that
each mono-material component of the CMS system is assessed separately and the overall impact of
the production stage is determined by summing up contributions of the single mono-material parts.
Data collection regarding raw material acquisition is mainly constituted by secondary data (both from
scientific literature and GaBi dataset) on the basis of CMS material composition and manufacturing
processes (Table 1). Manufacturing sub-stage takes into account energy consumption and material
losses involved by production processes of finished parts. The assessment includes also the recycling
of metal scrap produced by manufacturing activities: materials are assumed to be recycled through an
open loop recycling which provides environmental credits due to the substitution of primary resources
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with recycled materials. Recycling is assessed as the sum of environmental impacts (material/energy
consumption and emissions of recycling activities) and credits (avoided burdens), and the inventory is
modelled as an avoided production of primary material through specific substitution factors from the
GaBi LCI database [51]. Joining, assembly and transportations during production are out of the system
boundaries since a pre-assessment investigation shows that their impact is negligible with respect
to the considered impact categories. Unlike material provision, the inventory data collection for the
manufacturing phase is based on primary data coming from direct measurements on suppliers and
Original Equipment Manufacturer (OEM) process sites.

The use stage assesses impacts associated with module operation, which are determined by two
contributions: fuel production chain upstream to useful life (the so-called Well-To-Tank, WTT) and
exhaust air emissions during driving (the so-called Tank-To-Wheel, TTW). The required data for the
use stage modelling is the amount of FC and CO2/SO2 emissions associated with CMS operation.
The inventory of both WTT and TTW steps is based on secondary data from the LCI GaBi dataset.
More specifically, the determination of FC and exhaust air emissions associated with the CMS module is
carried out through the FRV-based approach [54] whose analytical background, underlying assumptions
and boundary conditions are reported below and in Table 2.

CO2 comp = CO2 km ×mileageuse ×
FCcomp

FCveh
(1)

SO2 comp = SO2 km ×mileageuse ×
FCcomp

FCveh
(2)

FC100km =
CO2 km

2370
× 100 (3)

FCveh =
FC100km

100
×mileageuse × ρ f uel (4)

FCcomp =
FRV ×mcomp ×mileageuse

10000
× ρ f uel (5)

SO2 km =
ppmsulphur

1000000
× 2×

FC100km
100

× ρ f uel (6)

where:
CO2 comp = amount of CO2 emissions associated with component operation (g)
CO2 km = vehicle CO2 emissions per kilometer (g/km)
mileageuse = use stage mileage (km)
FCcomp = amount of Fuel Consumption associated with component operation (kg)
FCveh = total LC vehicle Fuel Consumption (kg)
SO2 comp = amount of SO2 emissions associated with component operation (kg)
SO2 km = vehicle SO2 emissions per kilometer (kg/km)
FC100km = vehicle Fuel Consumption per 100 km (L/100 km)
2370 = mass of CO2 emissions per liter of petrol (g/L)
ρfuel = fuel density [kg/L]
FRV = Fuel Reduction Value (L/100 km*100 kg) [54]
mcomp = component mass (kg)
ppmsulphur = sulphur content in fuel (ppm)
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The inventory of EoL stage is modelled according to the 2000/53/EC Directive [55]. The considered
EoL scenarios for steel and aluminum components are consistent with ISO standard 22628:2002 [56],
and they are defined on the basis of the current European technology level. Since the CMS is not a
system that is usually disassembled for reuse/recovery purposes (low mass and positioning within
the car not favorable with respect to removal), it is assumed that it remains on the EoL vehicle and
it is forwarded to the shredding process. After that, the scenario provides material separation and
open loop recycling. Recycling is assessed as the sum of environmental impacts (material/energy
consumption and emissions of recycling activities) and credits due to the substitution of primary
resources with recycled materials (modelled through specific substitution factors from the Gabi LCI
database). Table 2 shows LCI data for shredding, sorting and recycling processes.

Table 2. LCI (Life Cycle Impact) data collection.

Inventory Data Collection

LCI Data Quality

Production

Material composition of the module See Table 1 Primary
Raw material extraction and production GaBi dataset processes [51] Secondary
Manufacturing process type See Table 1 Primary
Manufacturing GaBi dataset processes [51] Secondary

Use

Propulsion technology Internal Combustion Engine Gasoline

Primary
Vehicle class C
CO2 km (g/km) 144 *
mileageuse (km) 230,000
ρfuel (kg/L) 0.741
FRV (L/100 kg*100 km) 0.170 Secondary

mcomp (kg) 3.989 (reference CMS)
2.416 (lightweight CMS) Primary

ppmsulphur (ppm) 10 Secondary

EoL

Electricity for shredding (MJ/kg) 0.18

Secondary
Electricity for materials sorting (MJ/kg) 0.12
Share of recycled material (%)
(both manufacturing scraps and EoL materials) 98 (both steel and aluminum)

Substitution ratio for manufacturing scraps (%) 51 (steel); 94 (aluminum)
Substitution ratio for EoL materials (%) 33 (steel); 42 (aluminum)

* Average value representative of generic C-class gasoline vehicle.

3. Results and Discussion

Table 3 reports the LCIA results for reference and lightweight design solutions for each one of the
LC stages.

Discussion in terms of impact allocation between LC stages/module components as well as impact
variation involved by lightweight design is reported in the following paragraphs.
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Table 3. LCIA (Life Cycle Impact Assessment) results for reference and lightweight design solutions.

Production Use
EoL LC

Materials Manufacturing WTT TTW

Reference CMS

Acidification midpoint, (A)
(Mole of H + Equation) 3.42 × 10−2 3.05 × 10−4 5.03 × 10−2 5.03 × 10−6

−1.11 × 10−3 8.37 × 10−2

Climate Change midpoint, incl. biogenic
carbon (CC) (kg CO2 Equation) 1.03 × 10+1 9.62 × 10−2 4.54 × 10+1 4.59 × 10−1

−3.94 × 10−1 5.59 × 10+1

Ozone Depletion midpoint (OD)
(kg CFC-11 Equation) 1.27 × 10−7 5.05 × 10−10 2.08 × 10−12 2.10 × 10−14 1.18 × 10−14 1.28 × 10−7

Particulate Matter/Respiratory inorganics
midpoint (PM) (kg PM2.5 Equation) 2.16 × 10−3 1.50 × 10−5 2.42 × 10−3 2.42 × 10−7 8.44 × 10−5 4.52 × 10−3

Photochemical Ozone Formation midpoint,
human health (POF) (kg NMVOC Equation) 2.20 × 10−2 1.67 × 10−4 7.25 × 10−3 2.65 × 10−2

−1.05 × 10−3 5.49 × 10−2

Resource depletion, mineral, fossils and
renewables (RD) (kg Sb Equation) 8.05 × 10−4 4.80 × 10−7 2.00 × 10−5 2.02 × 10−7

−1.08 × 10−6 8.25 × 10−4

Lightweight CMS

Acidification midpoint, (A)
(Mole of H + Equation) 1.16 × 10−1 3.71 × 10−3 3.05 × 10−2 3.05 × 10−6

−4.52 × 10−2 1.04 × 10−1

Climate Change midpoint, incl. biogenic
carbon (CC) (kg CO2 Equation) 2.22 × 10+1 1.18 × 10+0 2.75 × 10+1 2.78 × 10−1

−8.14 × 10+0 4.30 × 10+1

Ozone Depletion midpoint (OD)
(kg CFC-11 Equation) 2.78 × 10−11 5.28 × 10−12 1.26 × 10−12 1.27 × 10−14

−9.59 × 10−12 2.48 × 10−11

Particulate Matter/Respiratory inorganics
midpoint (PM) (kg PM2.5 Equation) 6.94 × 10−3 1.81 × 10−4 1.47 × 10−3 1.47 × 10−6

−2.35 × 10−3 6.24 × 10−3

Photochemical Ozone Formation midpoint,
human health (POF) (kg NMVOC Equation) 4.97 × 10−2 1.96 × 10−3 4.39 × 10−3 1.60 × 10−2

−1.87 × 10−2 5.34 × 10−2

Resource depletion, mineral, fossils and
renewables (RD) (kg Sb Equation) 2.90 × 10−3 5.48 × 10−6 1.21 × 10−5 1.22 × 10−7

−1.37 × 10−4 2.78 × 10−3



Sustainability 2020, 12, 5243 9 of 20

3.1. Contribution Analysis of Impacts: Influence of LC Stages and Module Components

Figure 1 reports the contribution analysis of impact by LC stage and module component for
the reference CMS design. The first point is that the very large majority of environmental burdens
(more than 98% for all impact categories) is associated with production and use. Operation is definitely
the most significant stage for A, CC and POF categories, for which it covers, respectively, around 60, 82
and 61% of total LC absolute impact. Looking at use sub-phases, TTW is predominant for CC (almost
80% of total use stage), while for all the other categories, the near totality (more than 98%) of operation
burden is associated with WTT (Figure 2). On the other hand, production involves almost the entire
LC impact for OD and RD categories (respectively, about 99 and 97%), while for PM, the quota of
production results is similar to the one of use (around 50%). In this regard, it is worthy to mention
that the production impact is largely associated with materials’ sub-stage, since the contribution of
manufacturing is lower than 4% of total production for all indicators (see Table 3). Concerning EoL,
material recycling involves environmental credits for the entire set of categories with the exception of
OD, for which the impact is positive. However, the percent share associated with EoL is very small,
less than 2% for all indicators. The reason for this is the low substitution factor (in terms of avoided
production of primary materials) of steel recycling, which is primarily due to two reasons: on one hand,
the high energy demand of steel re-melting processes and on the other hand, the need for primary alloy
elements that have to be added to the EoL steel in order to achieve the same quality of primary material.

Considering the LCI elementary flows which mostly contribute to the environmental burdens,
sulphur dioxide emissions (more or less equally distributed between materials and WTT phases) play a
key role for A and PM, for which they cover, respectively, around 65 and 56% of the overall LC impact;
for PM, another influential emission flow is PM2.5, whose share is 35%. About 95% of total LC CC is
caused by carbon dioxide emissions which mainly occur during module operation, while 99% of OD
is associated with halogenated emissions to air (trichlorofluoromethane, dichlorotetrafluoroethane
and dichlorodifluoromethane). Finally, POF and RD categories show a more varied composition.
For POF, most of the impact is distributed between nitrogen oxides/dioxides (mainly from materials
and use stage, and representing about 58% of total LC amount) and Non-Methane Volatile Organic
Compounds Emissions (NMVOC) (mainly from use stage and representing about 23% of total LC
amount). For RD, the higher quotas are associated with lead (53%), silver (21%) and zinc (20%),
almost exclusively concentrated within production. The contribution analysis by module component
(Figure 1) stresses that the allocation of impact is more or less similar for all the considered categories.
The explanation for this is that both base material and manufacturing process are the same (steel and
cold stamping—Table 1) for all the CMS module parts, and therefore, the distribution of impacts directly
reflects the mass of the components. The small differences are primarily ascribable to variations in
manufacturing energy consumption and scrap rate that occur passing from one part to the other. As a
consequence, the highest quotas are associated with beam and crash box components (around 65–75%),
with lesser contributions from backplate and towing system (about 25–35%).
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Figure 1. Contribution analysis of impact by LC (Life Cycle) stage and module component—Reference
CMS design.

Concerning the lightweight design, the allocation of impact between LC stages provides clearly
different outcomes with respect to the reference CMS module (Figure 3). First of all, the significance
of use stage is notably reduced. Operation is the most influential phase only for CC (about 47% of
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total absolute impact) while the share does not exceed 2% for the other environmental indicators;
the allocation between TTW and WTT use sub-phases remains unaltered with respect to the reference
CMS design (Figure 2). The decreased relevance of use stage is due to the lower mass of the module
which means reduction both in fuel demand and exhaust air emissions during operation. On the
opposite, the relevance of production stage strongly grows, since it appears to be the major contributor
for five of six impact categories (for which it ranges between 55 and 96% of total LC impact depending
on indicator): this is primarily ascribable to the higher energy intensity of raw material provision of
aluminum in comparison to steel. Once again, the influence of manufacturing is low if compared
to material acquisition, less than 5% of total production impact for all indicators with the exception
of OD for which it is around 16%. The other major variation with respect to the reference design
is the increased relevance of EoL, whose quota varies from 5% up to 23% of total LC amount. In
particular, for OD, the lightweight CMS design provides a credit at EoL, against a positive impact of
the reference version.
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Figure 2. Contribution analysis of use stage impact by TTW (Tank-To-Wheel) and WTT (Well-To-Tank)
(both reference and lightweight CMS design).

The analysis of LCI elementary flows for A, CC, PM and POF shows analogous results with
respect to the steel CMS, both in terms of typology of emissions and relative contribution to the
overall LC impact. On the other hand, OD is almost completely ascribable to chlorodifluoromethane
emissions (that cover about 98% of total LC OD and occur to the same extent in all LC stages),
while RD is mainly caused by calcium fluoride, bauxite and silver depletion (for which the contribution
to the overall impact is respectively 32, 22 and 18% and whose consumption is located primarily
in raw material acquisition). Similar to the reference design, the contribution analysis by module
component remains more or less similar passing from one impact category to the other. Once again,
the explanation is that the base construction material is the same (high-strength aluminum alloy)
for all the CMS parts (even if differences occur in manufacturing processes), which entails that
impact allocation is mainly determined by component mass. Beam and crash box provide the highest
contributions (around 70–80%), while significance of backplate and towing system is significantly
lower (about 20–30%). The only exception to this rule is represented by RD, for which the contribution
of towing system component is notably lower with respect to the other indicators (less than 1%).
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Figure 3. Contribution analysis of impact by LC stage and module component—Lightweight CMS design.
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3.2. Comparative Assessment Reference—Lightweight Design

Figure 4 shows the impact variation involved by the lightweight design for the considered LCIA
categories: data are reported in absolute and percentage terms for both different LC stages and total LC.
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Concerning production, all indicators with the exception of OD have a decisive increase, which ranges
from 125% for CC up to 260% for RD. This effect can be explained through the higher energy intensity
of raw material provision of aluminum which is not compensated by the reduction of materials used
(about 39% mass saving). As a consequence, the mass-specific impact of production (impact per kg of
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finished component) results notably higher for the lightweight alternative with respect to the reference
one. The investigation of LCI elementary flows reveals that the impact growth is mainly ascribable to the
increase in sulphur dioxide (255%), carbon dioxide (10 %), PM2.5 (254%), nitrogen oxides/dioxides (199%)
emission and silver consumption (600%), respectively for A, CC, PM, POF and RD categories. On the
other hand, OD shows a drastic reduction in the production impact (−99.99%): this is almost exclusively
associated with the massive drop in trichlorofluoromethane and dichlorotetrafluoroethane emissions
in raw material extraction and production processes passing from aluminum to steel. The variation
in production impacts is mainly associated with the components of beam and crash box, due to the
higher mass reduction achieved by lightweight design for these parts. On the other hand, since the novel
solution involves a substitution of steel with 6000/7000 series aluminum for each one of the components,
the specific impact variation (impact variation per kg saved) is more or less similar for all the CMS parts
(i.e., for CC, the specific impact saving is about 8 kg CO2/kg saved).

Use stage data stress a notable percent abatement that is exclusively associated with the reduced
weight of the innovative module, which, on one hand, requires lower material and energy consumption
for fuel production chain (WTT) and on the other hand, involves less exhaust air emissions during
operation (TTW). It is worthy to note that the decrease in environmental burden is the same for all
the categories (about 39.4%), due to the linear dependency of operation impact on module mass.
As a consequence, the highest impact saving is obtained for the components of beam and crash box,
where the majority of weight reduction occurs.

Concerning EoL, the lightweight variant provides a very high impact saving for all the indicators.
Despite that the amount of material forwarded to recycling activities is lower for the aluminum CMS
(less material used for module construction), the achieved environmental credits are notably higher.
The reason for this is the material change steel-aluminum. Indeed, open-loop recycling of aluminum
presents a higher substitution factor (understood as avoided production of primary materials achieved
through recycling) with respect to steel. This is mainly due to the lower energy intensity of aluminum
recovery processes which translates into less environmental burdens of recycling itself. For A, CC,
PM and POF, the reduction in EoL impact ranges within the interval 1600–4000%. On the other hand,
the percent benefit is even higher for OD and RD but, since for these categories EoL covers a small share
of total LC impact, the absolute saving is negligible. Considering the allocation of impact variation
between components, the results are very similar to the ones of production stage, since the change is
exclusively determined by material substitution and weight reduction achieved for the different parts.

Looking at data referring to the entire LC, Figure 4 stresses that increased environmental burdens
in production are counterbalanced by benefits in use and EoL phases only for CC and POF indicators,
leading to an overall decrease, respectively of about 23 and 3%. On the contrary, the negative effects in
production are predominant for A, PM and RD, for which the overall balance is an impact growth of
around 25, 38 and 237%. The OD results are completely different: this is the only LCIA category for
which the production impact of the novel design results lower and, as production is by far the most
influential stage for such an indicator, this advantage is completely reflected on total LC, with a decrease
of almost 100%. In the light of previous considerations, it can be concluded that the targets established
by the ALLIANCE project are achieved, both in terms of mass and climate change impact reduction,
since the lightweight design enables a 39.4% weight decrease while lowering, at the same time, CC by
around 23%. On the other hand, the extension of the comparative assessment to additional LCIA
categories highlights that the innovative lightweight design solution entails contrasting environmental
effects depending on indicators: advantages for CC, OD and POF and higher burdens for A, PM and
RD. As a consequence, the sole analysis of impact variation at LC level is not able to define which design
variant represents the best compromise in terms of balanced assessment of the different environmental
aspects considered.
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3.3. Break-Even Point Analysis

Figure 5 investigates the dependence of impacts on LC mileage by reporting the break-even point
(BEP) analysis for both reference and lightweight CMS variants. The bars on the left end of the diagram
show the contribution of the mileage-independent LC stages, which are production and EoL; on the
right hand, the impact of operation is provided in function of LC mileage.
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BEP diagrams show that at 0 km, the novel solution involves an impact growth for A, CC, PM and
POF categories. The only indicators for which the benefit during operation balances out the higher
burdens in mileage-independent phases are CC and POF: the impact saving during use is determined
through a reduction of CO2 emissions (mainly occurring in TTW) and nitrogen oxide emissions
(mainly occurring in WTT), respectively for CC and POF. Concerning CC, the break-even point for
the effective convenience of the lightweight design is at a relatively low mileage (about 80,000 km)
and the benefit grows at kilometrage increasing, with a 26.3% advantage at 300,000 km. For POF,
the equivalence between solutions occurs at around 210,000 km, and the percent impact reduction
at 300,000 km is 8.5%. On the other hand, no break-even point occurs for PM and A, where the
environmental advantage during operation is not high enough to compensate the greater environmental
burdens at 0 km. As a consequence, the reference design appears to be preferable at any LC mileage,
with operation only determining a reduction of the gap between steel and aluminum CMS versions
(9.7 and 34.5% impact increase at 300,000 km, respectively for A and PM). BEP diagrams are not
reported for OD and RD categories. The reason for this is that the influence of use stage is very low
with respect to production and EoL (less than 5% of total LC impact for both indicators and design
solutions) and therefore, the investigation of impact dependence on LC mileage should not provide
any added value with respect to previous diagrams. As a consequence, the environmental effects
provided by the lightweight design in mileage-independent LC stages are more or less confirmed at
300,000 km, that are 99.99% OD reduction and 235.0% RD increase.
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3.4. Holistic Assessment

As shown in Section 3.2., the lightweight solution provides an impact decrease when considering
CC, OD and POF categories, while it involves negative effects for A, PM and RD. As a consequence,
the above comparative analysis does not allow to define unequivocally which is the most
environmentally preferable design version. In order to overcome this issue, the following provides an
integrated assessment of steel and aluminum alternatives by applying the TOPSIS (a Multi-Criteria
Decision Analysis, MCDA method) [57] to the overall set of LCIA results reported in Table 4
(decision matrix). Such a method provides a quantitative measure of the effective environmental
convenience by taking into account, at the same time, all the selected impact categories, thus enabling
to identify which is the best among the two competing solutions.

Table 4. Decision matrix: LCIA results referring to the entire LC of CMS module.

A (Mole of
H +

Equation)

CC (kg
CO2

Equation)

OD (kg
CFC-11

Equation)

PM (kg
PM2.5)

POF (kg
NMVOC
Equation)

RD (kg Sb
Equation)

Reference design 8.37 × 10−2 5.59 × 10+1 1.28 × 10−7 4.52 × 10−3 4.59 × 10−2 8.25 × 10−4

Lightweight design 1.04 × 10−1 4.30 × 10+1 2.48 × 10−11 6.24 × 10−3 5.34 × 10−2 2.78 × 10−3

The TOPSIS analysis is performed by using two different weighting sets (Table 5). In addition
to the reference one, where all indicators have the same relative importance, the investigation is
performed for the weighting set provided by [58] (WFsA weighting set) for the comparison of the
relative importance of ILCD impact categories.

Table 5. Weighting sets.

A CC OD PM POF RD

Reference weighting set 1.0 1.0 1.0 1.0 1.0 1.0
WFsA weighting set 7.2 7.1 6.4 7.4 7.8 6.1

Table 6 shows that for both weighting sets the lightweight design is moderately better with
respect to the reference one, with value of relative closeness to the ideal solution of about 0.6. It could
therefore be concluded that the aluminum CMS module results to be environmentally preferable when
considering an integrated assessment of the selected impact categories.

Table 6. Value of relative closeness to the ideal solution for reference and lightweight design solutions.

Reference Design Lightweight Design

Reference weighting set 0.42 0.58
WFsA weighting set 0.41 0.59

4. Conclusions

The paper deals with a lightweight design case study developed within the ALLIANCE innovation
and research EU project. The steel baseline version of a rear CMS system module is re-engineered
through the introduction of ultra-high-strength aluminum alloys. The adoption of extruded AW 7003
for beam and crash box components makes that the novel alternative provides a very high mass
reduction (almost 40%). Concerning the design point of view, 7000 series aluminum alloy as main
construction material proves to be a good compromise between strength, production efficiency and
design freedom. At the same time, the use of an open beam profile with extrusion design concept
specifically developed and customized on material features offers satisfactory results in terms of
both lightweight potential and crash-worthiness. On the other hand, the comparative sustainability
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assessment provides contrasting results on the basis of the specific impact category. The main outcomes
of the environmental assessment are reported below through bullet points:

- For all indicators, material change involves an increase in the production impact due to
the higher energy intensity and emissions caused by raw material acquisition of 7000 series
aluminum alloy with respect to conventional steel. The only exception is represented by OD,
for which the production impact of the novel design is almost completely abated due to the
drastic drop of trichlorofluoromethane and dichlorotetrafluoroethane emissions in raw material
acquisition. Concerning use and EoL phases, the entire set of indicators shows an impact decrease,
thanks to, respectively, the reduced FC/emissions during operation and the higher credits of
aluminum recycling.

- As regards to total LC, CC and POF are the only categories for which the increased production
impacts in mileage-independent phases are counterbalanced by beneficial effects in use,
respectively at LC distance of about 80,000 and 210,000 km. On the other hand, the negative
effects in production are predominant for A, PM and RD, for which the LC impact grows by 25,
38 and 237% and the break-even point is not reached even for LC mileage higher than 230,000 km.
The LC OD saving (close to 100%) is almost exclusively concentrated in production, since around
99% of total impact of the reference CMS is associated with raw material acquisition.

- It can be concluded that for three LCIA categories (CC, OD and POF), the lightweight design
entails sustainability benefits while for the other three indicators (A, PM and RD), the steel baseline
design appears to be environmentally preferable. That said, the targets, in terms of mass and
climate change saving established by the ALLIANCE project, are fully achieved.

- The environmental assessment is completed through the implementation of a MCDA method
(TOPSIS) in order to holistically evaluate the competing alternatives on the basis of the entire
panel of sustainability criteria. The analysis of the overall environmental profile reveals that the
lightweight design solution appears to be slightly convenient for both weighting sets considered.
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Abbreviations

A Acidification midpoint
ALLIANCE AffordabLe LIghtweight Automobiles AlliaNCE
AM Additive Manufacturing
BIW Body-In-White
CRFPs Carbon Fiber Reinforced Plastics
CC Climate Change midpoint
CMS Crash Management System
EoL End-of-Life
EU European Union
FC Fuel Consumption
FU Functional Unit
GFRPs Glass Fiber Reinforced Plastics
GHG Greenhouse Gas
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LC Life Cycle
LCA Life Cycle Assessment
LCI Life Cycle Inventory
LCIA Life Cycle Impact Assessment
NMVOCs Non-Methane Volatile Organic Compounds Emissions
OD Ozone Depletion midpoint
OEMs Original Equipment Manufacturers
PM Particulate Matter/Respiratory inorganics midpoint
POF Photochemical Ozone Formation midpoint, human health
RD Resource Depletion, mineral, fossils and renewables, midpoint
TTW Tank-To-Wheel
WLTP Worldwide Harmonized Light-Duty Test Procedure
WTT Well-To-Tank
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