Supplementary Materials

Towards Urban Mining – Estimating the potential environmental benefits by applying an alternative construction practice. A case study from Switzerland.

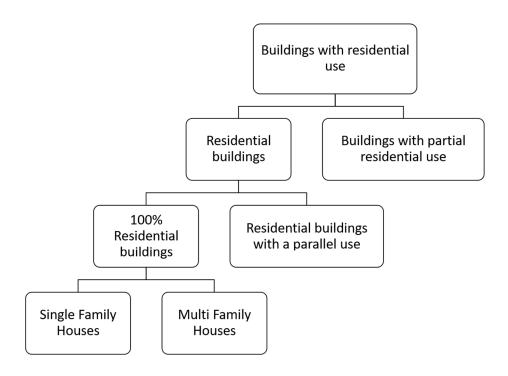
Efstathios Kakkos^{1*}, Felix Heisel², Dirk Hebel³, Roland Hischier¹

¹ Swiss Federal Laboratories for Materials Science and Technology (Empa), Technology and Society Laboratory (TSL), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

² Cornell University, Circular Construction Lab, Department of Architecture, Cornell AAP, 235E. Sibley Hall, Ithaca, NY 14853, USA

³ Karlsruher Institut für Technologie, Fachgebiet Nachhaltiges Bauen, Institut Entwerfen und Bautechnik, Fakultät für Architektur, Englerstrasse 11, 76131 Karlsruhe, Germany

*Contact: *efstathios.kakkos@empa.ch*


Table of Content

1.	Res	idential building types in Switzerland1
2.	Life	e Cycle Inventory (LCI)1
	2.1.	Material calculation (A1-A3)1
	2.2.	Transport (A4, C2)
	2.3.	Construction & Deconstruction (A5, C1)4
	2.4.	Material replacement (B4)4
	2.5.	Energy consumption of buildings (B6)5
	2.6.	End of life stage (C2-4)
	2.7.	Reuse / recovery potential (D)7
3.	Res	ults

4. F	References	9
------	------------	---

In total 9 pages with 10 tables and 1 figure.

1 **1.** Residential building types in Switzerland.

2

3 Figure S1. Types of buildings in Switzerland (Bundesamt für Statistik, 2017).

4 2. Life Cycle Inventory (LCI).

5 This section provides foreground data about material, transport, construction, energy 6 and demolition waste (CDW) calculation of all buildings considered for the study and 7 reports the key assumptions behind these calculations. The densities included in the 8 following tables were taken from the KBOB list (KBOB, 2014), which includes life cycle 9 assessment data on a variety of building materials. The density of the mushroom panels are the exception to this case, as it was not included on the list due to the fact that 11 is a novel material. Hence, its density derives from the company Evocative design.

12 2.1. Material calculation (A1-A3)

13 As a simplification, only materials that are essential for the construction of the back-

14 bone of the different default buildings are introduced into the analysis (summarized

15 in tables Table S1 and

16 Table S2). As reported in the main text, aspects such as mechanical and electrical 17 equipment or (inside/outside) paints are not taken into consideration for this study 18 here, because most of them could be assumed to be similar in all cases. Doors, window

19 frames and stairs are excluded from the study, based on the Swiss Standards for the 20 calculation of the grey energy of buildings, i.e. the SIA 2032 standard (SIA, 2010). Fur-21 ther suggestions reported in this standard (such as the calculation of external walls 22 without a deduction for the windows, or the calculation of internal walls without a 23 deduction for the doors) are not taken into account. Materials for foundation have not 24 been taken into consideration due to the variety of buildings and – as a result – variety 25 of foundation options that would be required between the lightweight SFH and heav-26 yweight SFH.

		Volum	e (m³)				
	Donoitre	1-floor SFH			2-floor	3-floor	3-floor
Materials	Density	1-11001 3	бгп		SFH	SFH	MFH
	(kg/m ³)	ESR =	ESR =	ESR =	ESR =	ESR =	ESR =
		1	1.5	2.5	1.5	1.5	1.5
Wooden fassade	600	3.32	3.40	3.68	4.62	5.46	11.75
Wooden formwork	600	17.57	18.00	18.34	27.37	29.66	84.82
Wooden beams	600	15.44	15.97	15.44	12.67	22.35	31.24
Stonewool insulation	100	86.89	88.01	89.28	79.78	78.78	273.43
Vapor barrier	920	0.09	0.09	0.09	0.09	0.09	0.25
Straw mushroom panels	122	6.52	7.98	8.11	6.35	10.46	40.36
Ceiling boards	600	9.60	9.60	9.60	14.40	16.00	60.00
Wooden floor	600	3.00	3.00	3.00	1.50	1.00	3.75
Cooper roof	8900	0.07	0.07	0.07	0.03	0.02	0.08
Double glazing	2573	0.24	0.24	0.27	0.48	0.72	0.72
UV foil	1700	0.02	0.02	0.02	0.02	0.03	0.06

27 **Table S1.** Material quantity calculation for the circular modeled buildings.

28

29 Table S2. Material quantity calculation for the conventional modeled SFH (ESR = 1.5).

Materials	Density (kg/m³)	Volume (m ³)			
Materials	Density (kg/iii ^o)	1-floor	2-floor	3-floor	
Wooden protective layer	600	3.27	4.44	5.25	
Concrete	2420	69.12	63.60	63.56	
Wooden supporting beams (30X60 mm)	600	0.24	0.34	0.41	
EPS	30	85.10	79.25	80.75	
Vapor barrier	920	0.02	0.02	0.02	
Gypsum fiberboard	850	1.12	1.26	1.42	
Bricks	1845	11.15	12.57	14.16	
Stucco	1500	1.07	1.21	1.36	
Cover plaster	1200	0.89	1.01	1.13	
Wooden formwork	600	0.00	1.50	2.00	
Cement plaster	1850	9.60	4.80	3.20	
Aggregates	2000	6.00	3.00	2.00	

Bitumen	1100	1.44	0.72	0.48
Reinforcing steel	7850	0.69	0.64	0.64
Double glazing	2573	0.24	0.48	0.72

30

31 2.2. *Transport (A4, C2)*

32 For the transport of materials (see Table S3 and Table S4) from the production compa-

33 nies to the building site and from the building site to treatment facilities, trucks were

34 considered, with a covered distance of 100 km.

35 Table S3. Transport estimation for circular building materials.

		Transpo	ort (tkm)				
	Donaity	1-floor SFH			2-floor	3-floor	3-floor
Materials	Density				SFH	SFH	MFH
	(kg/m ³)	ESR =	ESR =	ESR =	ESR =	ESR =	ESR =
		1	1.5	2.5	1.5	1.5	1.5
Wooden fassade	600	199.4	204.1	220.7	277.2	327.8	705.1
Wooden formwork	600	1054.2	1080.1	1100.1	1642.0	1779.6	5089.2
Wooden beams	600	926.2	958.3	926.2	760.0	1340.7	1874.5
Stonewool insulation	100	868.9	880.1	892.8	797.8	787.8	2734.3
Vapor barrier	920	8.5	8.6	8.7	8.1	8.1	23.2
Straw mushroom panels	122	79.6	97.3	98.9	77.4	127.7	492.3
Wooden roof boards	600	576.0	576.0	576.0	864.0	960.0	3600.0
Wooden floor	600	180.0	180.0	180.0	90.0	60.0	225.0
Cooper roof	8900	59.7	59.7	59.7	29.8	19.9	74.6
Double glazing	2573	61.4	61.4	69.4	122.8	184.2	185.3
UV foil	1700	2.7	2.8	3.0	3.8	4.5	9.6
Total transport to buildin	g site	4016.5	4108.3	4135.5	4672.8	5600.2	15013.1

36 Table S4. Transport estimation for the conventional buildings with ESR = 1.5.

Materials	Density	Transport	Transport (tkm)			
Materials	(kg/m³)	1-floor	2-floor	3-floor		
Wooden protective layer	600	195.9	266.1	314.9		
Concrete	2420	16725.9	15391.4	15380.6		
Wooden beams (30X60 mm)	600	14.2	20.2	24.8		
EPS	30	255.3	237.8	242.2		
Vapor barrier	920	2.2	2.2	2.2		
Gypsum fiberboard	850	94.8	106.8	120.4		
Bricks	1845	2057.2	2318.7	2612.8		
Stucco	1500	160.6	181.0	203.9		
Cover plaster	1200	107.0	120.6	135.9		
Wooden formwork	600	0.0	90.0	120.0		
Cement plaster	1850	1776.0	888.0	592.0		

Aggregates	2000	1200.0	600.0	400.0
Bitumen	1100	158.4	79.2	52.8
Reinforcing steel	7850	542.6	499.3	498.9
Double glazing	2573	61.4	122.8	184.2
Total transport to building site		23351.4	20924.0	20885.6

37 2.3. Construction & Deconstruction (A5, C1)

38 The design-for-disassembly concept not only allows for easier construction and decon-39 struction of the buildings, which leads subsequently to lower environmental impact 40 during those stages but also allows for minimum loss of materials during those stages 41 and as a result maximum recovery of those materials that can either be utilized. Hence, 42 it minimizes the usage of building equipment and time for the installation process. The 43 assumptions for the construction and installation of building elements are shown in Table S5. Prefabrication of elements for this study has not been considered due to lack 44 45 of data. For the deconstruction phase, concrete mixer is replaced by an excavation skid-46 steel loader but in principle remains the same. Preparatory works for foundation are 47 not taken into account.

Circular (woo	oden) build	lings				
SFH			MFH			
Operation	Machine	177	Operation	Machin	0.817	
(hr)	Machine	er y	(hr)	Wathin	er y	
	Crane			Crane		
15	Drills	(500	20	Drills	(500	
	W)			W)		
Conventional	(concrete)	SFH b	ouildings			
Operation (hr	.)		Machinery			
10			Concrete mixer			
10			Drills (500 W)			

48 **Table S5.** Construction equipment for wooden and concrete buildings.

49

50 2.4. Material replacement (B4)

51 The replacement stage gains significant value, especially when an appropriate Design-52 for-Disassembly concept is placed at the center of the design, early from the planning 53 phase of the building. Apart from the time and construction flexibility it provides, it 54 gives the opportunity to easily replace any defect building element even during oper-55 ation of the said building, avoiding that way a repair of an element or even a total 56 refurbishment of the building, if needed. Therefore, replacement is considered for both

- 57 concrete and wooden buildings and conforms to again to the Swiss standard for grey
- 58 energy of buildings (SIA, 2010). Table S6 again provides an overview of the replaced
- 59 materials. All principal activities connected with material replacement such as produc-
- 60 tion of the new element, transport and integration to building site, treatment of the
- 61 element. Reuse potential is included in module D.
- 62 **Table S6.** Replaced elements considered for circular and conventional buildings.

Replacing elements	Element lifetime	Replacement magnitude
Window glazing	30	1
UV foil	30	1
Outside fassade	40	1

63

64 2.5. Energy consumption of buildings (B6)

65 Table S7 exhibits the annual electricity and thermal energy required by the circular 66 and conventional buildings. The detailed estimation of the modeled buildings' energy 67 consumption is out of the scope of this study. The energy demand of each building is 68 assessed through the use of SIA 2024 building tool, which conforms to SIA 2024 stand-69 ard (SIA, 2015), which provides reference values for all aspects of building-related en-70 ergy consumption. The provided standard values were used for an average calculation 71 of each building's energy demand. The electricity country mix of Switzerland provided 72 within the Ecoinvent database v3.4 ("Ecoinvent Data v3.4-Recycled-Content System 73 Model," 2017) is considered for domestic use, while the (underfloor) heating and do-74 mestic hot water demand was covered through the use of heat pump.

Table S7. Annual energy consumption per gross floor area of the model buildings according to SIA 2024 building
 tool.

Building	Total electric	rity (kWh _e /	m²)	Total then	mal energy	r (kWh _{th} / m²)
type	Appliances	Lighting	Ventilation	Cooling	Heating	Domestic hot
type	Appliances	Lighting	Ventilation	Cooling	Treating	water
SFH	14.2	4.0	1.0	0.0	28.8	13.5
MFH	13.8	4.5	1.7	0.0	19.0	19.2

77

78 2.6. End-of-life stage (C2-4)

79 The end-of-life stage of a building commences with its demolition (conventional build-

80 ings) or deconstruction (circular buildings) and ends with the treatment of its individ-

81 ual materials or disposal of its small fraction that cannot be treated. Transport of the

82 CDW to the treatment facilities follows the same patterns as in stage A4.

83 Table S8 and Table S9 show the calculated construction and demolition waste (CDW), 84 along with the chosen treatment option for the circular and conventional buildings 85 respectively. In this study, losses stemming from the demolition of concrete buildings 86 are not taken into account. For the circular buildings, after deconstruction the materials 87 are collected back and stored until they are reused in the construction sector, meaning 88 that no treatment is considered for them. CDW from the conventional buildings are 89 mostly processed in a sorting facility and some of the collected materials receive no 90 treatment at all as in the circular buildings and they remain stored until reused directly 91 in another project. No direct landfilling of primary CDW is taking place in this study.

	Weigh	nt (tons))					
				2-	3-	3-		Post
Metariala	1-floo	1-floor SFH		floor	floor	floor	Treat-	treat-
Materials				SFH	SFH	MFH	ment	ment
	ESR	ESR	ESR	ESR	ESR	ESR =		use
	= 1	= 1.5	= 2.5	= 1.5	= 1.5	1.5		
Wooden fassade	1.99	2.04	2.21	2.77	3.28	7.05		
Wooden formwork	10.54	10.80	11.00	16.42	17.80	50.89		
Wooden beams	9.26	9.58	9.26	7.60	13.41	18.75	red	
Stonewool insulation	8.69	8.80	8.93	7.98	7.88	27.34	side	
Vapor barrier	0.09	0.09	0.09	0.08	0.08	0.23	suos	e
Straw mushroom panels	0.80	0.97	0.99	0.77	1.28	4.92	ent e	Reuse
Ceiling boards	5.76	5.76	5.76	8.64	9.60	36.00	tme	R
Wooden floor	1.80	1.80	1.80	0.90	0.60	2.25	trea	
Cooper roof	0.60	0.60	0.60	0.30	0.20	0.75	No treatment considered	
Double glazing	0.61	0.61	0.69	1.23	1.84	1.85		
UV foil	0.03	0.03	0.03	0.04	0.04	0.10		
Total	40.17	41.08	41.36	46.73	56.00	150.13	-	-

92 **Table S8.** Generated CDW of circular buildings.

93

94 **Table S9.** Generated CDW of conventional buildings.

Materials	Weight	t (tons)			Post treatment use	
	1-	2-floor	3-floor	Treatment		
	floor	2-11001				
Wooden protective layer	1.96	2.66	3.15	-	Reuse	
Concrete	167.26	153.91	153.81	Sorting plant	Sand & limestone	
Wooden beams (30X60 mm)	0.14	0.20	0.25	-	Reuse	
EPS	2.55	2.38	2.42	-	Reuse	
Vapor barrier	0.02	0.02	0.02	-	Reuse	

Gypsum fiberboard	0.95	1.07	1.20	Sorting plant	gypsum recovery	
Bricks	20.57	23.19	26.13	Sorting plant	Sand & limestone	
Stucco	1.61	1.81	2.04	Sorting plant	Sand & limestone	
Cover plaster	1.07	1.21	1.36	Sorting plant	-	
Wooden formwork	0.00	0.90	1.20	-	Reuse	
Cement	17.76	8.88	5.92	Sorting plant	Reuse	
Aggregates	12.00	6.00	4.00	-	Reuse	
Bitumen	1.58	0.79	0.53	Incineration	-	
Reinforcing steel	5.43	4.99	4.99	recycling	Reuse	
Double glazing	0.61	1.23	1.84	recycling	Reuse	
Total	233.51	209.24	208.86	-	-	

95

96 2.7. Reuse / recovery potential (D)

97 This stage of the LCA reports the avoided environmental impact resulting from recy-98 cling and/or reuse of materials after building demolition. More specifically, the ex-99 tracted fractions from the end-of-life treatment of the materials - not going to landfill 100 - serve as inputs to this stage and the net (negative) impact originates from avoiding 101 production of the original material for the specified use outside of the system bound-102 aries (e.g another construction). Table S8 and Table S9 illustrates in a summarized form 103 the specified (post-treatment) use of materials in other projects for circular and con-104 ventional buildings. 105 Pertaining to the concrete buildings, inert materials are crushed in sorting facilities in 106 order to recover sand (70%) and limestone (30%). Direct reuse is hypothesized only for 107 the wooden protective layer, vapor barrier, aggregates from the roof and the recycled

108 reinforced steel. Energy recovery from incineration of materials is not considered in

109 this study, as the focus is strictly on the material side.

3. Results

Table S10. Life-cycle impacts of the model buildings per each indicator (CED, GWP and EC) and life-cycle stage.

Indicator	CED - Cumulative Energy Demand (MJ-eq / (m ² ×a))									
Coometry & type of build	Conventional Circular									
Geometry & type of build-	SFH 1	SFH 2	SFH 3	SFH 1	SFH 1	SFH 1	SFH 2	SFH 3	MFH	
ing	- 1.5	- 1.5	- 1.5	- 1	- 1.5	- 2.5	- 1.5	- 1.5	3 - 1.5	
Production (A1-3)	77.84	72.26	71.96	52.16	52.91	53.63	61.76	68.11	54.75	
Transport (A4)	26.24	23.51	23.47	4.51	4.62	4.65	5.25	6.29	4.50	
Construction (A5)	0.41	0.41	0.41	0.21	0.21	0.21	0.21	0.21	0.09	
Replacement (B4)	2.59	4.22	5.68	3.27	3.32	3.67	5.17	6.78	2.93	
Energy consumption (B6)	243.64	243.64	243.64	243.64	243.64	243.64	243.64	243.64	242.50	
Deconstruction (C1)	0.14	0.14	0.14	0.01	0.01	0.01	0.01	0.01	0.00	
Transport (C2)	26.24	23.51	23.47	4.51	4.62	4.65	5.25	6.29	4.50	
Treatment (C3)	2.43	2.15	2.12	0.00	0.00	0.00	0.00	0.00	0.00	
Reuse potential (D)	-54.33	-53.17	-55.40	-52.16	-52.91	-53.63	-61.76	-68.11	-54.75	
Total	379.54	369.85	370.90	308.31	309.33	310.46	321.29	331.33	309.27	
Indicator	GWP - Global Warming Potential (kg CO ₂ -Eq / (m ² ×a))									
Geometry & type of build-	Concre	te		Woode	n					
5 51	SFH 1	SFH 2	SFH 3	SFH 1	SFH 1	SFH 1	SFH 2	SFH 3	MFH	
ing	- 1.5	- 1.5	- 1.5	- 1	- 1.5	- 2.5	- 1.5	- 1.5	3 - 1.5	
Production (A1-3)	5.48	5.31	5.31	3.62	3.68	3.76	4.26	4.77	3.62	
Transport (A4)	1.68	1.51	1.50	0.29	0.30	0.30	0.34	0.40	0.29	
Construction (A5)	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	
Replacement (B4)	0.20	0.32	0.44	0.68	0.69	0.76	1.00	1.23	0.63	
Energy consumption (B6)	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.61	
Deconstruction (C1)	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
Transport (C2)	1.68	1.51	1.50	0.29	0.30	0.30	0.34	0.40	0.29	
Treatment (C3)	0.63	0.36	0.27	0.00	0.00	0.00	0.00	0.00	0.00	
Reuse potential (D)	-3.14	-3.09	-3.23	-3.62	-3.68	-3.76	-4.26	-4.77	-3.62	
Total	15.18	14.51	14.54	10.36	10.45	10.61	11.42	12.29	10.44	
Indicator		E	C - Ecolo	ogical Sca	arcity (Eo	co-point	s/(m²×a))		
Geometry & type of build-	Concre	te		Woode	n					
	SFH 1	SFH 2	SFH 3	SFH 1	SFH 1	SFH 1	SFH 2	SFH 3	MFH	
	- 1.5	- 1.5	- 1.5	- 1	- 1.5	- 2.5	- 1.5	- 1.5	3 - 1.5	
Production (A1-3)	7229	7021	7052	5868	5966	6058	6806	7698	5931	
Transport (A4)	1737	1556	1553	299	306	308	348	417	298	
Construction (A5)	29	29	29	15	15	15	15	15	6	
Replacement (B4)	298	468	625	899	918	1001	1307	1605	829	
Energy consumption (B6)	10165	10165	10165	10165	10165	10165	10165	10165	10230	
Deconstruction (C1)	10	10	10	0	0	0	0	0	0	
Transport (C2)	1737	1556	1553	299	306	308	348	417	298	
Treatment (C3)	738	565	523	0	0	0	0	0	0	
Reuse potential (D)	-4897	-4774	-4957	-5868	-5966	-6058	-6806	-7698	-5931	
neuse potential (D)										

113 4. References

- 114Bundesamt für Statistik. (2017). Bau- und Wohnungswesen 2015. Neuchâtel, Switzerland: Bundesamt für115Statistik (BFS) Retrieved from https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken/publikationen.assetdetail.2341518.html.
- Ecoinvent Data v3.4-Recycled-Content System Model. (2017). from Ecoinvent Association
 <u>www.ecoinvent.org</u>
- 119
 KBOB. (2014).
 Ökobilanzdaten im Baubereich.
 Retrieved from Bern, Switzerland:

 120
 https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges

 121
 https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges
- 121 <u>bauen/oekobilanzdaten_baubereich.html</u>
- SIA, M. (2010). Graue Energie von Gebäuden. In SchweizerischerIngenieur-und Architektenverein (SIA).
 Zürich, Switzerland.
- SIA, M. (2015). Raumnutzungsdaten für Energie- und Gebäudetechnik. In *SchweizerischerIngenieur-und Architektenverein (SIA)*. Zürich, Switzerland.

126