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Abstract: Transportation networks play an important role in urban areas, and bridges are the most
vulnerable structures to earthquakes. The seismic damage evaluation of bridges provides an effective
tool to assess the potential damage, and guides the post-earthquake recovery operations. With the
help of structural health monitoring (SHM) techniques, the structural condition could be accurately
evaluated through continuous monitoring of structural responses, and evaluating vibration-based
features, which could reflect the deterioration of materials and boundary conditions, and are
extensively used to reflect the structural conditions. This study proposes a vibration-based seismic
damage state evaluation method for regional bridges. The proposed method contains the measured
structural dynamic parameters and bridge configuration parameters. In addition, several intensity
measures are also included in the model, to represent the different characteristics and the regional
diversity of ground motions. The prediction models are trained with a random forest algorithm,
and their confusion matrices and receiver operation curves reveal a good prediction performance,
with over 90% accuracy. The significant parameter identification of bridge systems and components
reveals the critical parameters for seismic design, disaster prevention and structure retrofit.

Keywords: seismic damage evaluation; random forest; concrete beam bridge; regional bridges;
structural health monitoring

1. Introduction

Earthquakes are a major natural hazard that impact urban sustainable development and
infrastructure safety [1]. Bridges are the most vulnerable elements in the urban transportation
system. The damage state evaluation of regional bridges informs bridge managers about the possible
damages and risks in a seismic event [2–4]. Due to traffic loads and environmental effects, seismic
demand and the capacity of in-service bridges are different from the original conditions [5,6]. To make
an informed decision regarding pre-earthquake maintenance and post-earthquake recovery, it is critical
to evaluate the seismic damage states of bridges based on their real-time conditions.

With the development of structural health monitoring, quite a few structural health monitoring
systems (SHMS) are installed on infrastructures to record the long-term behaviors [7,8]. Information
obtained from SHMS is mostly used to assess the long-term deterioration process due to physical
aging and traffic loads, while there are still some limitations in identifying the location and degree of
structural damages under the earthquake: (1) nonlinear system identification: ground motions lead to
structural nonlinear failure, and existing techniques are not easily able to identify strong nonlinear
behaviors; (2) distributed damage: multiple local damages appear in a large number of components
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after the earthquake; (3) signal interruption: signal cables and electric cables might be cut off in the
earthquake, which obstructs engineers from obtaining the in-earthquake and post-earthquake data.
In view of the limitations of seismic monitoring, it would be appropriate to update the structural
conditions with SHMS before the earthquake.

Data-driven methods are approaches that apply machine learning algorithms to directly use the
measured data as input to evaluate the structural conditions. Sajedi and Liang [9] developed a method
to diagnose structural real-time damages using the support vector machine (SVM). It precisely predicted
the existence, location and severity of damages. Clustering methods [10] and neural networks [11]
were used for condition assessments and damage detections. Jang and Smyth [12] explored the three
most popular machine learning models to describe the relationship between environmental effects
and modal properties, where random forests (RF) obtained higher efficiency with the same prediction
accuracy. Since data-driven models directly identify the data features of structural condition changes,
they do not need any prior knowledge.

Vibration-based structural condition assessment is a conventional and effective approach to
detecting structural damages only using structural mechanism characteristics [13–15], such as natural
frequencies, modal damping, curvature mode shapes, etc. Based on the first three natural frequencies,
Morassi and Rollo [16] developed a method for assessing the condition of a simply supported beam
under flexural vibrations. Lin and Cheng [17] presented a technique with curvature mode shapes to
detect the damages of a free–free beam. Kbiem and Lien [18] derived frequency change indicators and
used them to determine the structural condition and detect the locations of cracks. The availability of
vibration-based structural condition assessments provides a unique opportunity to evaluate seismic
damage states based on updated structural conditions.

Previous studies used comprehensive geometrical and material parameters to reflect the real
performance of each component [19,20]. Material stiffnesses and boundary conditions affect the
structural seismic performance, but their correct determination is labor-consuming. Abutments
provide a great source of energy dissipation and decrease the probability of the unseating of the bridge
beams [21]. Shear keys assist in constraining the relative lateral displacement between the beam
and the abutments, and two adjacent beam segments [22]. Bearings transfer the horizontal friction
forces between superstructures and substructures. Bridge foundations transfer structural loads to the
underlying soil. The bridge column is one of the main components in resisting the earthquake, and its
seismic performance depends on the area of reinforcement, the strength of core concrete, and built-in
reinforcement. Although these detailed material stiffness and boundary condition parameters make a
great contribution to enhancing the model’s accuracy, it is labor-consuming to get these real values.
Since the structural dynamic characteristics can reflect the material and boundary conditions, it is
convenient for the monitored bridges to use the measured structural dynamic parameters to represent
their real-time seismic performances.

Earthquake excitations of each bridge are diversified across regional scales [23,24]. Sensors installed
on the bridges and the nearby seismographs record the time-history of the excreted ground motion,
and detailed characteristics of ground motions could be easily extracted to reflect their intensities.
In previous studies, most of the research selects only one intensity measure (IM) to represent the
seismic hazard; peak ground acceleration (PGA) is the most commonly used. Padgett [25] suggested
that the PGA is a suitable selection to represent the severity of the earthquake ground motion,
due to its efficiency and ease-of-implementation. The relative efficiency of PGA with some other IMs
[peak ground velocity (PGV), peak ground displacement (PGD) and spectral acceleration at 1 s] has
been carried out. However, since a large PGA value does not always induce severe structural damage,
other IM, such as PGV, PGD, the time duration of strong motion and spectrum intensity, should also
be considered.

Seismic damage state evaluation is a kind of classification problem [26]. RF is an ensemble learning
method, and it consists of bagging and random feature selection techniques to generate a large quantity
of independent decision trees [27,28]. The trained model is more robust than a single decision tree,
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and less likely to overfit. Jia [29] used RF to train the model with the data of the Wenchuan earthquake
and the Tangshan earthquake. The results showed a good performance for assessing the damage states
of two bridges. Kiani [30] compared multiple classification algorithms for assessing the damage states
of buildings. RF has the highest efficiency in predicting the structural seismic damages compared with
other methods. RF can robustly handle high dimensional, large datasets with outliers and non-linear
data. Its parallel computing can split the process into multiple machines to save computation time.
Each decision tree has a high variance, but low bias. Since RF averages the variances of all the trees,
we could get a low bias and moderate variance model, even for an unbalanced dataset [31].

This paper proposes a vibration-based damage state evaluation method for concrete beam bridges
using the RF method. The models contain bridge design parameters, structural dynamic characteristics
and ground motion parameters. Design parameters represent the bridge configuration. Instead of
traditional structural material strength and boundary stiffness parameters, dynamic characteristics are
included in the models to represent bridge real-time conditions. These structurally related parameters
are easy to be obtained for a bridge installed with SHMS. As for ground motions, several parameters,
related to the peak effect, spectral characteristics and time duration of strong motions, are included in
the models. RF classification methods are used to predict the damage state. To verify the effectiveness
of the proposed method, the prediction accuracy of the proposed models and traditional models are
compared. Besides, the confusion matrix and receiver operating characteristic curves of the proposed
models are illustrated to manifest their high efficiency. For each bridge component, the relative
significant parameters are also identified.

2. Numerical Modeling Techniques

This study selects the short- and medium-span beam bridges to establish regional damage state
evaluation models. The three-dimensional simplified numerical models are developed by the Open
System for Earthquake Engineering Simulation Platform (OpenSEES), incorporating the nonlinear
material and geometrical behaviors. A typical layout of the selected short- and medium-span beam
bridge model employed in this study is illustrated in Figure 1.
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In general, there are four common types of the superstructure for short- and medium-span beam
bridges, that is, RC simply supported slab bridge, prestressed concrete simply supported hollow slab
bridge, prestressed T-shaped concrete beam bridge, and prestressed box-shaped concrete beam bridge.
The design references of short- and medium-span beam bridges in each country are relatively similar.
Taking the design references in China as an example, the Ministry of Transport issued the standard
drawings to guide the design of each type of bridge. The section dimensions, reinforcement layouts,
reaction of superstructures, and other details for standard span length beam are given. This information
can provide an efficient basis for the establishment of numerous standardized short- and medium-span
beam bridges.

2.1. Model Establishment

The beam is modeled with the elastic beam-column element, since this would remain elastic
during the earthquake. The mass of the superstructures acts as the inertial force for the whole bridge,
so it is precisely calculated by the reaction of the superstructures. Due to the proposed model containing
the dynamic characteristics, the stiffness of superstructures is also calculated with the given section’s
dimensions. The transverse beam is modeled with the massless rigid link element to illustrate the
torsion of the beam. Most of the short- and medium-span bridges are designed with laminated rubber
bearings, and their stiffness impacts the bridge’s nonlinear response and dynamic characteristics.
Bearing is assumed to be a perfectly elastic model [32], where its stiffness is determined by the bridge’s
seismic design code [33]. Beam caps remain elastic during the earthquake, so its mass is modeled
on the top of the columns. Columns are modeled with the fiber-based displacement beam-column
element. In the fiber sections, the Steel02 material model with a hardening factor of 0.01 is used to
simulate the reinforcement behavior. The Concrete01 and Concrete02 material models are used to
account for the cover and core concrete behavior, respectively. Each bridge foundation is modeled
with three translational linear springs and three rotational linear springs.

The influence of the abutment on the seismic damage of the bridge is significant; quite a few
studies [21,34,35] have presented the intrinsic issues in abutment modeling. In this study, a complex
series and parallel spring system account for the abutment’s dynamic behaviors, and these are all
modeled with zero-length elements. In the longitudinal direction, the effects of elastomeric bearing,
gap, abutment piles (active soil) and soil backfill material (passive soil) are considered. The gap is
modeled with the pounding springs [36], which contain a gap and bilinear high stiffness. Before the gap
closure, the force transmits from the beam to the bearings and gaps, and then to the abutment piles and
backfill soils [37]. After the gap closure, the beam, along with the bearing systems, collide directly with
the abutment, which initiates the full passive earth pressure. In the transverse direction, the effects of
elastomeric bearing, concrete shear keys and abutment piles (active soil) are considered. The elastomeric
bearing and shear keys act in parallel. This combined parallel system is in series with the abutment
piles (active soil). According to Caltrans [38], the ultimate strength of the shear key is determined to be
30% of the superstructure dead load. A tri-linear hysteric backbone curve is defined for shear keys.

2.2. Model Verification

Accurate bridge dynamic models are an effective basis for the following seismic damage analysis.
There are quite a few short- and medium-span bridges installed with SHMS [39]. Since the occurrence
of earthquakes is extremely rare, it is quite hard to measure the seismic response. This paper compares
the bridge dynamic characteristics between measured real bridges and the corresponding numerical
models, to ensure the reliability of the proposed modeling techniques.

Nanli river bridge is located on the Xinglin Highway in Hebei province, China. It is a typical
prestressed box-girder skew bridge with a span of 30 m. The bridge cross-section consists of four small
box longitudinal beams, and there are three transversal beams at the quarter and middle of the span to
link all these longitudinal beams. The layout of the monitored span and installed sensors is shown
in Figure 2. Five sections are installed with different kinds of sensors, and static levels are used to
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measure the displacement of the bridge; thermometers can compensate the temperature error of the
measured data; and dynamic characteristics can be identified from strain gauges and accelerometers.
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Using the Stochastic Subspace Identification (SSI) method to analyze the response data of the
accelerometers, the bridge frequencies can be accurately measured. Using the proposed numerical
modeling techniques combined with real bridge parameters, the frequency of the numerical model can
be extracted. Besides, the accuracies of mode shapes are calculated with the modal assurance criterion
(MAC). The first three-order frequencies and MACs are compared in Table 1. It can be seen that the
difference between these two sources is very small, indicating that the proposed numerical modeling
techniques are reliable.

Table 1. Frequency comparison of simulation result and measured result.

Order Simulated Frequency (Hz) Measured Frequency (Hz) Error Percentage MAC

1 4.573 4.636 −1.4% 0.992
2 5.486 5.482 0.073% 0.990
3 8.065 8.132 −0.83% 0.990

3. Uncertain Parameters

This paper proposes a seismic damage evaluation method for regional monitored concrete beam
bridges. Unlike the traditional seismic damage evaluation method, the selected parameters in the
proposed method are conveniently obtained for a monitored bridge. To ensure the high accuracy of
the damage prediction, the traditional method employs the material stiffness and boundary condition
parameters to simulate the real condition of bridges, however, the proposed method uses bridge
real-time dynamic characteristics.

3.1. Material and Boundary Parameters for Traditional Unmonitored Bridges

In the traditional method, many bridge geometrical and material parameters are included,
as listed in Table 2. Geometrical parameters selected from the main design parameters illustrate the
bridge configuration. Span (R1) and Number of Spans (R2) depict the longitudinal layout of bridges.
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Number of Beams (R3) depicts the transversal layout of bridges. Since the proposed modeling technique
is based on the aforementioned standard drawings, the mass and stiffness of the superstructures
are easy to determine with these three parameters. Column height (R4), Diameter of Column (R5)
and Number of Columns (R6) are used to determine the layout of substructures. Bearing stiffness
is determined with the mass of superstructures and seismic design codes. Skew angle (R7) makes it
possible to simulate the skew bridges.

Table 2. Structural Uncertainties.

Traditional Method Proposed Method

Variables Parameters Variables Parameters

R1 Span P1 Span
R2 Number of Spans P2 Number of Spans
R3 Number of Beams P3 Column height
R4 Column height P4 Diameter of Column
R5 Diameter of Column P5 Number of Columns
R6 Number of Columns P6 Skew angle
R7 Skew angle P7 1st frequency
R8 Longitudinal reinforcement ratio of column P8 2nd frequency
R9 Concrete compressive strength of column P9 3rd frequency
R10 Reinforcement yield strength of column P10 4th frequency
R11 Rotational stiffness of foundation P11 5th frequency
R12 Translational stiffness of foundation

Material parameters and boundary stiffness parameters are included to modify the bridge response.
Since the column plays an important role in the earthquake event, longitudinal reinforcement ratio
(R8), concrete compressive strength (R9) and reinforcement yield strength (R10) are used to calibrate
the real performance of the column. As for the foundation, rotational stiffness (R11) and translational
stiffness (R12) are the key stiffness. Abutment pile stiffness and backfill stiffness are determined with
the soil condition. These parameters (R8~R12) are determined with the original design values, so they
can not reflect the real-time structural conditions.

This paper establishes 672,000 numerical models with these modeling parameters,
to comprehensively consider all kinds of regional beam bridges. The Latin Hypercube Sampling (LHS)
method [40] is a stratified sampling method for generating a near-random sample of parameter values
from a multidimensional distribution. To perform the stratified sampling, the cumulative probability
is divided into segments. It randomly selects samples from each segment using a uniform distribution,
and then maps to the correct representative value the variable’s actual distribution. Once each variable
has been sampled using this method, a random grouping of variables is selected with the independent
uniform selection. LHS aims to spread the sample points more evenly across all possible values. In this
paper, the samples of the numerical three-dimensional bridge model are generated by sampling across
a certain range of uncertain parameters using the LHS method.

3.2. Dynamic Characteristic Parameters for Proposed Monitored Bridges

In the proposed method, the bridge dynamic characteristics parameters are included to replace
some material and stiffness parameters. Since the bridge geometrical parameters (P1~P6) are easy to
obtain from the design documents or technical reports, they are preserved in the model to illustrate
the bridge configuration. Bridge dynamic characteristics are important indicators of the bridge
condition, as their fluctuations could reflect the deterioration of the material and stiffness performances.
According to the seismic design code, the maximum acceleration response spectrum appears between
0.1 s and the characteristic period (Tg). This interval generally contains the first five orders of bridge
frequencies (P7~P11), as illustrated in Figure 3. With the help of modern signal processing techniques,
frequencies (P7~P11) of the monitored bridge can be identified. These parameters mainly aim to
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represent the real-time condition of the measured bridges. Although the dynamic characteristic
parameters might be influenced by the bridge design parameters, these parameters can be used
together to effectively determine the configurations and real-time conditions of the measured bridges.
The proposed method uses theses 11 parameters (Table 2) to predict seismic damage states for regional
monitored beam bridges.
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Generally, the proposed dynamic characteristic parameters can be measured either before or
after the earthquake. If they are measured before the earthquake, this could have implications on the
post-earthquake emergency traffic and recovery operations; If they are measured after the earthquake,
the post-earthquake damage states could be identified without much delay.

3.3. Intensity Measures

From the regional view, each bridge undertakes different ground motions in the same earthquake
scene. Analysis of recorded signals from installed sensors or nearby seismographs could provide
the time-history and detailed characteristics of the ground motions. In addition to considering the
structural and material uncertainties, the ground motion uncertainties should also be fully considered.
Earthquake ground motion is typically characterized by three main aspects: peak effect, response
spectrum and acceleration duration [30]. This study selects eight IMs (G1~G8) to represent these three
aspects in the seismic damage state evaluations. PGA and cumulative absolute energy (CAV) are
selected to represent the peak effect of ground motion. Acceleration spectrum intensity and spectral
acceleration, at the periods of 0.5, 1, and 3 s, are used to show the spectrum intensity characteristics.
5–75% and 5–95% significant durations are chosen as the representatives of time history characteristics.
The definitions of these eight selected IMs are listed in Table 3.

Table 3. Selected intensity measures.

Variables IM Definition

G1 Sa0.5 Spectral acceleration at the period of 0.5
G2 Sa1 Spectral acceleration at the period of 1
G3 Sa3 Spectral acceleration at the period of 3
G4 PGA Peak ground acceleration
G5 ASI Acceleration spectrum intensity ASI =

∫ 0.5
0.1 SA(T)dT

G6 CAV Cumulative absolute energy CAV =
∫ tmax

0

∣∣∣a(t)∣∣∣dt
G7 Ds5−75 5–75% significant duration: Intervals between the times where 5% and 75% of

∫ tmax

0 a(t)2dt obtains.
G8 Ds5−95 5–95% significant duration: Intervals between the times where 5% and 95% of

∫ tmax

0 a(t)2dt obtains.

The ground motion suite used in this study should be informative considering the established
672,000 numerical models. It contains 1000 ground motions that are developed from the Pacific
Earthquake Engineering Research (PEER) ground motion database. The PGAs of these 1000 ground
motions are evenly distributed between 0 g and 1.0 g, and there are 100 ground motions contained in
every 0.1 g interval. Among them, ground motions with PGA lower than 0.4 g are natural ground
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motions, while the other 600 ground motions are scaled ground motions. Since the ground motions
with high PGA are rare in the PEER database, they are scaled from the other natural ground motions to
populate sufficient response data for the strong earthquake scene. The IMs of selected ground motions
with PGA between 0.5 g to 0.6 g is illustrated in Figure 4. This study randomly pairs 672,000 numerical
models with these 1000 ground motions, in both longitudinal and transverse excitations.
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Figure 4. Intensity measures when PGA between 0.5 and 0.6.

4. Vibration-Based Seismic Damage State Evaluation Methodology

There are two main stages in the proposed evaluation frameworks, including the regional
bridge seismic simulation stage and the seismic damage state evaluation stage. The framework for
vibration-based seismic damage state evaluations is represented in Figure 5. The seismic simulation
stage aims to label the structural seismic damage state for a certain bridge–earthquake pair, and it
provides the labeled dataset for the following supervised model training. In the evaluation stage,
the labeled 672,000 bridge–earthquake pairs are split randomly in this study into a training set (70%) and
a test set (30%). The RF is trained with the training set to minimize the prediction error. The evaluation
of the model using the test set informs the prediction performance and prevents overfitting. This study
uses the cross-validation strategy to evaluate predictive models. In practice, the training set is randomly
partitioned into n equal-sized subsamples. Of the n subsamples, a single subsample is retained as the
validation data for testing the model, and the remaining n–1 subsamples are used as training data.
The cross-validation process is then repeated n times, with each of the n subsamples used exactly once
as the validation data. The n results from the folds can then be averaged to produce a single estimation.
The advantage of this method is that all observations are used for both training and validation, and each
observation is used for validation exactly once. The ideal trained models are expected to imply the
general law of structural seismic damage, and are effectively generalized to other regional bridges.
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4.1. Random Forest

RF is an ensemble machine learning method operated by constructing a large number of decision
trees (DT). Unlike DT, which uses all features to generate a tree-like graph for classification, RF uses
an effective “feature bagging” learning algorithm, which combines the random feature selection and
bagging techniques. If one or a few features are very strong predictors for the target output, this subset
of features will be selected to construct a tree-like classification graph sample. This kind of sample is
known as the bootstrap sample. Using bagging techniques, these models are fitted with the above
bootstrap samples and combined by voting. RF improves stability and accuracy, reduces variance,
and helps to avoid overfitting.

With the size and nature of the training set, an optimal number of trees are determined by
bootstrap aggregating or bagging. By averaging the predictions from the individual regression trees,
the RF prediction can be expressed as:

f̂ (x) =
1
T

T∑
t=1

ft(x) (1)

where f̂ (x) denotes the RF prediction from the total of T trees, and ft(x) denotes the prediction of each
individual tree with the input x. Additionally, an estimate of the uncertainty of the prediction can be
made as the standard deviation of the predictions from all the individual trees, and can be expressed as:

σ =

√∑T
t=1

(
ft(x) − f̂ (x)

)2

T − 1
(2)

4.2. Component Demands and Damage State Classification Labeling

RF is a supervised learning algorithm, which infers the function between input features and
output results based on the labeled training data. Following the material performance and bridge
design codes, this study suggests three damage states for each bridge component and the whole bridge
system, illustrated in Figure 6. The component demand obtained from the nonlinear seismic analysis of
the bridges is compared with their capacities, and three damage states are defined as listed in Table 4,
where ε denotes the structural seismic response, εo denotes the yield strain, and εu denotes the ultimate
strain. Since the seismic demand value of each bridge component in the regional scale is different,
this paper only gives the principle of classifying the seismic damage states.
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Table 4. Limit states definition.

State Open Restrict Close

Traffic influence Open to normal public traffic Only for emergency and
limited vehicles Closed to all vehicles

Structural damage No or minor cracks
Cover concrete spalling
Core concrete and rebar
yield function intact

Core concrete crushing
collapse or nearly
collapse out of function

Materials performance ε ≤ εo ε0 < ε < εu ε ≥ εu

The defined damage states are associated with material performance, structural damage and
regional traffic influence. This paper selects five bridge components to make the seismic damage state
evaluation. For abutments, the stiffness of longitudinal direction (AbutX) and transversal direction
(AbutY) are different, and the yield points and ultimate points are determined via the soil condition
and previous research. For bridge bearing (Bear), since it is assumed to be a perfectly elastic model,
displacement controls the damage states. Bridge columns (Column) play an important role in seismic
analysis. Typical sectional moment-curvature analyses for 672,000 samples are carried out; at the
yield point, the built-in rebars start to yield, and cover concrete begins spalling; at the ultimate
point, core concrete crashes. The damage state of beam unseating (Beam) is defined via the bridge
transverse structure configuration. The whole bridge system is considered as a series system of these
five components, and the damage state of the system is determined via the most damaged component.

4.3. Predict Performance Indicators

To establish a predictive model for classifying the seismic damage state of components and bridge
systems, the RF algorithm is carried out as mentioned in Section 4.1. The confusion matrix is a table for
the visualization of the predicted performance, in which each row of the matrix depicts the cases in an
actual class, while each column depicts the cases in a predicted class. It is usually constructed with n
rows and n columns, where n equals the number of classes. There are four kinds of classification of
the analytic results, including true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN), shown in Figure 7. TP and TN are the outcomes where the model correctly predicts the
positive and negative class, respectively. FP and FN are two kinds of prediction error, indicating that
the model incorrectly predicts the positive and negative class, respectively.
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The efficiency of the predictive model is evaluated using the Accuracy, Precision, Recall and F1-score
(F1) of the test data set. Accuracy is the most intuitive performance indicator; it defines a ratio of correctly
predicted conditions to the total conditions. Accuracy is a good performance indicator only when FP
and FN have a similar cost. Precision defines the ratio of correctly predicted positive conditions to the
total predicted positive conditions. In other words, Accuracy denotes the closeness of the predictions to
the target value, while Precision denotes the closeness of the predictions to each other. Recall defines
the ratio of correctly predicted positive conditions to all conditions in a true condition. F1 denotes the
weighted average of Precision and Recall. It is usually more useful in an uneven class distribution [30].
Since the damage state distributions of each component are extremely uneven, F1 is an important
indicator in this study. The equations of the above indicators are listed below:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3)

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1 = 2× Precision×Recall/(Precision + Recall) (6)

The receiver operating characteristic curve (ROC Curve) and area under the curve (AUC) are
performance indicators that depict the diagnostic ability of the established classifier. ROC Curve
defines a probability curve plotting the true positive rate (TPR) against the false positive rate (FPR),
at various setting values. An excellent prediction method would approach the point at the upper left
corner of the ROC space, representing no FN and FP. Under this circumstance, the associated AUC is
near to 1, as shown in Figure 8. The equations of TPR and FPR are listed below:

TPR = TP/(TP + FN) (7)

FPR = FP/(FP + TN) (8)
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5. Application of Proposed Methods to the Established Regional Bridges

5.1. Prediction Accuracy of Traditional and Proposed Methods

These models are established and implemented on an open-source machine learning library
scikit-learn 0.20.3 in Python 3.7. The computer used for training these models is built with an i7-8700K
CPU and a 16 GB memory. The total training time for the six models (AbutX, AbutY, Bear, Column, Beam
and System) is 79.88 s and 76.55 s, for the traditional method and the proposed method, respectively.

Using the traditional method and proposed method, the seismic damage states of concrete beam
bridges can be predicted. In the traditional method, the material and boundary stiffness parameters
(R8~R12) are used to determine the bridge material’s strength and boundary condition. Usually, these
parameters are quite hard to obtain for an in-service bridge, and seismic damage states are predicted
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with the original design condition. However, the proposed method uses the real-time dynamic
characteristics instead of original material and boundary stiffness parameters to determine the bridge
condition. It is quite convenient for monitored bridges to measure these frequencies (P7~P11).

This study compares the prediction accuracy between traditional methods and proposed methods
for two bridge conditions, that is, the intact condition and the 20% deterioration condition. In the
deteriorated models, the stiffness and ultimate strength of concrete and reinforcement bars in the
bridge column are assumed to have undergone 20% deterioration. In the boundary conditions, it is
assumed that the stiffness of the bearing and the abutment are reduced by 20%. Table 5 illustrates the
results of the intact condition; since the material strength and boundary stiffness are not damaged,
the accuracy of both traditional methods and proposed methods accounts for over 90%. As for the
results of the deteriorated bridges shown in Table 6, the accuracy of traditional methods decreases
to about 75%. The original design materials and boundary parameters greatly affect the prediction
accuracy. However, the proposed method still possesses a high prediction accuracy of 95%. Since the
monitored dynamic characteristics reflect the real-time bridge conditions, the proposed methods
perform well in both intact bridges and deteriorated bridges.

Table 5. Accuracy comparison of traditional and proposed methods for intact bridges.

Methods AbutX AbutY Bear Column Beam System

Traditional 96.01% 95.25% 88.82% 96.67% 93.87% 94.54%
Proposed 96.27% 95.87% 89.61% 96.77% 94.23% 94.63%

Table 6. Accuracy comparison of traditional and proposed methods for bridges with 20% deterioration.

Methods AbutX AbutY Bear Column Beam System

Traditional 77.52% 81.19% 72.46% 78.19% 76.22% 80.33%
Proposed 93.82% 94.95% 89.06% 95.19% 93.12% 93.24%

5.2. Performance of Proposed Evaluation Methods

As explained above, the confusion matrix (C) shows a table of the actual class versus predicted class,
where Ci j (i = 1 : 3, j = 1 : 3) denotes the number of observations known to be in class i, but predicted
to class j. Therefore, the diagonal elements in C indicate the observations that are correctly classified
by the proposed seismic damage evaluation method, and the off-diagonal elements indicate the
observations that are incorrectly predicted. In Figure 9, the dark red represents the associated elements
that are most likely to be predicted. The performance of the proposed method in the classification
prediction is also evaluated with Precision and Recall, which are given in the fourth row and column
in C, respectively. High precision and recall rates represent the ability of the proposed method to
accurately predict the seismic damage states. For example, Figure 9a illustrates the seismic damage
state evaluation results for the longitudinal abutment; the diagonal elements are all colored with dark
red, indicating that most of the damage states are correctly predicted. “Open” state and “Restrict” state
account for high precision and recall rate, while the “Close” state has a slightly lower rate. As for other
components and bridge systems, the proposed method also exhibits a high accuracy, precision and
recall rate.

Figure 10 shows the damage state distribution for bridge components and systems in the test
dataset. It is seen that these distributions are quite uneven, especially for AbutX, AbutY, Beam,
and System. They are mainly distributed in one damage state, and the value of this damage state is
larger than the other damage states. Since F1 can comprehensively evaluate the prediction performance
for uneven class distributions with weighted precision and recall rates, this study summarizes the score
of each bridge component and system, shown in Figure 11. For AbutY, Beam and System, the score
of the proposed method reaches over 90%. The lowest score appears in the “Close” state of AbutX,
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which accounts for 79.47%. In other words, predicting the seismic damage states with the proposed
methods is a reliable approach.
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Figure 9. Confusion matrix, precision and recall of bridge components and system with the
proposed method.
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Figure 10. The damage state distribution of bridge components and systems in the test dataset.
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The ROC Curve is a tool for testing the generalization performance of established models.
In machine learning, generalization is a term used to describe a model’s ability to react to new data.
A trained model with good generalization performance could effectively digest new data and make
accurate predictions. The best classification model yields a point in the upper left area of ROC space,
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and the related AUC is 1. Figure 12 shows the ROC Curves and related AUC for each bridge component
and system. It is observed that proposed seismic damage state evaluation methods exhibit a great
generalization performance for all components. Among them, the lowest area is 0.9719, appearing
in the “Close” state of Bear, and others are around 0.99. From the zoomed spaces, each ROC curve
approaches the top left corner (0,1). These strong generalized models may accurately predict the
seismic damage states of new regional bridges.
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The sensitivity of the prediction accuracy of the proposed method, with the number of trees and
the maximum depth of each tree is further evaluated in this study, as shown in Figure 13. Since the
tuning mechanism of RF is the same for each component and bridge system, this study selects the
bridge system to evaluate the sensitivity of the prediction accuracy. It is seen from the figure that the
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maximum depth of each tree has a greater impact on the prediction accuracy than the number of trees.
After a depth of 20 for each tree, the prediction accuracy remains constant in the current study, and the
training time constantly increases. Note that the confusion matrix, precision, recall and ROC Curve
presented in previous sections correspond to a depth of 20 for each tree, displaying a trade-off between
time consumption and prediction performance.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 19 
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5.3. Significant Parameters Identification

The identification of significant parameters can help bridge engineers and stakeholders to identify
critical parameters for seismic design and retrofit. In the established machine learning models, it is
important to accurately predict the seismic damage states with correctly estimated and identified
significant parameters. The relative significance of each parameter (ki) could be calculated, and they
are normalized with the min–max scaling principle in Equation (9), where µi denotes the normalized
importance value. By accumulating the relative importance from the most significant parameters,
the accumulated significant value is calculated with Equation (10). When it reaches or exceeds 95%,
the relevant cumulative parameters are identified as significant parameters.

µi =
ki −min(k1, k2, . . . , ki, . . . , kn)

max(k1, k2, . . . , ki, . . . , kn) −min(k1, k2, . . . , ki, . . . , kn)
(9)

Accumulaten =
n∑

j=1

k j (10)

Figure 14 shows the significant sequence of parameters, normalized significant values,
and identified significant parameters, for each component and bridge system. Although each
component and bridge system are identified with different significant parameters, all the proposed
dynamic characteristics (P7~P11) are identified. Moreover, some design parameters (P1~P6) are out of
the significant parameters. It can be seen that the seismic damage states can be precisely determined
with the measured dynamic characteristics and IMs for the monitored bridges, and some insignificant
design parameters can be neglected in the estimations. The proposed dynamic characteristic parameters,
which reflect the structural real-time conditions, have a great influence on the seismic damage state.
This is consistent with the fact that the structural dynamic characteristics contain some information
on structural configuration and conditions. As for bridge design parameters, skew angle (P6) has
a significant influence on the damage state of all components and bridge systems, and diameter of
Column (P4) ranks the top in the significant parameters concerning the column. These correspond
to the fact that skew bridges suffer more severe earthquake damages than straight bridges, and the
increase of the column configuration increases the seismic resistance of the bridge column. The most
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significant parameters of ground motion intensities are PGA (G4) and Sa1 (G2). With these identified
significant parameters, the RF-based evaluation models can be simplified.Sustainability 2020, 12, x FOR PEER REVIEW 16 of 19 
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6. Conclusions

Regional transportation networks play an important role in urban areas. The efficient seismic
evaluation of regional bridges can identify the potential damage of components before the earthquake,
and guide the recovery operation after an earthquake. With the aid of a structural health monitoring
system (SHMS), the bridge’s real-time condition can be accurately identified. SHMS could also
identify ground motions that are exerted on the monitored bridges during the earthquake. Based on
the measured information and some bridge design parameters, this paper proposes an effective
seismic damage evaluation method for regional monitored concrete beam bridges with machine
learning techniques.

The proposed seismic damage evaluation method is demonstrated for short- and medium-span
beam bridges, which are the dominant bridge classes on a regional scale. 672,000 bridge numerical
models are probabilistically generated, representing the structural and material diversity of regional
beam bridges, and 1000 ground motions are developed to representing the regional ground motion
diversity. The non-linear time history analysis of the bridges is carried out to estimate the seismic
damage state of selected bridge components and systems. The seismic damage states are labeled with
three tags: Open (structural safe), Restrict (open for emergencies) and Close (collapse or the potential to
collapse). Using the selected bridge design parameters, bridge dynamic parameters, intensity measures
and associated labeled damage states in the dataset, the models are trained with RF. The performance
of the proposed machine learning models is explored in this study. RF can predict the seismic damage
states with an accuracy ranging from 89% to 97%, depending on the bridge components and system.
The precision, recall and F1-score of most bridge components and systems account for at least 90%.
The area under the receiver operating characteristic curve for bridge components and systems yields
over 0.99. It is noted from these performance indicators for bridge components and systems that RF
has great performance potential in evaluating the seismic damage states of regional beam bridges.

RF is also applied to identify the significant parameters of each bridge component and system in
the seismic damage state evaluation. Since the measured structural dynamic characteristics could reflect
the structural configuration and real-time conditions, most of them are proved to have a significant
influence on the seismic damage state, while some bridge design parameters are neglected. Along with
these bridge dynamic parameters, this study also indicates that the skew angle and some ground
motion intensities have a major impact on seismic damage states. It is of great importance to have
the multi-parameter seismic fragility models available to assess the damage risk and loss of regional
bridges. The proposed RF-based damage evaluation method could rapidly and precisely evaluate the
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seismic damage states. Since the numerical models established in this study are based on the Chinese
bridge design code and Chinese official recommended standard drawings, the findings in this study
should be carefully applied in other areas. In addition, further studies will apply the proposed method
to other area bridges, and compare the seismic characteristics of bridges in different regions.
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