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Abstract: Europe must move towards a 100% renewable transportation system for climate, energy
and sustainability reasons. We estimate the capital and energy required for building and operating a
renewable transportation system providing similar services as the EU-28 transport system of 2016.
It could be based on: biogas or fuel cell vessels; liquid biogas powered aircrafts; electric railways and
fuel cell or electric vehicles between major cities; and car sharing, electric buses and electric two- and
three-wheelers, for short journeys. A system of charging posts on the streets and roads for passenger
and commercial e-vehicles is studied. Alternatively, a Tracked Electric Vehicle system of continuous
power on European roads would improve energy efficiency and the saving of scarce metals (Ni, Li),
at a lower cost, if only national roads were electrified. The investment for the construction of the
whole system would be 2.3–2.7% of the EU’s GDP per year for 30 years. The new system operation
would require 16% less energy than that of 2016, with reduction of 70% in road transport. However,
shipping and aviation would demand 162% and 149% more energy, respectively, if liquefied biogas
were used as fuel. A type of land transport fully based on trains would provide a similar service to
that of an electric vehicle fleet, with a 29% lower energy consumption.

Keywords: transport infrastructure; transition cost; electrification; embodied energy; decarbonisation;
rail transport

1. Introduction

Transport is a fundamental instrument for the movement of goods and the free movement of
persons in a globalized society. In 2016, the transportation sector represented 5% (9% including
households cars fuels) of the total gross value added (GVA) of the European Union (EU) economy [1].
Logistics such as transport and storage account for 10–15% of the cost of a finished product for
European companies [2]. Transport amounts to 17.2 % (in 2016) of the EU’s total exports of services.
In 2017, the transport sector alone was responsible for greenhouse gas emissions of 946 million tonnes
of CO2 equivalent, which corresponds to 27% of the total EU emissions [3]. In 2016, the transport sector
consumed a third of the total final energy consumed in the EU (i.e., 353 Mtoe; 1 toe = 4.1868 × 1010 J) [4].
Splitting up transportation into freight or passengers, inland freight transport in the EU-28 was
estimated to be just over 2400 billion tonne-kilometres (tkm) in 2016; around three quarters of this total
was transported by road [5]. In passenger transport, cars accounted for 71% of the passenger-kilometres
travelled in 2016, while air travel represented 10.5% of the distance travelled in the same year, followed
by buses and coaches (8.1%), railways (6.6%), powered two-wheelers (1.9%), tram and metro (1.6%)
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and ship (0.4%) [6]. In light of this, the EU is aiming to reduce its dependence on imported oil and,
at the same time, cut transport carbon emissions by 60% by 2050 [7].

Numerous authors have pointed to the transition to a 100% renewable economy as a means
to achieve the double objective of guaranteeing energy security and tackling climate change [8–10].
However, the economic overhaul required to make such a transformation raises legitimate doubts
about whether it is possible while maintaining the services that the current system provides.
García-Olivares [11] argued that its feasibility would greatly depend on our capacity to reach a
stationary industrial economy. Accordingly, in this article we explore what a sustainable European
transport sector would look like in the framework of a stationary economy.

Gilbert and Pearl [12] studied electric transportation systems for a post-carbon economy, but no
cost estimation was provided. The Intergovernmental Panel on Climate Change [13] suggested
some transport systems for a future post-carbon economy, while Teske et al. [14] showed that
some transportation systems with low energy intensity are already available for a 100% renewable
economy. King et al. [15] proposed a set of promising new technologies to electrify land transport.
The International Renewable Energy Agency [16] studied different transition scenarios which suggest
that a global sustainable transport is technologically feasible. Edelstein [17] analysed a catenary
system for trucks that at that time was being trialled in Sweden with promising results. Swenson [18]
proposed different new designs for a 100% renewable economy, including the Solar Automated
Nonstop Elevated (SANE) system for urban and metropolitan mobility. Thomas [19] reviewed the
feasibility of different renewable powertrains for land transport, including fuel cell, battery and biogas
vehicles. Arbib and Seba [20] proposed different ways to restructure the transport system, introducing
the Transport as a Service concept, while Ram et al. [10] studied the energy and capital cost of a
100% renewable transition in Europe for all sectors but considered only one transition scenario for
transportation. García-Olivares [11] and García-Olivares et al. [21] pointed to the need to rationalize
the transportation structure when shifting to renewable electricity in a global decarbonized economy.

In this study, we estimate the capital and energy costs of reconverting the EU transportation
system, using current or prototyped technologies, to one powered exclusively by renewable energy
sources. Data used for this study correspond to the transport system of 2016, since more recent
data were still unavailable or incomplete. Such calculations consider the capital cost of the vehicles,
vessels, aircraft and trains, as well as the cost of the basic infrastructures needed to keep the system
operative. One relevant contribution of the present work is the estimation of the cost of the complete
substitution of the current EU land transport system with a railroad system. Indeed, we show
that the already large electrification of the EU railways makes this scenario economically feasible.
We use conservative hypotheses for the energy intensity (joules per USD) of manufacturing these
infrastructures, which correspond to the upper range predictions of some life-cycle assessments
(LCA) discussed in Section 2. Additionally, this work also refines the costs estimations of the world
reconversion made by García-Olivares et al. [21].

2. Materials and Methods

In this section, we introduce the calculation methodology and the scenarios and sub-scenarios used
in this work. The calculation methodology is applied across all scenarios and sub-scenarios. The flow
chart in Figure 1 summarizes the calculations made in the two main scenarios studied. In Section 4,
we also consider mixed scenarios that combine the best qualities of the scenarios analysed here.
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Figure 1. Flow chart of the calculation methodology followed in this study.

2.1. Scenarios

Baseline scenario. In this scenario the fleet of transport units (vehicles, trains, ships, and aircraft,
respectively) of 2016 is assumed to be fully replaced with an equal number of transport units, powered
by electricity or biomethane.

First, we estimate the gross investment in the manufacture of these fleets and their support
infrastructures, and on that basis, the embodied energy in that capital.

This baseline scenario considers two sub-scenarios in which road transport is the differentiating
factor. For the first sub-scenario charging posts are considered in the analysis while for the second
sub-scenario Tracked Electric Vehicle (TEV) is studied as an alternative.

The analysis of this scenario leads to the proposal of some alternative decarbonized scenario.
The all-rail scenario considers the building of new infrastructure of electric locomotives and

railways able to supply the same service as that provided by the whole land transport of 2016; for this,
the statistics of passenger-km and tonnes-km transported in 2016 in the EU are used. This is an extreme
scenario, but it will be a limit scenario of reference to discuss other intermediate possibilities (Section 4).

In the final discussion, we try to overcome some of the issues and bottlenecks of the two main
scenarios. For instance, we consider the potential use of hydrogen and jet biofuels (instead of liquid
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bio-methane) in future aircrafts, and the reduction of the size of the future aircraft fleet. We also discuss
the combination of the scenarios shown in Figure 1.

In the final discussion, we provide estimates for the transition expenditures and the fractions of
GDP investment required to drive the transition towards the main scenarios considered.

2.2. Calculation Methodology

In each scenario, we estimate the cost in US dollars (USD) of the replacement of each transport
sector by renewable alternatives, using the present market price of the main modes of transport.
Then, we estimate the embodied energy associated to that capital, without considering the additional
costs required for new electric vehicle maintenance, the expansion of the general electrical network,
the renewable energy production infrastructure, or investments in associated research and development.

A precise calculation of the embodied energy in the new transport infrastructure would require
a complete life-cycle assessment (LCA) of each class of transport unit using either a bottom-up or a
top-down approach [22]. A bottom-up LCA maps every process associated with a transport unit and
associates energy inputs with each process. The analysis is very detailed, but it is usually time- and
effort-intensive due to heavy data requirements, especially when the first, second, third, etc., supplier
levels are included. The exclusion of some of these suppliers may lead to an underestimation of the
embodied energy. Top-down LCA associates economic output from a sector (given in producer prices
of steel manufactured, assembled car, etc.) with the respective associated energy. This results in an
industry-wide assessment, but with a larger uncertainty in the real energy cost of the specific transport
units. Both approaches require analysing, one by one, all the transport units and infrastructures
involved in European transport, which is beyond the scope of this study. Instead, we make an
estimation of the embodied energy in each transport unit or infrastructure using a simplified top-down
estimation, which we explain below. The results are compared in Section 3.7 with the annual energy
consumed by the transport sectors in 2016 and in a future 100% renewable economy.

The production cost of a transport unit (e.g., a car) essentially includes the added value of the
vehicle construction industry (with its characteristic energy intensity) plus the cost of direct energy and
raw materials, which have different energy intensities because they have been produced by different
economic sectors. García-Olivares et al. [21] assumed that the energy intensity of producing one
transport unit corresponded to its final product in the transport equipment sector, because it is there
where the main part of the added value is generated. However, this simplification may underestimate
the embodied energy because transport equipment manufacturing accounts for only 12% of the average
energy intensity of the industrial sector [23]. For instance, Volkswagen [24] made a detailed LCA
analysis, which was in accordance with ISO 14040/44 standards, for the Golf 1.6 TDI BMT vehicle,
and concluded that the vehicle’s construction involved an embodied energy of 66 GJ. Given that its
price was approximately 27,450 USD, its embodied energy is 2.4 × 106 J/USD. This figure matches the
energy intensity of the German industry, which is the country where the vehicle and its components
were produced.

Lewis [25] compared two different LCAs of the Airbus A-320, A-330 and A-380 aircraft and
observed that the estimated CO2 impact and embodied energy of their construction vary by one
order of magnitude depending on the chosen approach (process-based LCA or input-output LCA).
His conclusion was that the upper bound estimation was more reasonable: 2.1 × 107 kg CO2 eq
(and 2.7 × 1014 J), 5.1 × 107 kg oil eq (and about 6.4 × 1014 J), 8.3 × 107 kg of CO2 eq (and 10.3 × 1014 J),
respectively. Given that the prices of those three aircraft in 2017 were 99, 233.8 and 436.9 million USD,
respectively [26], their embodied energy per USD is estimated at 2.7 × 106, 2.8 × 106 and 2.4 × 106 J/USD.
This corresponds, respectively, to 113%, 115% and 99% of the mean energy intensity of the industry of
the countries where Airbus manufactures its aircraft.

Thus, to translate the production cost of new transport infrastructure into its embodied energy,
we will be conservative and use the energy intensity of the industry of the country (or group of countries)
where the infrastructure is built. One kilogram oil equivalent (koe) is equal to 41,868,000 joules. If it is the
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EU as a whole, the figure will be: 0.08 koe/$USD2005 = 0.08 koe/(1.247 $USD2016) = 0.064 koe/USD [27],
where the dollar inflation rate between 2005 and 2016 (24.7%) has been used. From here onwards,
$USD2016 and USD refers to dollars at constant exchange rate, price and purchasing power parities
in 2016.

To be consistent, the energy intensities used are multiplied by a factor of 0.93 in this study, as it is
discussed in García-Olivares et al. [21]. The reason is that a 100% electrified machinery industry will
demand 87% of the energy required by a fossil-fuel-based machinery industry to provide the same
service. This would decrease the energy intensity of the sector during the entire transition, which would
have a mean value 93% of the initial value during the period. The industry energy intensity of different
countries in 2016 is taken from Table B3 of Appendix B of García-Olivares et al. [21].

Finally, we give estimates of the energy required for a fully renewable transport sector.
These include the shifting from fuel oil and kerosene to liquid biogas in the shipping and air sectors,
or to other biofuels in aircrafts, and the amount of electricity required for running the whole sector.

2.3. Evaluation of the Different Modes of Transport

2.3.1. Light-Duty Vehicles, Medium-Freight Trucks and Heavy-Freight Trucks

The number of passenger cars, motorcycles, and buses (and coaches) on EU-28 roads was
259.5 million, 33.8 million and 849,600, respectively in 2016 ([1], p.88–91). The European Automobile
Manufacturers Association [28] reports 31.6 million light commercial vehicles, and 6.3 million medium
and heavy commercial vehicles (over 3.5 tonnes), for 2016. According to the accumulated registrations
from 2003 to 2017 in the EU ([29], Figures 2–13, p. 22), trucks under 16 tonnes are approximately
a third of the total, and trucks over 16 tonnes are approximately two-thirds of the total; for buses
these percentages are approximately 50% each. In this work, we take these fractions as representative
of the fraction of the corresponding vehicle class in relation to the total number of vehicles in use.
Thus, the number of light (nl), medium (nm) and heavy (nh) commercial vehicles are estimated in the
following way:

nl = 31.6 × 106

nm = (6.3 × 0.33 + 0.8496 × 0.5) × 106 = 2.5 × 106

nh = (6.3 × 0.67 + 0.8496 × 0.5) × 106 = 4.6 × 106

The number of commercial vehicles that will use fuel cells will depend on the fraction of
long-distance freight that is transported by road (and not by train) [21]. We assume that its number
will only be 10% of the number of commercial vehicles. The rationale behind this assumption is
the following: if that (or a larger) percentage were built on a global scale, then 59% (or more) of
the platinum reserves would be required for manufacturing fuel cell anodes, thus jeopardising its
use in other industry sectors [21]. The substitution of the road fleet requires the manufacturing of
289 million light-duty vehicles powered by battery motors (or fuel cells), 33 million electric motorcycles,
2.45 million medium-freight trucks and 4.6 million high freight trucks with fuel cell or battery.

The expression used to estimate the total cost in USD for the new fleet (cv) is the following:

cv = nl × pl + n2 × p2 + nmd × pmd + nhd × phd (1)

where nl, n2, nmd and nhd are the number of light vehicles, two- and three- wheelers, medium-duty
trucks and heavy-duty trucks; and pl, p2, pmd, phd are some typical market prices of these kinds of
electric vehicles in 2017.

The 25 best-selling light vehicles in the EU [30] have their factories in the EU, except the Ford
Focus, which is produced in China, and a small proportion of the Dacia Sandero, which comes from
outside the EU. On the other hand, the heavy trucks market is dominated by European brands such as
Scania, Volvo and Renault [31]. Thus, we calculate the embodied energy using the energy intensity of
the EU industry as a whole.



Sustainability 2020, 12, 5091 6 of 21

2.3.2. Water Transportation

As discussed in García-Olivares et al. [21], a biogas economy would require fewer changes than
a hydrogen economy in the shipping and aviation sectors and would have lower security concerns.
In the shipping sector, biogas could be used in combustion engines or as a source of hydrogen for a
fuel cell. Thus, it will be our fuel of reference for these two sectors in all the scenarios.

The fraction of global shipping that corresponds to the EU-28 can be defined in different ways
(looking at the owners of the ships, the ships that exchange goods in European ports, etc.) We have
chosen to assign to EU-28 the same distribution of ship types that sail the world, but in a fraction
equal to that existing among shipping bunkers in EU ports with respect to world shipping bunkers.
This fraction is 0.22 according to IEA Sankey diagram [32] and Eurostat [33]. The cost of the whole
vessel fleet (ccb) for the EU is estimated as follows:

ccb = (ppa + pch + pco + pca + pbu) × bf (2)

where ppa, pch, pco, pca and pbu is the aggregated price of the world fleet of passenger, chemical, container,
cargo and bulk carrier, respectively; and bf is the fraction of shipping bunkers in the EU-28 in relation
to the world shipping bunkers (0.22). The cost of fishing vessels is calculated separately in a similar
form. The number of ships for the main sub-categories of each of the aforementioned classes, and their
prices, are discussed in García-Olivares et al. [21].

We assume that oil tankers will no longer be necessary in a 100% renewable economy, and that
they will progressively be decommissioned as a global decarbonized system takes over. For this reason,
they have not been considered in these calculations. Biogas production is assumed to be essentially
regional (from fermentation and electricity), and it is assumed to be transported by road or pipes [21].
Olefins, which are the essential components of the petrochemical industry, will probably continue to
be produced from petroleum during the transition, but in the long term they will have to be produced
from biogas and charcoal in a fully sustainable economy [11]. Both materials are supposed to be
produced in nearby locations and transported by land. The maritime coal trade was 26% of the dry
bulk trade in 2004, according to Thien [34]. Assuming that this share was approximately the same in
2016, 26% of present bulk carriers would no longer be necessary in a future 100% renewable economy,
since we assume that charcoal for mineral reduction will be transported from nearby locations [11].

We use the energy intensities of the industry of the 14 main vessel-producing countries (see [21])
to estimate the embodied energy associated with this cost.

2.3.3. Electrification of railways

The length of EU-28 railway lines and tracks in 2016 was 227,383 and 349,276 km, respectively
([35], Figure 63). Assuming that lines with more than two tracks are very infrequent in comparison
with single and double-track lines, we obtain that 46.4% of the lines were single-track and 53.6%
double-track. In 2016, 54% of the total railway length was already electrified ([1], Section 2.5), thus we
calculate the cost of electrifying the remaining 46%. According to ECMT ([1], Section 2.5), the length of
high-speed lines was 8,434 km, 7.2% of the length of the electrified lines in 2016. We assume that this
proportion of high-speed lines, as well as the present proportions of single- and double-track lines, will
remain stable in the future. All lines other than high-speed ones are assumed to be medium-speed.

In Spain, the cost of the electrification of high-speed (350 km/h) double-track railways was about
one million EUR per km; with a speed of around 160 km/h (medium-speed), the cost of double-track
lines is about 0.40 × 106 EUR per km [36]. However, Gattuso and Restuccia [37] report 0.7–1.2 million
EUR for double-track lines, and 0.5–0.9 million EUR for the single-track ones. We consider 0.5 × 106,
0.7 × 106 and 1.2 × 106 EUR as median values for medium-speed single- and double-track lines,
and high-speed double-track lines electrification, respectively.
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The cost of the electrification of the EU railways (cer) is estimated as:

cer = 0.46 l × (c1 × f1 + c2 × (1 − f1 − 0.072) + c3 × 0.072) (3)

where l is the present length of lines in the EU; f1 is the fraction of single-track lines; and c1, c2 and c3 are
the mean costs of single-track, double-track and high-speed double-track line electrification, respectively.

The number of tonnes-km and passenger-km “units” transported in the EU in 2016 was 450.1 × 109

and 403.6 × 109, respectively, resulting in a total of 853.7 × 109 units [6,38]. From [39] and Chapter 2.6
of [1] we estimate the number of diesel locomotives (ndl) and diesel railcars (ndr) in the EU-28 at
approximately 16,629 and 13,478, respectively, and the total number of locomotives and railcars at
33,432 and 34,307, respectively. When the information was not available for 2016 for any country,
we used the figure of the last year available; when no information was available, we assumed that
the number of diesel locomotives (or railcars) was 46% of the total number. The number of passenger
coaches and freight wagons in 2016 can also be estimated, from the same sources, at about 61,950 and
437,453, respectively.

We assume that diesel locomotives and diesel railcars will be fully replaced by new electric
locomotives or electric railcars. The price of one electric locomotive (in M€) is about W/3 +1 [40] where
W is the output power (MW). Taking W as 5.5 MW for an average locomotive, the result is 3.7 × 106

EUR (after inflation 2001–2016). For the cost of a typical electric railcar we take 2.7 × 106 EUR, the mean
value between the price of a Stadler Regio-Shuttle RS1 (about 2.1 million EUR) and the price of an
Alstom Minuetto (3.3 million EUR according to [37]).

The manufacturing cost of the new rolling infrastructure (cri) is estimated according to:

cri = (3.7 × 106
× ndl + 2.7 × 106

× ndr) × d (4)

where d is the EUR to USD conversion factor in 2016.

2.3.4. Air Transport

García-Olivares et al. [21] estimated that the world aircraft fleet for 2033 would consist of
63,220 aircraft, divided into seven classes: 3,918 would be regional, with less than 100 seats; 45,055
“narrow-bodies” with 100–210 seats; 10,685 intermediate “wide-bodies”; 3,562 large wide-bodies;
600 small freighters; 1300 medium-freighters; and 1000 large freighters. We estimate the size of the
EU-28 aircraft fleet assuming that the number of aircraft of a given class in the EU-28 is 26% of the
number of the corresponding class in the world. This percentage corresponds to the size of the air
bunkers of the EU-28 in comparison with the world air bunkers [32,33]. We estimate the cost of the
EU-28 aircraft infrastructure assuming that 100% and 50% of all the projected demand for aircraft will
be maintained in a future renewable transport system as in García-Olivares et al. [21].

The embodied energy in the new aircraft fleet (eca) is estimated as:

eca =
7∑

j=1

n jp ji j (5)

where j is an index (from 1 to 7) specifying the type of aircraft, nj is the number of aircrafts of class j,
pj is the mean price of the aircraft of class j, and ij is the mean energy intensity of the industry in the
countries where the class j of aircraft is built.

2.3.5. Infrastructure for Gas Storage and Transport

We assume that the energy demand of the air and shipping sectors of the EU-28 in 2016 (see
Table 1) will have to be supplied as biogas in the future economy. Then, we apply the methodology
of García-Olivares et al. [21] to estimate the embodied energy in storage and gas infrastructure for a
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system of electric-trucks-based transportation at storage points with an average distance of 300 km
and a storage time of seven days.

Table 1. Estimated energy that the present and future transport would use, by sector.

Energy End Use Final Energy in 2016
(PJ) * Future Final Energy (PJ)

Road 12,567 3774
Rail 268.4 177.4 †

Shipping 1804 ** 4735
Air 2233 4756/5560/9304 ***

Pipelines/fuel transport 69.6 17.9
Total Transportation 16,942 13,460/14,264/18,008 ***

* From [33] ** Obtained from the reported shipping bunkers for the EU-28 [33]. *** The three figures correspond to
the use of hydrogen, methane and jet fuel, respectively, as aircraft fuel. † If an electric rail sector had to supply the
whole demand of the land transport of 2016, except for motorbikes, the energy consumed by the sector would be
2796 PJ per year, and the road system would reduce its consumption from 3774 to 12.6 PJ per year.

2.3.6. Electrical Charging System (Baseline Scenario)

To estimate the cost of the charging system for the vehicle fleet batteries, we consider two
sub-scenarios: (i) a system of electric charging posts located on the town streets and main roads,
and (ii) the deployment of a Tracked Electrical Vehicles (TEV) system [41] of continuous power and
charging on European roads.

(i) System of charging posts on streets and roads

In this sub-section, we introduce the methodology to calculate the costs of the posts required by
(a) passenger vehicles, and (b) commercial vehicles.

(a) Posts for passenger vehicles

The mean distance travelled by car in towns and metropolitan regions in the EU (cm) was about
12,000 km per person [42], compared with 16,700 km in the USA [43] and 3800 km per person as a
world average in 2012 [44]. A mid-range electric vehicle may have an autonomy of 125 km, consume
about 15 kWh per 100 km [45] and have a battery charging time of 1 hour with a medium power
(22 kW) charger. However, making a conservative estimation, we take a = 80 km per hour of charging,
given that lower power chargers are also frequent for other kind of vehicles. Taking of = 1.5 passengers
per car as a typical “low occupation” figure [46], we find that in the EU, the service demanded by one
person would require a mean of 100 hours of charge per year.

A functional (efficient/practical) system with a small fraction f of unoccupied posts would have to
be accompanied by a mobile application that would indicate to the user the nearest empty recharging
posts. The number of posts (Np) needed for a municipality of N people may be estimated as:

Np = N × cm/[8760 × (1 − f ) × ah × of] (6)

where 8760 is the number of hours per year. As an example, taking f = 0.33 and with the EU average
car mobility, the city of Barcelona (N = 1.6 × 106 people; 102 km2 of surface) would need 268 recharging
posts per km2. The average building block in the Eixample district of Barcelona, with the associated
road lanes included, is 133.3 × 133.3 m. Thus, five posts per block would be required.

This is a conservative estimation that assumes that all the charge would be supplied by posts on
the streets. In fact, Engel et al. [47] report that currently in the EU-28, 75% of the charge of electric
vehicles is made at home, and they project that home charging will be about 28–40% of the total after
2030, with 47–59% of the charge being made in public stations on the street, 9% at work places, and 4%
at highway facilities during long-distance travels. Thus, the number of charging posts calculated by
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Equation (6) would probably be spatially distributed in a similar way, thus alleviating the occupation
of the streets.

The price of a Wallbox [48] recharging post of 22 kW is 1207 EUR per connection. Thus, the total
cost of installing posts to satisfy the entire mobility demand (cp1) is:

cp1 = 1207 d × p × hc/[8760 × (1 − f )] (7)

where p is the EU’s population in 2016, d is the conversion factor from EUR to USD, hc is the number
of hours of charging required by a typical driver of a car with low occupancy (1.5 persons per car),
which is calculated as hc = 12,000/(a × 1.5), where a is the autonomy per hour of charging and 12,000
corresponds to the number of kilometres travelled by car per capita in the EU.

(b) Posts for commercial vehicles

The number and energy consumption of commercial vehicles in the world is obtained from
IEA [49,50] and Table 1 of García-Olivares et al. [21]. The energy consumed per year for one vehicle of
a given class (ea1 to ea4) can be obtained by dividing the corresponding values in column 2 and 3 of
that table, and the results are 6.4 GJ (three-wheeler), 62.4 GJ (light vehicle), 231.5 GJ (medium-freight
truck) and 619.2 GJ (high-freight truck). The power (pp1 to pp4) of the charging stations used by the
four vehicle types is assumed to be 22 kW, 55 kW and 100 kW for three-wheelers and light vehicles,
medium trucks and heavy trucks, respectively. The yearly accumulated charging time of each kind of
vehicle (tai) is calculated as:

tai = eai × cf/ppi (8)

where i (1 to 4) represents the four types of vehicle, cf is a factor to convert joules to kWh, and the other
symbols are defined above.

Long charging times would probably affect the logistics of road transport, but it is difficult to
predict if they would result in needing to add more vehicles to the fleet. In this study, we have assumed
that transport logistics will be adapted so that commercial vehicles can be charged during the drivers’
sleep, rest and mealtimes.

The cost cp2 of the recharging posts for commercial vehicles is calculated as:

cp2 = p
∑4

i=1 nitai

8760(1− f )
(9)

where f is the fraction of unoccupied charging posts (assumed to be 0.33), 8760 is the number of hours
per year, p is the average price of a single post, ni is the number of vehicles of the kind i, and tai is
calculated by Equation (8). The price p is assumed to be that of the Modo-4 Raption Trio model of
Wallbox [48], 37,200 USD.

(ii) Cost of electrifying a road with the TEV system

Here we estimate the cost of electrifying a (dual carriageway) road with the TEV system on the
EU roads. A system like this would have a set of advantages: (a) it would allow to reduce the number
of long-range vehicles (probably powered by fuel cells); thus, fuel cells could be reserved for off-road
vehicles; and (b) it would allow a decrease in vehicle battery size, saving on mineral utilization.

The length of motorways, national roads and total roads (including regional and secondary
roads and highways and motorways) in the EU-28 is estimated at 74,341, 287,227 and 4,852,242 km,
respectively [51]. To estimate the building cost of one kilometre of this system we assume that the
work is done on already existing roads. Thus, the cost should be similar to that of the electrification
of a double-track railway of 150 km/h, i.e., 0.38 × 106 EUR of 2011 (459,000 USD of 2016) per km
(Section 3.4). Thus, the total cost of deploying the TEV system across the EU-28 (ctev) can be estimated
with the expression: ctev = 459,000 · lr where lr is the length of EU-28 roads.
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2.3.7. Railways for the Entire Inland Transport System (All-Rail Scenario)

The number of units (passenger-km) transported in the EU-28 in 2016 by buses and coaches
and passenger cars is taken as 552 and 4829.3 billion (109), respectively [6]. The number of units
of freight (tonnes-km) transported in the EU-28 in 2016 by road was 1852.3 billion [38]. In total,
u2 = 7234 × 109 units should be transported, in addition to the units that will be transported by the
currently non-electrified lines.

The new railway line length (l2) required to supply such a service is estimated according to:

l2 = 0.5 l (u2 − u)/u − l (10)

where l is the present-day length of EU-28 railroads; u2 and u are the number of units transported by
road and train in 2016, respectively; and 0.5 is the mean used capacity in 2016 of the EU-28 network.
Here we assume that: (i) the present and future railway network will be able to allocate twice the
number of units it transported in 2016 in a future high demand scenario, thus, u must be subtracted
from the units to be transported by new lines; and (ii) the remaining demand will be allocated to new
railway infrastructure, whose length will expand proportionally to that demand. The factor 0.5 is based
on Rotoli et al. [52]. This reference shows that more than 90% of the EU network segments used less
than 60% of their practical capacity, even with a conservative definition of practical capacity. In reality,
most of the segments that seem to be saturated (mostly in Belgium) are not so when analysed on a
small scale, or can reduce their used capacities to under 60% with minor investments. We consider a
mean used capacity of 50% as a conservative estimation for the whole EU.

The cost of building new railway lines from scratch includes not only electrification (as considered
before) but also platforms, rails and signalling and safety. A mean value for rails is 1.3 × 106 €/km [36].
For signalling and safety, we take the upper range values reported by Gattuso and Restuccia [37]:
0.5 × 106 and 1.0 × 106 €/km for single- and double-track, respectively. However, platform costs are
very variable—from 4 to 20 million EUR depending on the terrain orography [36]—because they
include ground levelling, tunnels and viaducts. Estimating the fraction of the length l2 that would pass
through flat, intermediate and rugged terrain would involve a country-by-country engineering analysis
which is beyond the scope of this study. Here we make a rough estimate. The EU-28 countries have
been classified as “flat”, “intermediate” and “rugged” depending on their predominant orography.
We consider as flat Sweden, Hungary, Poland, the Netherlands, Finland, Estonia, Latvia, Lithuania,
Malta, Belgium, Luxembourg, Ireland, Denmark and the United Kingdom; we consider as intermediate
France, Germany, Portugal, Cyprus, Romania, the Czech Republic and Slovakia; we consider as rugged
Austria, Bulgaria, Slovenia, Spain, Croatia, Italy and Greece.

The rail track length in 2016 for flat, intermediate and rugged countries can be estimated from
Figure 64 in [35] as 36.5%, 43.4% and 20% of the total, respectively. We assume that these figures will be
the future proportions of rails passing through flat, intermediate and rugged terrain. We take the cost
of building platforms for double-track lines in these three kinds of terrains as 4, 10 and 20 million €/km
(EUR of 2011), respectively. These values correspond to the two extreme values of the range reported
by Ferropedia [36] and to a median value of the range. For single-tracks, platforms are expected to cost
75% of the stated values [37].

Thus, adding to it the cost of electrification, rails and signalling and safety, the mean cost of
single-track lines is estimated (for the three kinds of terrain) at 5.6, 11 and 20 million USD; double-track
lines is estimated at 8.8, 16.1 and 28.2 million USD, respectively. Ferropedia [36] suggests cost values
for high-speed in the three kinds of terrain: 13.8 M€/km (EUR of 2007), 19 M€/km (EUR of 2010) and
33.3 M€/km (EUR of 2007), which is equivalent to 18.1, 23.4, and 43.7 million USD, respectively.

Assuming that the customary and largest stations are already built, we consider that one small stop
(or repair facility) is built every 10 km throughout the length of new double-track lines. Single-track
lines are assumed to be used mainly for freight (long-distance) transport, and high-speed lines are
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intended to connect only large stations, both of them with no small stops. A mean cost for a small stop
is 4 × 106 EUR [37].

The total building cost (cbr) of the railway lines is then estimated as:

cbr = cer + l2 × [(ca1 wa + cb1 wb + cc1 wc) × f 1 + (ca2 wa + cb2 wb+ cc2 wc) × (1 − f 1 − 0.072) +

(ca3 wa + cb3 wb + cc3 wc) × 0.072]
(11)

where cer is the cost of the electrification of the EU’s non-electrified railways, calculated by Equation (3);
l2 is the length of unbuilt lines; wa, wb, wc are the fractions of flat, intermediate and rugged terrain,
respectively; caj, cbj, ccj is the building cost (USD per km) of lines of kind j (j = 1: single-track; j = 2:
double-track and speed 120–150 km/h; j = 3: double-track and high-speed) on terrain of kind a (flat),
b (intermediate) and c (rugged), respectively.

The cost of locomotives, railcars, passenger coaches and freight wagons necessary to supply such
service is calculated with the following expression:

cr2 = cri + d × 0.5 × [(u2 − u)/u] [nl cl + nrc crc + npc cpc + nfw cfw ] (12)

where cri is the cost of the electrification of the present diesel locomotives and railcars (calculated by
Equation (4); d is a conversion factor from EUR to USD; u, u2 refer to the number of units transported
by train and road, respectively, in 2016; nl, nrc, npc, nfw are the numbers (in 2016) of locomotives, railcars,
passenger coaches and freight wagons, respectively; cl, crc, cpc, cfw are the respective prices of these
elements. Here we assume a doubling of the train utilization rate.

2.4. Energy Required to Run a 100% Renewable Transport System (Both Scenarios)

Here we estimate the annual energy that a 100% renewable transport system in the EU-28 would
use and compare it with the energy used by the sector in 2016, using the same methodology as
García-Olivares et al. [21]. We use Table 1 of the aforementioned reference for the efficiencies of different
motors and the efficiency of the electricity-to-methane process that are considered in the calculations.

The expression used to estimate the energy demand of rail transport is:

etr =
et(0.54ηele + 0.46ηd)

ηele
(13)

where et is the energy required in 2016 by the railway transport sector of the EU-28; ηele and ηd are the
efficiencies of electric (with overhead line) and diesel motors, respectively; and 0.54 and 0.46 are the
fractions of electrified and non-electrified railways in the EU-28 (considered to be also the fractions of
electric and non-electric locomotives).

An estimation was also made for the energy consumed by a rail transport system able to supply
the whole land transport demand of the EU-28. The expression used is:

etr2 = upεp + uwεw (14)

where etr2 is the energy (J) consumed each year by the new renewable railway sector; up, uw are the
number of units (passenger-km or tonnes-km) of passengers or freight to be transported, respectively
(estimated as 5.9 × 1012 from [6] and 2.3 × 1012 from [38]); and εp, εw is the energy (J) consumed by
an electric train per passenger or tonne transported, respectively (taken as 0.3 MJ/passenger-km and
0.45 MJ/tonnes-km, respectively, from [16]).

For air transport, the EU is taking a comprehensive approach to reduce GHG emissions, pollution
and noise. It is taking action in three areas: (i) funding research and development for the “greening of
air transport” with the aim of reducing CO2 emissions by 50% per passenger-km and NOx by 80%
within the Horizon 2020 programme; (ii) deployment of a more efficient air traffic management system
in Europe with one of the objectives being to reduce emissions by 10% per flight; (iii) measures to
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adopt sustainable alternative fuels, which are formulated in terms of the standardized process by
an international fuel specification committee [53]. These alternative fuels follow along three general
lines [54]: (1) fuels from vegetable oils and animal fats, (2) Fischer–Tropsch fuels (biomass-to-liquid,
BTL), (3) synthetic Isoparaffin fuels from the conversion of sugars. However, the majority of these
processes require quality crops, which account for GHG emissions themselves and might compete
with food production. In addition, the production of jet biofuels consumes a large amount of
electricity (Table 1). For these reasons, we consider the use of liquid biomethane the preferred option.
We contemplate the production of jet fuels only as an auxiliary and temporary measure to alleviate the
transition to a carbon-free economy.

3. Results

In this section, we estimate the costs of: full electrification of the different transport modes and
the cost of infrastructure of liquid methane storage and transport (from renewable origin) required
for shipping and air transport; the manufacture of charging stations to supply electricity to fleets of
battery-powered vehicles; the building of a catenary-like system (TEV: Tracked Electric Vehicle) of
continuous power and charging along all of the EU’s roads. Finally, we estimate the annual energy
consumed by the new renewable transport system and we compare it with the energy demand for
transportation in 2016.

3.1. Light-Duty Vehicles, Two- and Three-Wheelers, Medium-Freight Trucks and Heavy-Freight Trucks

To obtain the cost of the new fleet of vehicles we use Equation (1), where the prices pl, p2, pmd, phd
have been taken as: 22,800, 5700, 103,000 and 284,000 USD, respectively. The resulting cost of the new
fleet is 8.3 × 1012 USD. The corresponding embodied energy is 21,512 PJ.

3.2. Shipping and Air Transportation

From Equation (2), the cost of the whole fleet of transport vessels would amount to 2.2 × 1011

USD. The corresponding embodied energy is: 805 PJ for the EU-28.
For air transport, the estimated cost for aircraft demand is 9.7 × 1011 USD. From Equation (5),

the corresponding embodied energy is 1999 PJ.

3.3. Railways

Using Equations (3) and (4) (Section 2), the whole cost which correspond to railways and
locomotives is 7.7 × 1010 and 1.1 × 1011 USD, respectively; 1.9 × 1011 USD in total. By multiplying
this figure by the EU-28 energy intensity, the embodied energy in the new railway infrastructure is
estimated to be 470 PJ.

3.4. Infrastructure for Gas Storage and Transport

The capital cost of infrastructure would be 20 billion USD, and the embodied energy of this capital
is approximately eg = 53 PJ. The annual energy required for this gas supply service is also estimated as
em =17.9 PJ. This quantity is included in Table 1, under the entry “Fuel Transport”.

3.5. Electrical Charging System (Baseline Scenario)

As detailed in Section 2, we estimate the cost of an electrical charging system in the
two sub-scenarios.

3.5.1. System of Charging Posts on the Streets

(a) Posts for passenger vehicles
As of 2016, the EU-28 population was 510 million people. Using the conversion (for 2016)

1 € = 1.13 USD, we obtain from Equation (7): cp1 = 1.2 × 1010 USD.
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(b) Posts for commercial vehicles
To estimate this cost, we use Equation (9). The result is cp2 = 2.1 × 1011 USD. The total cost of

posts for the EU-28 is cp = cp1 + cp2 = 2.3 × 1011 USD.
To obtain an upper range estimate of the cost, we assume that each of the EU vehicles (except for

motorcycles) will have its own charging post. In this case, the cost obtained for cp is 6.5 × 1011 USD.
Using the EU mean energy intensity of the industry, the embodied energy associated with that

range for the EU-28 would be ep = 567 to 1632 PJ.

3.5.2. Cost of Electrifying a Road with the TEV System

The final costs for the electrification of the EU-28 roads are 3.4 × 1010, 1.3 × 1011 and 2.2 × 1012 USD
for motorways, national roads and total roads, respectively. The associated embodied energy would be
76,294 and 4967 PJ if motorways, national roads, and all the roads were electrified, respectively.

3.6. Railways for the Entire Inland Transport System (All-Rail Scenario)

In this scenario, as explained in Section 2, the whole cost of infrastructure associated with the
new railway lines, estimated by Equation (11), amounts to 1.2 × 1013 USD. The cost of the rolling
infrastructure associated with it is calculated with Equation (12) and amounts to 1.8 × 1012 USD.
The total cost of the new infrastructure would be 1.4 ×1013 USD. The embodied energy of the new
railway infrastructure is estimated at 34,744 PJ.

3.7. Energy Required to Run a 100% Renewable Transport System

The energy that the different transportation sectors used in 2016 and the energy that the same
sectors would require a 100% renewable system is summarized in Table 1. This is shown in graphical
form in Figure 2 for five scenarios: transportation of 2016; baseline scenario with aircrafts using
hydrogen, liquefied natural gas (LNG) and jet biofuel, respectively; and the all-rail scenario.
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respectively; and all-rail scenario.

Table 2 summarizes our cost estimates for the new transport infrastructure. The direct cost of the
new electric transport units would be almost 9800 billion USD; 85.8% for manufacturing the vehicle
fleet, 10% for the fleet of aircraft with new engines, 2.3% for the ships with new (biomethane or fuel-cell)
drive shafts, and 1.9% for the electrification of locomotives and catenaries. If the cost of recharging
stations and gas transport system is added, the total rises to 10,041–10,467 billion USD.
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Table 2. Capital and energy costs for our transition scenarios.

Sector Capital Cost (Billion USD) Embedded Energy (PJ)

Light-duty vehicles 6637 17,145
Medium- and heavy-duty trucks 1576 4072

Two- and three-wheelers 193 498
TOTAL VEHICLES 8400 21,714

Railways 77 192
Locomotives 111 278

TOTAL RAILWAYS 188 470 †

Bulk carrier ships 84 302
General cargo ships 24 85

Container ships 61 220
Chemical tankers 21 75
Passenger ships 34 123

TOTAL SHIPPING 224 805
Aircraft 975 * 1999 *

Recharging stations/
TEV system

228–653/
34; 132; 2228 **

567–1632/
85; 329; 5566 **

Biomethane infrastructure 20 53

TOTAL TRANSPORTATION 10,041–10,467/
9847; 9945; 12,041

25,801–26,865/
25,318; 25,562; 30,798

Fishing vessels 410 1473

* For a fleet with 100% of the projected aircraft demand. If the fleet size were 50% of that size, the corresponding
figures would have to be multiplied, respectively, by this factor. ** The three values correspond to the electrification
of motorways, national roads and all roads, respectively. † If the whole inland transport of passengers and freight
were provided by electrified railways, the results would be 13,909 billion USD and 34,744 PJ.

4. Discussion and Conclusions

In this work we analysed the energy costs required to transform the fossil-fuel-based EU
transportation system to a new one based on renewable energy sources. The baseline scenario considers
the substitution of the current road, railway, air and ship fleets. Together with the fleet substitution,
we consider the cost of the basic infrastructures needed to keep the system operative. In the baseline
scenario with recharging posts, the (primary) embodied energy required for the new transport system
is 25,907 PJ in the best case, 84% for vehicles, 7.7% for airplanes, 3.5% for ships, 2.6% for electrification
of railways, 2.2% for recharging posts, and 0.2% for gas storage. This primary energy is approximately
50% of the final energy consumed in 2016 by all sectors [33] and 164% of the final energy used by the
transport sector in 2016. If the transition took place in 30 years, the annual energy that should be
invested would be around 1.7% of the annual final energy (5.6% the annual energy required by the
transport sector). In the baseline scenario with TEV system for all EU roads, these figures would be
61% of the final energy of 2016 and an investment of 2% of final energy of 2016 per year.

Table 1 shows that the energy demanded for road, rail and fuel transport are lower in the renewable
economy, but increases more than two times for shipping and air transport. The energy cost of the
whole transportation system depends strongly on the fuel used for aircraft, revealing the importance of
the strategy taken for the air transport sector as a way to achieve sustainability. The figures in Table 1
show how the energy consumed for all transport modes (except air and ship transport) would save
energy after conversion to electricity that can be used to supply the costs for infrastructure changes.

As Table 1 shows, a 100% renewable transport system providing the same service as EU transport
in 2016 would consume around 16% less energy. This saving is achieved by the transformation
of road transport (70%), due to the higher efficiency of battery motors in relation to combustion
engines, and to a scant number of fuel cell vehicles (assumed to be only 10% of commercial vehicles).
The total consumption of land transport would be 3951.4 PJ. However, if train transport and two-
and three-wheelers were encouraged to supply the entire land transportation demand, this figure
would be 2808.6 PJ (12.6 PJ of these being consumed by electric two- and three-wheelers). This would
supply the same service with 71% of the energy consumption and with no need to maintain a massive
traffic system.
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Taking as a reference the EU-28 GDP of 14,800 billion USD (USD of 2016) in 2016 [55], in the
baseline scenario with charging posts (Table 2), the required new infrastructure would cost 68–71% of
the GDP of the EU-28 in 2016. Over a period of 30 years, the rate of investment should be 2.3–2.4% of the
GDP per year if the infrastructure replacement were homogeneous. In reality, the replacement would
not be uniform over time, but would increase in the moments when important fractions of the current
infrastructure ended their useful life. The total annual investment would be 333 billion USD in the
scenario with charging posts, and 400 billion USD per year in the scenario with electrification of all roads.
This range is similar to the one estimated by Ram et al. [10] for their scenario of transport transition in
Europe: 300–350 billion EUR (342–399 billion USD) per year during the transition. These costs might
not all be government investments. Private and corporate spending might be part of this investment
effort within a shared transition plan.

Regarding land transport, if a TEV system were implemented for all the national roads in the
EU-28, the investment would be 132 billion USD, which is 57% of the charging station systems’
minimum cost. However, if all the roads in the EU-28 had to be electrified, its capital investment would
be 2228 billion USD, which is 3–10 times the cost of charging stations. In this case, the total investment
for the transport system would be 12,071 billion USD and the investment rate would amount to 2.7%
of the GDP per year. Taking into account the fact that EU capital formation was 19.7% of GDP in
2016 [56], such an investment seems achievable, although it needs to be linked to a similar investment
in renewable production infrastructure.

In 2016, the EU and five cooperating countries (33 countries) invested 116 billion USD in transport
infrastructure [57]. Compared to this figure, the investment in gas infrastructure plus charging posts
would amount to 7–19%, and the investment in gas infrastructure plus a TEV system for all EU-28
roads would cost 65% of that figure. Electrification of the whole road network seems to be a feasible
option and would avoid the issue of a possible increase in scarce minerals used in batteries (which may
be a bottleneck for the option of battery vehicles plus charging posts). A combination of charging posts
and a TEV system for selected roads only is also possible. These two options can be combined with car
sharing, which has the potential to reduce the fleet size to 7% of the present one [58] and would avoid
problems for the middle class in buying electric vehicles, which are relatively expensive.

If we consider the all-rail scenario (substituting road transport with electrified trains) a complete
substitution of the non-electrified land passenger and freight transport in the EU-28 would cost
13,909 billion USD (with an energy investment of 34,744 PJ). Thus, this transport fully based on trains
would cost (both in monetary units and energy units) 1.5–1.6 times the cost of a future fleet of road
vehicles of the same size as the present one, in addition to its electric recharging system (1.3 times the
cost of that fleet with a TEV system for all of the EU-28 roads). To implement it, the rate of investment
should be 3.4% of the GDP of the EU-28 for 30 years. The required investment in railways, in USD per
year, would be four times the investment in transport infrastructure of 2016, for 30 years. Although it
would require economic effort, the scenario seems feasible with the present (moderate) percentage
of high-speed lines, and then the re-structuring of land transport would reduce accidents, pollution,
congestion in cities and the poor quality of life that the current traffic system generates.

It should be noted that a global fleet of vehicles as large as the present one would require a system
of charging posts in towns which would not eliminate car congestion in our cities; moreover, that large
fleet would cause a high price increase in nickel and lithium minerals, as 33% and 48% of the present
reserves of Li and Ni, respectively, would be used in the vehicles’ batteries [21]. A great saving in
scarce materials would be achieved if future EU roads had a ground-level (or overhead) line for power
supply in both directions. A major substitution of long-distance truck commercial transport with
railway transport would also solve the aforementioned problems, albeit at a higher investment cost.

Consistent with our analysis, a type of energy-efficient and quality land transport should ideally
be based on electric trains for freight and passenger transport between cities, fleets of two- and
three-wheeled electric vehicles as a minor complement to public transportation in municipalities,
and electric vehicles for short-distance transport between cities and villages without trains. In this
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ideal scenario, traffic would greatly reduce and a modest infrastructure of charging posts would be
sufficient. To implement it, the investment in transport infrastructure should be increased by a factor
of 4 compared to the value of 2016, for a period of 30 years.

In the baseline scenario, the shipping and air sectors would greatly increase their energy demand:
by 162% and 149%, respectively (Table 1). This is because of the need to produce liquid natural gas
to power the engines of planes and vessels. In a 100% RES, this would be made from electrolytic
hydrogen (and CO2) or from urban and crop waste biodigestion.

These results, as well as other estimates [12], suggest large price increases and, in consequence,
a decrease in maritime and air transport, which may lead to the relocation of some economic activities.

Energy cost is about 12% of the production cost of air transportation [59,60]. The ratio β between
future and present cost can be estimated from the corresponding ratio between the last two columns of
Table 1, and then a ratio between future and present final price can be obtained (Appendix A). If LNG
were the fuel used, β = 2.49 and P’/P would be 1.18. If jet biofuel were the fuel used, β = 4.17 and P’/P
would be 1.38.

If we assume that the elasticity of demand for leisure flights is similar in EU-28 than in the US,
about −1.6 [61], we can expect a drop in demand by 29% (LNG) to 61% (jet biofuel) owing to purely
economic reasons only.

To obtain an upper bound estimate of the embodied energy in a world transport transition,
we repeated the calculations made in García-Olivares et al. [21] but with the embodied energy per USD
used in this study. The results are displayed in Table A1 of Appendix B.

The embodied energy of a substitution of the whole world transport would amount to 149–158 EJ
for the scenario with charging points, and 257 EJ for the scenario with a TEV system on all roads in
the world. Even with our pessimistic hypothesis, a 30-year transition for the world baseline scenario
would require only 4.8% of the energy demanded per year for the transport sector [32], which seems to
be an achievable goal.

The assumptions made in this analysis do not consider major changes in the markets for raw
materials on the demand side, which would also (likely) exceed current production capacity by a
considerable margin and result in price increases. However, it may lead to a lowering of prices as
production capacity has been ramped up and made more efficient, and cheaper alternatives to costly
raw materials have been developed. This will affect the capital and energy required for the transition.
It should also be mentioned that such changes in price will strongly depend on the policies applied by
governments, which will allow them to regulate the pace of the transition, as well as the consumption
rate of raw materials in the EU and also in the world as a whole. Detailed analysis of such factors and
their implications is out of the scope of our study, and it would require the use of modelling tools to
account, for instance, for the non-linear links between market fluctuation, raw material production
and the pace of the transition.

This study could be expanded to analyse the costs that would be required for the renewable
conversion of the vehicles, ships and aircrafts of the EU army. This transition would be very different
for different geopolitical scenarios that we can imagine for a future renewable European economy
integrated into the global economy. Thus, we prefer to leave that analysis for a future article.

One last conclusion of this study is that (both for the EU and the world) the substitution of land
transport would save a greater amount of fossil energy (and therefore, CO2) per unit of investment
and should be addressed initially, while air and ship transport system substitution could be the last
steps of the transition.
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Appendix A.

If the present fuel cost for flight operation (C) is a fraction α of the total production cost P, C = α P.
If the future cost for flight operation (C’) is β times the present cost, C’ = β C.
The future production cost (P’) of air transport would be given by the following expression:
P’ = C’ + (1 − α) P = β C + (1 − α) P = α β P + (1 − α) P = [α β + (1 − α)] P
Therefore, the ratio between P’ and P would be:
P’/P = [α β + (1 − α)]
We assume that the ratio between the future and present price will be equal to the ratio between

future and present production cost. β can be estimated from the corresponding ratio between the
last two columns of Table 1, since operation fuels accounts for most of the energy used in the sector.
If liquified natural gas were the fuel used, β = 2.49 and P’/P would be 1.18. If jet biofuel were the fuel
used, β = 4.17 and P’/P would be 1.38.

Appendix B. Capital Cost and Embodied Energy of the Decarbonized World Transport

Table A1. Capital cost of the decarbonized world transport (column 2), and its embodied energy with
the hypotheses of García-Olivares et al. [21] (column 3), and with the energy intensity used in the
present study (column 4).

Sector Capital Cost
(Billion USD)

Embodied Energy (PJ)
(Lower Bound)

Embodied Energy (PJ)
(Upper Bound)

Light-duty vehicles 22,854 9642 86,398
Medium- and high-duty trucks 9315 3930 35,215

Two- and three-wheelers 3422 1444 12,937
TOTAL VEHICLES 35,591 15,016 134,549

Railways † 201 85 835
Locomotives †† 1205 497 5645

TOTAL RAILWAYS 1406 579 † 6480
Bulk carrier ships 511 220 1835

General cargo ships 107 46 384
Container ships 275 119 989

Chemical tankers 94 40 337
Passenger ships 154 66 553

TOTAL SHIPPING 1107 477 4099
Aircraft * 1613 397 3844

Recharging stations ‡/
TEV system �

1184/
52,881

488/
21,796

4438/
112,328

Biomethane infrastructure 79 290 290 ♣

TOTAL
TRANSPORTATION

40,979/
92,675

17,248/
38,555

153,700/
261,590

Fishing vessels 1790 772 6308
† Calculation updated with the length of world tracks (1.75 × 106 km), high-speed lines (29,000 km) and electrified
fraction (32.5%) taken from [62], the length of railway lines (1.15 × 106 km) taken from [63], and assuming that
all single-track lines are not electrified. †† Calculation updated with a locomotive mean price of 4 million USD
and assuming 67% of non-electric locomotives. ‡ Calculations updated to correct an inconsistency found in
García-Olivares et al. [21] * For a 50% reduction in the aircraft fleet. � For a scenario with electrification of all of the
world’s roads. ♣ No range is provided since the embodied energy was estimated directly, and not by an energy
intensity analysis.
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