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Abstract: Water is a basic natural resource for life and the sustainable development of society.
Methods to assess water quality in freshwater ecosystems based on environmental quality
bioindicators have proven to be low cost, reliable, and can be adapted to ecosystems with well-defined
structures. The objective of this paper is to propose an interdisciplinary approach for the assessment
of water quality in freshwater ecosystems through bioindicators. From the presence/absence of
bioindicator organisms and their sensitivity/tolerance to environmental stress, we constructed a
bipartite network, G. In this direction, we propose a new method that combines two research
approaches, Graph Theory and Random Matrix Theory (RMT). Through the topological properties of
the graph G, we introduce a topological index, called JP(G), to evaluate the water quality, and we
study its properties and relationships with known indices, such as Biological Monitoring Working
Party (BMWP) and Shannon diversity (H′). Furthermore, we perform a scaling analysis of random
bipartite networks with already specialized parameters for our case study. We validate our proposal
for its application in the reservoir of Guájaro, Colombia. The results obtained allow us to infer that
the proposed techniques are useful for the study of water quality, since they detect significant changes
in the ecosystem.

Keywords: water quality; biotic index; topological index; bipartite network

1. Introduction

One of the Sustainable Development Goals of the 2030 Agenda for Sustainable Development is to
ensure the availability and sustainable management of water and sanitation for all and to preserve
water quality by reducing pollution [1,2]. One of the less expensive and, at the same time, most reliable
tools to assess water quality of aquatic ecosystems is the use of indicator organisms (bioindicators) of
environmental stress [3,4]. Furthermore, by knowing the responses of these communities to certain
environmental stressors, one can determine the cause of environmental deterioration and propose
management and restoration strategies [5–7].
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Bioindicators are living organisms that are able to modify their behavior when identifying
perturbations or changes in the environment. They are used to assess changes in ecosystem
health and as fundamental elements in biomonitoring of environmental quality [8]. For example,
macroinvertebrate communities are often used for the biomonitoring of water quality through the
application of biotic indices [9,10]. Biotic indices are numerical expressions that combine a quantitative
measure of species diversity with qualitative information on the ecological sensitivity of individuals or
taxons in relation to a given level of pollution [11].

In 1978, Hellawell proposed values of tolerance/sensitivity to organic pollution associated with
certain families of aquatic macroinvertebrates. He established that water quality is related to the
presence or absence of those families through the sum of their tolerance values, without taking into
account the abundance of each taxon; the final score is the so-called and usually applied Biological
Monitoring Working Party (BMWP) index [12–14]. The BMWP index is calculated using the sum of the
tolerance values of each identified macroinvertebrate family and indicates the degree of contamination
of the studied site.

Nowadays, there are several BMWP indices, all based on families of aquatic macroinvertebrates,
which are currently used worldwide as a biomonitoring tool to assess water quality [15–17]. All BMWP
indices assign tolerance values between 1 and 10; the higher the score, the better the water quality [18].
One methodology to assign tolerance values associated with macroinvertebrates is the Best Professional
Judgment technique [19]. This criterion consists of: (i) Collecting tolerance values of benthic
macroinvertebrates from different locations, (ii) performing a statistical study of tolerance values
of benthic macroinvertebrate groups, of group combinations, and of tolerance metrics, and, finally,
(iii) evaluating the geographical variation of tolerance values of macroinvertebrate groups in different
taxonomic levels.

Water quality studies based on aquatic macroinvertebrates often use the qualitative characteristics
of the BMWP index and the quantitative characteristics of the H′ index [3,20–23]. The BMWP index
does not consider the abundance of each taxon, and the Shannon diversity index does not consider
the sensitivity/tolerance to environmental stress of indicator organisms. Water quality directly
affects species diversity and the presence or absence of dominant taxa in aquatic ecosystems [23–26].
By integrating the qualitative and quantitative characteristics of the BMWP and H′ indices into a
single index, can we obtain improved results when assessing water quality?

Recently, indices associated with networks and complex systems have been introduced to study
the fundamental properties of ecological systems [27,28]. These indices differ in specific parameters;
for example, sensitivity in the detection of the property to be studied and robustness with respect to
the size of the network. In addition, some indices simply reflect the number of species associated with
the ecological system, but not their interrelations. A topological index is a quantitative measure that
provides qualitative and structural information of a given system; the topological index is associated
with the system invariants [29–32]. In [33], a set of topological indices describing the relationships
of natural systems was presented, allowing Graph Theory to help answer fundamental questions
regarding the dynamics of natural systems, but also diverse phenomena in other sciences [34,35]. It is
relevant to add that most of the networks corresponding to natural and social systems have a bipartite
structure; see, e.g., [36–38] and the references therein.

Indeed, the fundamental structures of plant or animal communities can be described
mathematically [39]. In this direction and in order to assess water quality, in [40], the mathematical
structure, which is a bipartite network G, was associated with the presence or absence of aquatic
macroinvertebrate families and their tolerance value to pollution by means of the topological index.
That topological index, named JP(G), is defined as

JP(G) :=
N1

∑
i=1

βi
δ(βi)

log2

(
∏
iRj

αij

)
. (1)
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In (1), βi is the tolerance value to pollution, δ(βi) is the number of macroinvertebrate families with
the same tolerance value, and αij are the abundances of macroinvertebrate families, the relationships
(iRj) between aquatic macroinvertebrates identified at the order level, and their tolerance value.

On the other hand, the results shown in [41], derived from the analysis and characterization
of random bipartite networks, allow their application to the study of the disturbances of ecological
systems represented by bipartite networks. It has been demonstrated [41] that there exist universal
properties of random bipartite networks that could help us understand the dynamical behavior of the
systems they represent, regardless of specific details, such as the number of vertices and connections.

The objective of this work is to propose an interdisciplinary approach for water quality assessment
in freshwater ecosystems through bioindicators. For this purpose, bipartite networks provide the main
element for the integration of Graph Theory and Random Matrix Theory, the two approaches used in
our proposal. In the first part of this work (Section 2), we describe the construction and interpretation
of the bipartite network G, representing a lentic system. Then, we formalize its analysis by means of
the topological index JP(G), which we always contrast with the widely used BMWP(G) index,

BMWP(G) :=
N1

∑
i=1

βi · δ(βi), (2)

stressing the differences and advantages of the JP(G) over BMWP(G). Moreover, we validate the use
of the JP(G) index by its application to the water quality assessment of a real-world case: The Guájaro
Reservoir, Colombia. In the second part of this work (Section 3), we perform a scaling analysis of
random bipartite networks with parameters already specialized on the Guájaro Reservoir. We then
show that by properly defining a universal curve for the average Shannon entropy of the eigenvectors
of the adjacency matrices of the bipartite network G, it is possible to define water quality classes
equivalent to those obtained from the topological study of Section 2.

2. Topological Analysis to Assess Water Quality

The presence or absence of macroinvertebrate families and their tolerance or sensitivity to
pollution are fundamental elements in the construction of biotic indices for the assessment of water
quality. In [40], this phenomenon is represented geometrically by a bipartite network G, which is
defined as follows.

Definition 1. Let G = G(V, E) be a bipartite network with weights αij and vertices V = {βi, Aj}, where βi,
with i = 1, 2, . . . , N1, are the tolerance values to pollution of the N2 taxa of macroinvertebrate Aj, with j =
1, 2, . . . , N2; in this case, the taxonomic identification is at the order level. E is the set of edges (relations)
βi ∼ Aj. The vertex degree of βi, denoted by δ(βi), is the number of macroinvertebrate families characterized by
the tolerance value to pollution βi.

The JP(G) index of Equation (1) is rewritten as

JP(G) :=
N1

∑
i=1

βi ∑
βi∼Aj

log2(αij)
1/δ(βi). (3)

The basic definitions of Graph Theory and how to compute the JP(G) index are shown in
Appendix A. The construction of the network G is shown in Figure 1.
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Figure 1. Scheme of the bipartite network G(V, E) with weights αij and vertices V = {βi, Aj}, where βi,
with i = 1, 2, . . . , N1, are the tolerance values to pollution of the N2 taxa of macroinvertebrate Aj,
with j = 1, 2, . . . , N2. In G, each edge represents a different macroinvertebrate family whose thickness
depends on the relative abundance. Note that the vertices of the set Aj need the taxonomic identification
to be at the order level; thus, one should be careful on their labeling because different macroinvertebrate
families could have the same order with different tolerance values to pollution.

The structure of aquatic macroinvertebrate communities is defined by the number of species
(richness) and their diversity. The richness of such communities can often be assessed at higher
taxonomic levels; for example, gender, family, and order [42]. Furthermore, the richness measures
reflect the diversity of the aquatic assembly. On the other hand, the relative abundance is the proportion
of a taxon regarding all the taxa contained in an ecosystem. The relative abundance determines how
rare, common, or dominant a taxon is. From now on, unless otherwise indicated, the elements of the
network G are defined as follows.

• ν = max{αij} is the dominant (most abundant) taxon.
• ϕ = min{αij} is the rare (least abundant) taxon.
• ∆i = max{δ(βi)} is the maximal frequency of the tolerance value βi.
• δi = min{δ(βi)} is the minimum frequency of the tolerance value βi.

The absence or presence of edges in network G, i.e., the absence or presence of some
macroinvertebrate families, is directly related to the water quality. Thus, from the construction
of the bipartite network G, we have that the fewer the number of connected components, the higher
the macroinvertebrate family diversity and, thus, the better the water quality, and vice versa. The
previous observation can be formalized as follows: If G contains r connected components, then there
is an inverse relation between the water quality and r. As examples, in Figure 2, we show graphs
with r = 1, 3, and 8 connected components (from left to right); they describe a completely clean water
system, a moderately polluted water system, and a heavily polluted water system, respectively. That
is, the water quality decreases with the decrease of network connectivity α.

The range of variation of ecological quality indices is a fundamental part of ecosystem assessment,
as it allows the ecological status of the ecosystem to be classified [43]. In particular, the range of
mobility of the biotic indices used for water quality assessment allows the definition of quality classes,
the meaning of index ranges, and colors to make cartographic representations [12]. In this direction,
Proposition A1 and (4) allow us to obtain the minimum and maximum values that the JP(G) index
can reach in different contexts. The next result also appears in [40]. If N1 is the maximal tolerance
value, then

log2(ϕ) · N1(N1 + 1)
2

≤ JP(G) ≤ N1(N1 + 1)
2

· log2(ν). (4)
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Figure 2. Bipartite networks with 1, 3, and 8 connected components (a–c) respectively.

Note that the extreme values found for the JP(G) index are explicitly related to the maximal
tolerance value to pollution, N1 and the rare and dominant taxa. By applying the previous results to
the specific problem of assessing water quality, we have that:

• If the macroinvertebrate families’ abundance in the system is uniform (αij = k), then JP(G) =
N1(N1+1)

2 · log2(ν).
• The topological index JP(G) is a function of the maximal abundance of one or more families,

that is, it is in close relation to the load capacity of the system and the present dominant families;
therefore, it provides a more objective measure than the BMWP(G) index (where the presence or
absence of a single family can significantly modify the water quality evaluation) and states the
functional relation between the uniformity and diversity of macroinvertebrate families.

Notice that

JP(G) =
N1
∑

i=1
βi ∑

βi∼Aj

1
δ(βi)

log2(αji) ≤
N1
∑

i=1

βi
δ(βi)

∑
βi∼Aj

log2(ν)

≤ 1
δi

N1
∑

i=1
βi(δ(βi) log2(ν)) ≤ 1

δi
log2(ν)

N1
∑

i=1
βiδ(βi)

≤
log2(ν)

δi
BMWP(G) .

In addition, with a similar argument, we can get that BMWP(G) · log2(ϕ)
∆i

≤ JP(G). Therefore,
we can establish theoretical/qualitative relationships between BMWP(G) and JP(G) indices, and
these can be formalized as follows: Given a network G, we have that

BMWP(G) ·
log2(ϕ)

∆i
≤ JP(G) ≤ BMWP(G) ·

log2(ν)

δi
.

On the other hand, if N1 is the maximal tolerance value, then

δi
N1(N1 + 1)

2
≤ BMWP(G) ≤ N1(N1 + 1)

2
∆i. (5)

Relationship (5) allows us to infer that, if all tolerance values have the same number of
macroinvertebrate families, then the value of the BMWP(G) index is constant (unchanged). In addition,
if M is the number of macroinvertebrate families and N1 is the maximal tolerance value, then

M ≤ BMWP(G) ≤ N1M. (6)
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The practical implication of the Relation (6) for the study of water quality is that it allows us
to know the range of the number of families of macroinvertebrates present in the experiments in
relation to their tolerance values associated with the BMWP(G) index. For proof of (5) and (6), see
Appendix A.

Here, we define the ecological quality ratio (EQR), denoted by σ, as the quotient between the
observed value and the expected value of the JP(G) index at a reference site. As a consequence of
the above results, the maximum value of the ecological status classes defined by the JP(G) index will
determine the EQR. If N1 is the maximal tolerance value, then

σ =
2 · JP(G)

N1(N1 + 1) · log2(ν)
. (7)

Note that the value of σ is expressed as a numerical value between 0 and 1, which implies that, if σ

approaches zero, the ecological status of the ecosystem is low, whereas if σ approaches one, then the
ecological status of the ecosystem is high. Furthermore, note that the JP(G) index is normalized,
so that the parameter σ allows the stratification and evaluation of the stress level of the system as
a function of the maximal tolerance value and dominant families, both measurable parameters of
the system.

2.1. Water Quality Classification

Now we apply the BMWP(G) and JP(G) indices to a lentic system. To that end, we use the data
from the sampling and tolerance values for the macroinvertebrate families identified in the Guájaro
Reservoir, Colombia (for more information on the study area, see Figure 1 in [44]). Table 1 is an
adaptation of the data reported in Tables 3 and 6 in [44] for the Guájaro Reservoir: Macroinvertebrate
families grouped at order level Aj, tolerance values βi, and the abundance of each macroinvertebrate
family αij—elements used to construct the bipartite network G. The bipartite network G in Figure 3 is
the geometric representation of the data in Table 1; the thickness of the edges represents the abundances
of each taxon, normalized with the function log2(αij + 1), and the macroinvertebrate family richness.
We use Gephi 9.2 [45] to construct the graphs.

Trichoptera1

8

Trichoptera2Ephemeroptera1

Odonata1

Amphipoda

7

Diptera1 Hemiptera1

Acari

Coleoptera1 Hemiptera2Gastropoda1
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Tolerance value Macroinvertebrate order

Figure 3. Bipartite network G of 38 nodes (m = 8 and n = 30) and 46 edges. General relations for the
data are in Table 1. Note that the dominant families are most tolerant to pollution. The isolated vertices
are the macroinvertebrate families with zero abundance.
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Table 1. Sampling and tolerance values for the macroinvertebrate families identified in the Guájaro
Reservoir, Colombia, as reported in [44]; tolerance values βi, macroinvertebrate families grouped at
order level Aj, and the abundance of each macroinvertebrate family αij.

βi Aj Family αij βi Aj Family αij

8 Trichoptera1 Xiphocentronidae 0 5 Hemiptera2 Notonectidae 55

8 Trichoptera2 Cantharidae 1 5 Hemiptera3 Naucoridae 13

8 Ephemeroptera1 Tricorythidae 0 5 Hemiptera4 Mesoveliidae 9

8 Odonata1 Gomphydae 0 5 Coleoptera5 Noteridae 288

8 Amphipoda Gammaridae 0 5 Odonata1 Aeshnidae 2

7 Trichoptera1 Leptoceridae 39 4 Hemiptera1 Belostomatidae 109

7 Diptera1 Stratiomyidae 3 4 Diptera1 Tabanidae 33

7 Hemiptera1 Pleidae 71 4 Diptera2 Dolichopodidae 0

7 Acari Hydrachnidae 127 4 Unionoida Hyriidae 0

7 Hemiptera2 Corixidae 7 3 Coleoptera1 Chrysomelidae 0

7 Coleoptera1 Lampyridae 48 3 Diptera1 Tipulidae 2

7 Gastropoda1 Chilinnidae 1 3 Diptera2 Muscidae 1

6 Trichoptera Polycentropodidae 53 3 Diptera3 Ceratopogonidae 167

6 Ephemeroptera1 Baetidae 12 3 Gastropoda1 Ampullaridae 345

6 Lepidoptera Pyralidae 13 3 Gastropoda2 Lymnaeidae 48

6 Odonata1 Coenagrionidae 128 3 Gastropoda3 Planorbidae 383

6 Coleoptera1 Staphylinidae 3 3 Cyclostheriidae Cyclostheriidae 0

6 Odonata2 Libellulidae 96 2 Diptera1 Culicidae 17

6 Hemiptera1 Saldidae 0 2 Hirudinidae1 Glossiphoniidae 165

6 Coleoptera2 Scirtidae 52 2 Hirudinidae2 Hirudinidae 155

6 Ephemeroptera2 Caenidae 28 2 Oligochaeta Tubificidae 469

6 Gastropoda1 Ancylidae 112 2 Gastropoda1 Physidae 86

5 Hemiptera1 Hydrometridae 2 1 Ephemeroptera1 Polymitarcyidae 996

5 Hemiptera2 Nepidae 2 1 Gastropoda1 Hydrobiidae 6127

5 Coleoptera1 Hydrophilidae 226 1 Gastropoda2 Thiaridae 1751

5 Coleoptera2 Curculionidae 78 1 Diptera1 Chironomidae 1861

5 Coleoptera3 Dytiscidae 15 1 Diptera2 Syrphidae 14

5 Coleoptera4 Elmidae 32

In general, the studies that apply the BMWP index to evaluate water quality classify this quality in
five classes (see [46,47] and its references). The most common approach to comparing the efficiency and
scope of application of biotic indices is to compare them through their correlation with physiochemical
parameters [48,49]. Here, we consider two important parameters as references: Dissolved oxygen
(DO) and temperature (T), because there is an inverse correlation between these parameters. Changes
in species composition and diversity of benthic macroinvertebrates [50,51], the BMWP index [52],
and water quality [53–55] are directly correlated with the concentration of DO. In particular, it has
been shown that the most tolerant macroinvertebrate families to pollution are most abundant under
hypoxic conditions [56], and that sensitive families to pollution are strongly associated with high
concentrations of DO [48]. It has been verified that values obtained for given biotic indices and the
quantity of DO have a direct correspondence (see, e.g., [57,58]).
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To classify the water quality in our study, the class width is determined by the quotient between
the expected value of the JP(G) index at a reference site and the number of classes. The expected
value of the JP(G) index at a reference site is obtained when the average abundances are uniformly
distributed and there exist all possible relations (edges) in network G (see e.g., Figure 9). Table 2 shows
the mobility ranges between classes for the BMWP(G) and JP(G) indices together with DO for the
Guájaro Reservoir. It is worth highlighting that we have an additional parameter, σ, to assess the
ecological status (or stress) of the Guájaro Reservoir (see Table 2).

Table 2. Classification of water quality and ecological status for the Guájaro Reservoir.

Class Water Quality BMWP(G) DO (mg/L) JP(G) Stress σ

I excellent > 231 >9.2 >231.8 very high 0.81–1.00

II very good 161–231 6.9–9.1 173.1–230.7 high 0.61–0.80

III good 102–160 4.6–6.8 115.4–173.0 regular 0.41–0.60

IV regular 46–101 2.3–4.5 57.70–115.3 low 0.21–0.40

V low <45 <2.2 <57.6 very low 0.00–0.20

2.2. Comparison between Indices to Study Water Quality

On the other hand, to observe a relationship between tolerance values and abundances, each taxon
was grouped according to its contamination tolerance value, and its abundances were added; the result
was normalized with the logarithm function (see Table A1).

The Shannon diversity index is one of the most important indices that frequently accompanies
other indices in the assessment of water quality [24,59,60]. Its comes from information theory [61] and
is applied in natural sciences to measure species diversity in biological communities. It is defined as

H′ = −
M

∑
i=1

ρi ln(ρi),

where ρi is the relative abundance of the species i and M is the total number of species in the
community. With this prescription, the larger the value of H′, the larger the species diversity in a given
community (and vice versa) [62–64]. In our application, 0 ≤ ρi ≤ 50 and M = 55; i.e., the number
of macroinvertebrate families in the Guájaro Reservoir. Finally, to support the conclusions drawn
from Figure 7, we constructed 100 random samples of the macroinvertebrate families present in the
Guájaro Reservoir and computed the corresponding BMWP(G), JP(G), and H′ indices. Moreover,
we computed the Pearson coefficient between these indices.

In the following section, we complete our proposal for the assessment of water quality by
introducing a technique that can be used either in addition to or completely independently of the index
JP(G) presented above.

3. Spectral Analysis of the Bipartite Network G Associated with the Guájaro Reservoir

Here, we introduce a second technique to assess water quality, which is based on the spectral
properties of the bipartite network G. In particular, we will apply below the approach reported in [41],
where Random Matrix Theory (RMT) was used to study the spectral properties of bipartite graphs.

Recall that network G is characterized by the sizes of the disjoint subsets, N1 and N2, and the
connectivity α ∈ [0, 1]. Let n = N1 + N2 and m = min(N1, N2); i.e., n is the size of G and m the size of
the smaller subset of G. We define the elements of the adjacency matrix A of G as

Aij =


√

2εij for i = j,
εij if there is an edge between vertices i and j,
0 otherwise.

(8)
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Since we want to build an RMT ensemble, we choose εij as statistically independent random
variables drawn from a normal distribution with zero mean and variance one. In addition, εij = εji,
since G is assumed to be undirected.

As shown in [41], a bipartite network produces block adjacency matrices when the vertices are
labeled according to the subset they belong to. In Figure 4a,b, we show two examples of block adjacency
matrices A of bipartite graphs G characterized by n = 38 and m = 8. Two values of α are used in
Figure 4: 0.25 and 0.75, so that the matrix of Figure 4a is more sparse than that of Figure 4b. Note that
in Figure 4, we are already using the parameter values for the network G that we are interested in:
n = 38 and m = 8 or N1 = 8 and N2 = 30, as defined in the previous section.

In [41], by the scaling analysis of the average Shannon entropy 〈S〉 of the eigenvectors of the
adjacency matrices of bipartite graphs G, it was shown that the spectral and eigenvector properties of
G are scaled by the parameter ξ. There, ξ was defined as

ξ ≡ α

α∗
(9)

with
α∗ = Cnδ, (10)

where α∗ characterizes the localization-to-delocalization transition of the average Shannon entropy for
a fixed ratio m/n. So, in the following, we will verify the scaling of 〈S〉 with ξ by finding the values
of C and δ in Equation (10) for our particular application, i.e., for bipartite graphs with n = 38 and
m = 8, and, afterwards, we will use the universal scaled curve 〈S〉 vs. ξ as a calibration curve to qualify
water quality.

The Shannon entropy for the normalized eigenvector Ψk is given as

Sk = −
n

∑
j=1

∣∣∣Ψk
j

∣∣∣2 ln
∣∣∣Ψk

j

∣∣∣2 . (11)

Indeed, in Figure 4c,d, we present Sk for the eigenvectors of the adjacency matrices of panels (a,b),
respectively. Note that the block structure of the adjacency matrices makes the corresponding Shannon
entropies to be grouped into two sets characterized by two different average values. The groups are
separated in Figure 4 by vertical dashed lines: One group corresponds to k ∈ [1, 8] ∪ [31, 38], and
the other group to k ∈ [9, 30]. However, to compute 〈S〉 here, we average the entropies of all of the
eigenvectors of the matrix A.

Next, we use exact numerical diagonalization to compute the eigenvectors Ψk of the adjacency
matrices of large ensembles of random bipartite graphs G characterized by the parameter set (n, m, α).
Then, in Figure 5a, we show curves of 〈S〉 vs. α for four values of the network size n for the fixed ratio
m/n = 8/38, the ratio of interest. Note that when α→ 0, the vertices of network G are isolated and
the corresponding matrix A is a diagonal random matrix, better known in RMT as the Poisson limit; in
this case, the eigenvectors of A have a single component different from zero so 〈S〉 = 0. In the opposite
limit, α→ 1, the bipartite network G is complete, and 〈S〉 gets a maximum value Smax that depends
on n. Thus, to properly compare the average Shannon entropy corresponding to graphs of different
sizes, we normalize it to Smax. Moreover, the curves of Figure 5a show a transition from 〈S〉 ≈ 0 to
〈S〉 ≈ Smax as we increase α from α ≈ 0 to α = 1—a signature of the delocalization of the eigenvectors
of A.
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Figure 4. Nonzero adjacency matrix elements Aij of a single realization of random bipartite graphs G
with n = 38 and m = 8. (a) α = 0.25 and (b) α = 0.75. (c,d) The Shannon entropies Sk of ten realizations
of random graphs with the parameters of the corresponding upper panels.
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Figure 5. (a) Shannon entropy 〈S〉 as a function of the connectivity α for random bipartite graphs
G characterized by the ration m/n = 8/38 for four different network sizes n = 38, 76, 152, and 304.
〈S〉 is normalized to Smax. To compute each symbol in the figure, we average over 106 eigenvectors.
(b) Localization-to-delocalization transition point α∗ as a function of n. The dashed line is the
power-law fitting of the data with Equation (10). From the fitting, we get C = 4.79 and δ = −0.915.

It is important to stress that with the statistical study of Figure 5a, we intend to explore all possible
parameter combinations of the system under study—in our case, the Guájaro Reservoir characterized
by m = 8 and n = 38 that corresponds to the right-most curve in Figure 5a, but also of systems with
equivalent characteristics; see the other curves in Figure 5a, all characterized by the ratio m/n = 8/38.

Then, as in [41], we define the localization-to-delocalization transition point α∗ as the value of
the connectivity for which 〈S〉 /Smax ≈ 0.5. In Figure 5b, we present α∗ vs. n in a log–log plot where
we can clearly see a power-law behavior. Therefore, the fitting of Equation (10) gives C = 4.79 and
δ = −0.915. Now, we are ready to verify the scaling of the Shannon entropy with the parameter ξ,
so, in Figure 6a, we plot the curves of Figure 5a, but now as a function of ξ.

We can clearly see in Figure 6a that all curves 〈S〉 /Smax vs. ξ fall on top of the other as anticipated,
since ξ is the scaling parameter of the network G.
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Figure 6. (a) Shannon entropy curves of Figure 5a as a function of ξ. (b) The universal curve 〈S〉 /Smax

vs. ξ. Horizontal lines indicate the regions of different water quality classes. The vertical dashed lines
at ξ = 0.193 and ξ = 3.888 delimit the low and excellent water quality classes; see Table 3.

Indeed, we will use the universal curve of Figure 6a as a calibration curve to qualify water
quality as follows. First, to ease the analysis in Figure 6b, we again plot the curve of Figure 6a, but
interpolated, so it is now smoother. Now recall that the localized (delocalized) eigenvector regime,
〈S〉 ≈ 0 (〈S〉 ≈ Smax), corresponds to low (high) connectivity and, accordingly, corresponds to low
(high) diversity of macroinvertebrate families in our problem of water quality evaluation. Therefore,
for the network G, 〈S〉 ≈ 0 characterizes low water quality, while 〈S〉 ≈ Smax corresponds to excellent
water quality. So, the eigenvector localization-to-delocalization transition depicted by the curve
〈S〉 /Smax vs. ξ of Figure 6b corresponds to the low-to-excellent transition in the water quality.

Therefore, we define the same five classes of water quality used in the previous section
(low, regular, good, very good, and excellent) by prescribing ranges of Shannon entropy values.
This prescription is quite arbitrary, so the user should choose the most appropriate one depending on
the particular application. In particular, here we would like to assign the classes of low and excellent
water quality to narrower ranges of 〈S〉 than for the rest of the classes. That is, we label the water
quality as low (excellent) if the Shannon entropy of the corresponding network G falls in the lower
(higher) 5% window of the full range of 〈S〉. The rest of the labels are evenly distributed in between;
see Figure 6b. In Table 3, we report the Shannon entropy ranges corresponding to the five classes of
water quality.

Evidently, the ranges of the Shannon entropy defining the water quality classes correspond to
well-defined ranges of the parameters ξ and, accordingly, α. The ranges of ξ and α are also reported in
Table 3.

Table 3. Water quality classes according to the values of 〈S〉, ξ, and α.

Class Water Quality 〈S〉 ξ α

I excellent 0.95 < 〈S〉 ≤ Smax 3.888 < ξ ≤ n 0.656 < α ≤ 1

II very good 0.65 < 〈S〉 ≤ 0.95Smax 1.300 < ξ ≤ 3.888 0.219 < α ≤ 0.656

III good 0.35 < 〈S〉 ≤ 0.65Smax 0.774 < ξ ≤ 1.300 0.131 < α ≤ 0.219

IV regular 0.05 < 〈S〉 ≤ 0.35Smax 0.193 < ξ ≤ 0.774 0.033 < α ≤ 0.131

V low 0.00 < 〈S〉 ≤ 0.05Smax 0.000 < ξ ≤ 0.193 0.000 < α ≤ 0.033

4. Result Analysis

According to (4), if we take the average abundances (259 individuals) reported in [44], we assume
that all macroinvertebrate families are present, N1 = 8, and log2(259) ≈ 8, then JP(G) = 288 (expected
value at the reference site) and BMWP(G) = 259; thus, both indices indicate that the water quality is
excellent. In this particular case, by dividing 288 by five, we get that the class width is 57.6; see Table 2.
In consequence, if there is no dominant taxon, then the BMWP(G) and JP(G) indices are closely
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related. The data reported in [44] for the Guájaro Reservoir allow the inference that BMWP(G) = 207
and the average score by station is 166, JP(G) = 142.34, and, on average, DO = 5.4 mg/L, which
implies that, according to the BMWP(G) index, the water quality is very good, while the DO and
JP(G) index values indicate that the water quality is just good; see Table 2. The fact that the water
quality differs between the BMWP(G) and JP(G) indices is because the BMWP(G) index does not
take into account the dominant families, which, in this case, are the most tolerant to pollution (75.26%);
see Figure 3.

In Equation (7), if JP(G) = 142.34, N1 = 8, and log2(259) ≈ 8, then we have that σ = 0.49.
This implies that the stress level of the ecosystem is regular; see Table 2. Note that, with the application
of the JP(G) index and the EQR, we obtain similar results for water quality and ecological status.

When calculating Pearson’s correlation coefficient between the data in Table A1, we obtain that
R = −0.778 (p = 0.02); this shows that there is a negative linear correlation between tolerance values
and abundances. In this direction, when we simulate samples with all the macroinvertebrate families
reported in [44], but with random abundances, we observe that while the JP(G) index is sensitive to
population fluctuations, the value of the BMWP(G) index does not change. For example, in Figure 7,
we can observe significant variations of the JP(G) index when there are direct or inverse correlations
between abundances and tolerance values. It is important to note that when the quality of the water
is low, the tendency is to find few resistant families whose abundances are high. Conversely, when
water quality is good, diversity (families’ richness and abundance) should be high, including sensitive
families present in lower abundances, although resistant families can be found in different types of
water quality.

R² = 0.9212

R² = 0.9299

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9

A
bu

nd
an

ce

Tolerance value

Dominant families tolerant to pollution Dominant families sensitive to pollution

Figure 7. Abundance versus tolerance values for dominant families tolerant to pollution and dominant
families sensitive to pollution. Here, samples of the macroinvertebrate families present in the Guájaro
Reservoir were simulated. When the dominant families are tolerant to pollution, the value of the JP(G)

index is 135. On the other hand, if the dominant families are sensitive to pollution, JP(G) = 176. In
both cases BMWP(G) = 259.

The calculation of Pearson’s correlation coefficient between the BMWP(G), JP(G), and H′ indices
allows us to infer that the BMWP(G) and H′ indices are highly correlated (R2 = 0.76), while the
correlations between the JP(G) and BMWP(G) indices and JP(G) and H′ are low (R2 = 0.07 and
R2 = 0.13, respectively); see Figure 8. This implies that the index JP(G) shows significant differences
as compared to the BMWP(G) and H′ indices.
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Figure 8. Scatter plots between BMWP(G), JP(G), and Shannon diversity indices for 100 random
samples of the macroinvertebrate families present in the Guájaro Reservoir. The index values are
normalized with the function log2(x + 1).

The scaling study of eigenvector properties of bipartite networks shown above allows us to relate
the parameters 〈S〉, ξ, and α to classes of water quality (see Table 3). To exemplify the application of
the previous results on the particular case, we consider here (i.e., the Guájaro Reservoir) two cases: The
hypothetical situation where all macroinvertebrate families reported in [44] are present (see Figure 9)
and the actual bipartite network already shown in Figure 3. The network in Figure 9 has connectivity
α = 0.229, which corresponds to a very good water quality according to Table 3, as expected, since all
macroinvertebrate families are present in the lentic system. In contrast, the actual network representing
the Guájaro Reservoir, shown in Figure 3, has a connectivity of α = 0.191, implying that the water
quality is good; see Table 3. Note that this qualification is in complete agreement with that obtained
with the application of the JP(G) index in the previous section.

Trichoptera1

8

Trichoptera2
Ephemeroptera1

Odonata1

Amphipoda

7

Diptera1 Hemiptera1

Acari

Hemiptera2

Coleoptera1Gastropoda1
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Odonata2
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1
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Figure 9. Bipartite network of 38 nodes (m = 8 and n = 30) and 55 edges associated with the Guájaro
Reservoir in the hypothetical situation where all macroinvertebrate families reported in [44] are present.
Here, α = 0.229, in contrast to the actual bipartite network of Figure 3 with α = 0.191.

5. Conclusions

The geometric representation of a phenomenon associated with an ecological system allowed the
study of a topological index to assess water quality. This index, the JP(G) index, includes variables
absent in other indices reported in the literature; for example, the qualitative and quantitative
characteristics of the BMWP and H′ indices, dominant taxon, and macroinvertebrate family richness.
In addition, the analytical properties of the network G, shown in the form of propositions, allowed us
to make more objective inferences on water quality assessments because it was demonstrated that the
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topological index JP(G) is sensitive to population dynamics, i.e., the index proposed here is capable of
detecting changes in water quality from the structure of the macroinvertebrate community, changes
that are not perceptible by the BMWP and H′ indices independently. Moreover, the ecological quality
ratio σ, defined through the index JP(G), describes the stress or ecological status of the ecosystem
more reliably. In addition, in order to improve the definition of water quality classes, the JP(G) index
and the well-known BMWP(G) index could also be related and compared with other indices with
similar dynamics or that consider other environmental variables; for example, the Family Biotic Index
or Simpson’s diversity index. This may be the subject of a future work.

The study of the spectral properties of the bipartite networks allowed us to assess water quality
through the network parameters. This statistical method allows the integration of systems with a
greater number of randomly related nodes, that is, it allows the integration of a greater number of
macroinvertebrate families, and not only the 38 of the real-world case we consider here. This provides
us with a technique that promotes the use of complex systems where non-observable relationships are
present, as long as the phenomena of interest are represented by bipartite graphs.

The approach presented is associated with manual data collection. Data collection can be affected
by the accessibility of sampling sites and temporality, i.e., sampling sites must be spatially well
distributed, taking into account the rainy and dry seasons because, in each season, the presence of
macroinvertebrates will vary and some sampling sites may not be accessible if the shape of the terrain
changes. Note that the precision in the assessment of water quality may be strongly affected by the type
and time of sampling, as well as the available data. For example, in our study, the data available for the
Guájaro Reservoir only take into account eight levels of tolerance to pollution and 55 macroinvertebrate
families; other studies report up to 10 levels of tolerance and more than 100 macroinvertebrate families,
which may guarantee a better water quality assessment.

In summary, the interdisciplinary approach to water quality assessment through bioindicator
organisms proposed here allowed us to associate analytical, topological, and spectral properties of
bipartite graphs with water quality classes. Moreover, we stress that our approach combining Graph
Theory and Random Matrix Theory techniques could be adapted and applied to other phenomena
related to complex bipartite networks.
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Appendix A. Graph Theory

Definition A1. A network G(V, E) is an ordered pair of disjoint sets of vertices and edges. Each vertex is
represented by a point, while edges are straight lines joining pairs of vertices. The degree of the vertex v, denoted
by δ(v), is the number of incident edges on it e = [v, vi]; here, v and vi are called adjacent or neighbors.

Definition A2. A network G is connected if any two vertices are joined by a sequence of adjacent vertices;
in the opposite case, the network is disconnected.
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Definition A3. A bipartite network is a network whose vertices can be grouped into two subsets, X and Y,
such that each edge joins a vertex in X with another vertex in Y. Particularly, a bipartite network is complete if
every vertex in X is adjacent to every vertex in Y.

Proposition A1. If M is the number of macroinvertebrate families and N1 is the maximal tolerance value, then

log2(ϕ)N1

∆i
M ≤ JP(G) ≤

log2(ν)N1

δi
M .

Proof. Since log2(ϕ) ≤ log2(αij) ≤ log2(ν) and JP(G) =
N1
∑

i=1

βi
δ(βi)

∑
βi∼Aj

log2(αij), we have that

JP(G) ≤
N1
∑

i=1

βi
δ(βi)

∑
βi∼Aj

log2(ν) ≤ log2(ν)
N1
∑

i=1

βi
δ(βi)

∑
βi∼Aj

1 ≤ log2(ν)
N1
∑

i=1

βiδ(βi)

δ(βi)

≤ log2(ν)
N1
∑

i=1

δ(βi)N1

δi
≤

log2(ν)N1

δi

N1
∑

i=1
δ(βi). ≤

log2(ν)N1

δi
M .

The other inequality can be obtained in a similar way.

The previous result allows the establishment of the mobility ranges of the JP(G) index. In
addition, it allows us to know the number of macroinvertebrate families present in a given sample:

δi JP(G)

log2(ν)N1
≤ M ≤ ∆i JP(G)

log2(ϕ)N1
.

The following result appears in [40].

Proposition A2. If N1 is the maximal tolerance value, then

δi
N1(N1 + 1)

2
≤ BMWP(G) ≤ N1(N1 + 1)

2
∆i.

Proposition A3. If M is the number of macroinvertebrate families and N1 is the maximal tolerance value, then

M ≤ BMWP(G) ≤ N1M.

Proof. Since M =
N1
∑

i=1
δ(βi) =

N1
∑

i=1

δ(βi)βi
βi

and 1 ≤ βi ≤ N1, we have

N1
∑

i=1
δ(βi)βi

N1
≤ M ≤

N1
∑

i=1
δ(βi)βi

1
.

Thus,
BMWP(G)

N1
≤ M ≤ BMWP(G)

1
.

How to Compute the Jp(G) Index

Suppose that eight macroinvertebrate families with tolerance values 1, 2, and 3 were identified
from a sample. These families are grouped at the order level, and the bipartite network G is shown in
Figure A1.
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2 31

A1 A2 A3 A5A4

Tolerance Values

Order of Macroinvertebrates

10 916

6

2 5

3

2

Figure A1. Bipartite network G with eight vertices and eight edges (macroinvertebrate families);
three vertices are tolerance values to pollution and five vertices are groups of macroinvertebrates.
The thickness of the edges is the abundance of each family of macroinvertebrates.

According to Equation (3), it follows that

JP(G) :=
N1
∑

i=1
βi ∑

βi∼Aj

log2(αij)
1/δ(βi) = β1

[
1

δ(β1)
· log2(α11) + · · ·+ 1

δ(β1)
· log2(α1j))

]
+ · · · +

βN1

[
1

δ(βN1 )
· log2(αN11) + · · ·+ 1

δ(βN1 )
· log2(αN1 j)

]
.

To compute the JP(G) index of the bipartite network G shown in Figure A1, we observe that
for i = 1, the vertex with tolerance value β1 = 1, the number of edges adjacent to vertex β1 is
δ(β1) = 4, i.e., four macroinvertebrate families with abundances α1j = 10, 16, 6, and 2, with j = 1, . . . , 5.
In addition, we calculate log2(α1j). For the rest of the vertices associated with the tolerance values,
we proceed in the same way. Then, we have to

JP(G) :=
3
∑

i=1
βi ∑

βi∼Aj

log2(αij)
1/δ(βi) = 1

[
( 1

4 log2(10) + 1
4 log2(6) + 1

4 log2(16) + 1
4 log2(2)

]
+

2
[

1
2 log2(9) + 1

2 log2(3)
]
+ 3

[
1
2 log2(5) + 1

2 log2(2)
]

= 0.25(3.32 + 2.58 + 4 + 1) + 1(3.16 + 1.58) +
1.5(2.32 + 1) = 2.72 + 4.74 + 4.98 = 12.44.

Therefore, JP(G) = 12.44.

Appendix B

Table A1. Cumulative abundances according to the tolerance values of the macroinvertebrate families
shown in Table 1. Note that the abundance increases while the tolerance value decreases.

Tolerance Value Abundance

1 10,749

2 892

3 946

4 142

5 722

6 497

7 296

8 1
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