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Abstract: Honey is a natural sweet substance produced by honeybees from the nectar of flowers, 

plant secretions or plant-sucking insect excretions. Sugars and water constitute the major 

components, other minor components characterize the organoleptic and nutritional properties. To 

date, Salento (Apulia region, Italy) honey production is considerably threatened due to the 

suggested use of neonicotinoids in order to control the insect-vectored bacterium Xylella fastidiosa 

(subsp. pauca). Metabolomics based on Nuclear Magnetic Resonance (NMR) spectroscopy was used 

to describe, for the first time, the composition of honey samples from different Salento producers. 

Exploratory Principal Component Analysis (PCA) showed, among the observed clustering, a 

separation between light and dark honeys and a discrimination according to producers, both further 

analyzed by supervised multivariate analysis. According to the obtained data, although limited to 

small-scale emerging production, Salento honey shows at the molecular level, a range of specific 

characteristic features analogous to those exhibited by similar products originating elsewhere and 

appreciated by consumers. The impact on this production should therefore be carefully considered 

when suggesting extensive use of pesticides in the area. 

Keywords: honey; spectroscopic fingerprint; metabolomics; nuclear magnetic resonance (NMR); 

multivariate statistical analysis. 

 

1. Introduction 

Honey is a natural sweet substance produced by honeybees from the nectar of flowers, plant 

secretions or plant-sucking insect excretions (honeydew honey). Botanical and geographic origins 

determine both sensory properties (colour, flavor, and texture) and physicochemical parameters 

(viscosity and crystallinity) of this product [1]. Honey is one of the most complex natural foods and 

it is considered the only sweetening agent that can be used by humans without processing [2]. Sugars 

constitute the major component (95% of dry weight) responsible for the energy value of honey: two 

monosaccharides, fructose, and glucose are the dominant constituents [3]. Besides the two main sugar 

components, honey contains about 25 oligosaccharides (tri- and tetra-saccharides). Several studies 

reported the characterization of the carbohydrate profile of honey [3,4]. Water is the second most 

abundant honey constituent (12–23%). Other minor components such as organic acids, minerals, 

vitamins, enzymes, proteins, amino acid, and volatile and phenolic compounds characterize the 

organoleptic and nutritional properties of honey [5]. Besides the high nutritive value, minor 

components are also responsible for the healthy properties of honey such as antibacterial, anti-

inflammatory, antioxidant, and immune system-stimulating activities, as reported in the literature 
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[2,6]. Many factors such as geographical, botanical or floral origin, together with climatic and seasonal 

variations, influence honey chemical composition and quality [7]. Moreover, other external factors 

such as the environment, honey treatment methods, and storage conditions used by beekeepers as 

well as possible deliberate adulteration should also be taken into account [8]. According to the current 

standards of the Codex Alimentarius [9] and the European Union (EU) [10], several physical and 

chemical measurements are required for honey quality control, all very important for honey 

producers, the food industry, consumers, and regulatory authorities. To date, several different 

botanical varieties of honey are available on the market, namely, monofloral or polyfloral, with strong 

differences in composition and physical, chemical, and organoleptic characteristics [11,12]. Honey 

colour strongly depends on its age and the kind of flowers that supplied the nectar to the producing 

bees. Honey colour is also related to its flavor. Light-coloured honeys are mild-flavoured, while the 

dark ones have a stronger flavor [13,14]. Darker honeys such as honeydew honeys are reported to 

contain more phenolic acid derivatives but fewer flavonoids than light coloured ones [13,15,16]. 

Several studies have reported on the assessment of the quality, geographical, and botanical origins 

of honey, also with the aim to detect any possible adulteration [3,8,17]. Application of Nuclear 

Magnetic Resonance (NMR) spectroscopy for the analysis of honey offers some advantages compared 

to other conventional analytical methods (such as GC and GC–MS) [17,18]. These include the 

availability of a wealth of information in a single measurement, simultaneous detection of various 

components, high reproducible and comparable data with a high statistical confidence level, and 

minimal requirements for sample amount and pre-processing [19,20]. In particular, the metabolomic 

approach based on NMR spectroscopy, in combination with chemometrics, is a powerful 

fingerprinting technique that is successfully employed for biomarker detection, food quality control, 

and/or origin discrimination [11,21–26]. This approach is used to analyze metabolite profiles and 

identify the most important discriminating compounds that differentiate honeys. Indeed, several 

studies proved the NMR-based screening techniques are a suitable tool for the rapid authenticity 

analysis of honey [19]. 

In this paper, we present an investigation of combined NMR and a chemometric data analysis 

approach to describe the variability in the composition of honey samples from different local Salento 

(Lecce and Taranto Provinces, Apulia region, South-East Italy) producers. Although some papers 

describing NMR characterization of Italian honey have already been published [3,11,12,21,27,28], the 

present study appears to be the first work focused on honey from Salento. On the other hand, 

although it can be considered one of the most important Italian regions as a foodstuff source, 

nowadays, Apulia only represents an emerging honey producer with about 290 t, less than 2% of the 

total Italian production (23,344 tons) [29]. Moreover, the Salento contribution to the Apulia 

production only relies on a minor part of active beehives in the region [29,30]. Nevertheless it should 

be considered that Salento honey (part of the Apulia production) is considerably threatened due to 

the suggested use of neonicotinoids in order to control the insect-vectored bacterium Xylella fastidiosa 

(subsp. pauca) [31]. The suggested use of insecticides in order to control X. fastidiosa vector(s) in the 

Salento area has been recently reviewed in an EFSA (European Food Safety Authority) report [32]. 

Neonicotinodis, the insecticides that are most widely used worldwide, are substances known to be 

carcinogenic to people and considered responsible for the deaths of bees, representing a serious risk 

for biodiversity and ecosystems [33–35]. After monitoring by the EFSA in 2013 [36], the EU decided 

to prohibit the use of neonicotinoids in open fields [37]. Nevertheless, as a consequence of the 

“National emergency plan for X. fastidiosa management in Italy”, on the 13 of March 2018, the Italian 

Minister of Agriculture, issued a decree determining in the Apulia Region a specific area (Salento) 

where farmers may be forced to use these pesticides [31,38,39]. On the other hand, Salento honeys, 

under treat due to the possible deaths of bees related to pesticide use, do not appear to have been 

previously characterized. Thus, this could be one of the main reasons to focus, for the first time, on 

the characterization of honey produced in Salento (an Apulia sub-region where X. fastidiosa diseases 

first appeared). In particular, thirteen honey samples from different provinces of the Salento area 

were subjected to spectroscopic fingerprints in order to characterize them qualitatively and also to 

identify potential molecular components responsible for discrimination among sample clusters. 
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2. Results and Discussion 

2.1. 1H-NMR Fingerprinting and Metabolite Identification 

A total of 13 samples of mono- and multi-floral honeys and honeydew supplied in commercial 

jars by four trusted Salento honey producers were analyzed. Three technical replicates were obtained 

from a single specific commercial honey jar in order to minimize possible data inhomogeneity. The 

studied honeys included eight multi-floral, three mono-floral (one acacia, one orange, and one citrus 

sample), and two honeydew samples. The limited size of the reported sample set was chosen to 

provide preliminary indications of Salento honey characteristics. However, several studies used a 

very limited number of samples for much wider productions and geographic areas, such as the 

quality and bio-functional properties characterization of seven honey samples of different botanical 

and geographical origins collected from different regions of Portugal [40]; the 1H-NMR profiling and 

chemometric analysis of ten selected honeys from South Africa (five), Slovakia (three), and Zambia 

(two) [8]; the chemometric analysis of three stingless bee honey samples from different botanical 

origins collected in Malaysia [41]; the 1H NMR characterization of twenty Finnish honeys [42]. The 

screenings based on 1H-NMR spectroscopy allowed us to extract, in a single and quick analysis, all 

sample molecular information while maintaining the specific ratios between metabolites present in a 

complex matrix, without previous separation. The assignments of honey signals identified in the 

samples, prepared according to the procedures described in the experimental section, are reported in 

Table 1.  

Table 1. Chemical Shifts (δ) and assignment of metabolite resonances in the 1H NMR (600 MHz) of 

honey samples. 

δ (ppm)  Metabolite  Assignment  Multiplicity 

9.45 HMF H1 s 

9.13; 8.84 trigonelline NCH; CH3.5 s; t 

8.428.46* formate HCOOH s 

7.90; 5.90  uridine    

8.22, 7.86, 7.55, 

6.94  

kynurenic acid (only in dark honey 

samples)  
 d, d, d, s 

7.42; 7.38; 7.32 phenylalanine 
CH–3,5 ring; CH4 ring; CH–

2,6 ring;  
m; m; m; 

7.28, 6.18 nucleoside derivatives   

7.19; 6.90 tyrosine CH–2,6 ring; CH–3,5 ring; m; m; 

5.41; 3.56 sucrose CH1; CH2 d; dd; 

5.40  maltose    

5.30; 3.58 turanose CH1  

5.23; 3.52 -glucose  CH1; CH2 d; dd; 

4.99 raffinose   

4.94 isomaltose   

4.64; 3.24 -glucose CH1; CH2 d; dd; 

4.10 - fructofuranose CH3 d; 

4.01 - fructopyranose CH5 d; 

3.12 lysine CH2  t 

2.70; 2.90  citrate  HalfCH2; halfCH2 d; d 

2.55; 2.80  aspartate halfCH2; halfCH2; dd; dd 

2.56 succinate - CH2  s 

2.34; 2.07; 2.01 proline 
halfCH2; half-

CH2CH2 
m; m; m; 

1.95 acetate CH3  s 

1.47 alanine CH3  d 
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1.38 
monoterpenoid acid  

(only in polyfloral honeys)  
-C(CH3)2OH; s 

1.32 lactate CH3  d 

1.17 ethanol CH3  t 

1.03; 2.28 valine CH3; CH d; m; 

1.00 isoleucine -CH3;  d 

0.97; 1.7 leucine -CH3; -CH d; m; 

*[12,43]. 

A typical 1H-NMR spectrum of honey sample dissolved in deuterated water as indicated in the 

Material and Methods section is reported in Figure 1.  
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Figure 1. Representative 1H NMR (600 MHz) spectra of Salento honey samples in aqueous solution. 

Expanded areas in the range of (a) (0.9–3 ppm), aliphatic region; (b) (3–6 ppm) sugars region; (c) (6–

10 ppm) aromatic region. Assignment of the main metabolites is indicated. 

From visual inspection of the expansions, three regions could be identified, corresponding to the 

region of amino acids (0–3 ppm) (Figure 1a), the region of sugars (3–6 ppm) (Figure 1b), and the 

aromatic region (6–10 ppm) (Figure 1c). The most intense and dominant signals in the spectrum are 

represented by sugars, typically –and glucose and fructose. Moreover, as already reported in the 
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literature, signals of other sugars, e.g., disaccharides such as sucrose, maltose, isomaltose, and 

turanose, and trisaccharides such as raffinose, could be identified [3]. These signals were identical in 

all the honey samples analyzed with minimal intensity variations, as already observed in the 

literature [19,22]. The resonances of the minor components, which play important roles in honey 

differentiation were less intense (for example, amino acids, organic acids, etc.). In particular, the 

minor signals were ascribable to organic carboxylic acids (such as citric acid, acetic acid, and succinic 

acid) and both aliphatic (alanine, valine, leucine, isoleucine, lysine, proline) and aromatic 

(phenylalanine and tyrosine) amino acids. Proline, which might originate from bees, is the prevalent 

honey amino acid and makes up to 50–85% of the amino acid fraction [44]. Organic acids are present 

in honey at low concentrations (< 0.5%) and they are related to colour, flavor, and other honey 

physical–chemical properties, such as pH, acidity, and electrical conductivity. Moreover, organic 

acids can synergistically enhance the antioxidant action of phenolic compounds by chelating metals 

[1,6]. Acetic acid and ethanol are known to be used as fermentation indicators whereas formic acid is 

used for the treatment of Varroa infestation [45]. Interestingly, specific resonance (1.38 ppm, s) of 

methyl groups from a monoterpenoid acid, cyclohexa-1,3-diene-1-carboxylic acid, and as very minor 

component its (1-O-gentiobiosyl) ester derivative were observed in both light and dark polyfloral 

honeys. The proton and carbon assignments, obtained by 2D hsqc and hmbc NMR experiments 

confirmed that the (1.38 ppm, s) signal was ascribable to the known linden honey monoterpenoid 

acid marker [20,21,27]. Furthermore, a significant number of other compounds (formic acid, ethanol, 

trigonelline) and other aromatic signals could be observed by NMR, with variations in intensity 

according to the honey samples. Trigonelline is a plant hormone typical of herbaceous species, 

identified for the first time in Corsican honeys [46]. Another important observed signal is related to 

hydroxymethylfurfural (HMF), a furan derivative produced by sugar degradation. HMF is 

considered an indicator of overheating and long storage conditions [1,22], being an intermediate in 

the Maillard reaction [47], which links the concentration of HMF to aging and heating processes [48]. 

HMF levels are used to evaluate honey freshness, although its presence could naturally occur in 

honey of warm climatic areas, such as tropical and subtropical countries [12]. Typical signals of 

kynurenic acid (KYNA) (8.22, 7.86, 7.55, 6.94 ppm), often associated with chestnut honeys [21], were 

also observed in the analyzed samples, although only in the dark honey from a specific producer. 

Kynurenic acid is known to have beneficial properties in various diseases of the gastrointestinal tract 

[49], although other authors suggested that an increase in the levels of kynurenic acid in the brain 

could be linked to some neuropathologies [50]. Further studies regarding the effects of kynurenic 

acid (KYNA) are needed in order to better understand its role in human health [12]. Honeydew 1H 

NMR spectra showed intense aliphatic resonances in the range 0.90–1.65 ppm and a diagnostic 

doublet at 5.70 ppm. These signals are according to the reported resonances characteristic of 

honeydew honeys [21] 

Finally, a not intense but clear signal at 5.90 ppm was observed only in the orange and citrus 

honey 1H NMR spectra and it could be ascribable to a diagnostic resonance of 8-hydroxylinalool, a 

specific marker of citrus honey [20,27]. In all the studied samples, none of the representative signals 

indicating the presence of neonicotinoid pesticides [51] could be detected. 

2.2. Unsupervised and Supervised Discriminant Analyses 

A preliminary unsupervised multivariate analysis (PCA) (three components, R2X = 0.891; Q2 = 

0.826) was performed on the bucket-reduced spectra for the studied samples to obtain an overview 

of the data and reveal a possible data grouping of observations without any a priori-defined class. 

No specific outliers were detected in the scores plot and a general natural tendency of the samples 

clustering according not only to technical replicates (Figure SM1 a) but also to specific honey features 

(dark, light, honeydew) and producers was observed. In particular, the same unsupervised PCA 

showed a “naturally” clear clustering [52] of the honey samples into two groups according to the 

declared colour (dark- and light-coloured honeys) (Figure SM1 b). A summer honeydew, a 

honeydew, a summer polyfloral honey, and two summer polyfloral honeys clustered into a group 

characterized by dark colour. On the other hand, citrus, acacia, orange, three spring polyfloral, and 
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two polyfloral honey samples grouped together in the light-coloured class. The distinctive observed 

colour and clustering showed the occurrence of all the summer- and spring-collected samples in the 

dark- and light-coloured groups, respectively. This is probably ascribable to a specific relation 

between collection season and colour already reported in the literature [53]. We refined the separation 

analysis between the two observed macro-classes, dark and light samples, by pair-wise supervised 

OPLS–DA aimed to specify the discriminating molecular components responsible for the observed 

clear discrimination between the light- and dark-coloured honey groups—Figure 2 (a) and (b). 

. 

Figure 2. (a) Orthogonal Partial Least Square-Disciminant Analysis (OPLS–DA) t[1 ]/t[2] scores plot 

(t[1]/t[2] contribute: R2X = 0.793; R2Y = 0.98; Q2 = 0.97) for light and dark honey samples. (b). Loading 

scatter plot for the model coloured according to the correlation-scaled coefficient (* p(corr) ≥ |0.5|). 

The colour bar associated with the plot indicates the correlation of the metabolites discriminating 

among classes. 

We obtained a model with good fit and prediction parameters (1 + 2 + 0 gave R2X 0.874; R2Y 

0.956; Q2 = 0.939; p[cv]—ANOVA = 4.87 × e−18). As observed from the S-line for the model, the loadings 

ascribable to the sugar signals characterized both macro groups. Interestingly, the signals in the 

aliphatic region (proline, succinate, lactate, monoterpenoid acid) and those related to aromatic 

compounds (tyrosine, phenylalanine, KYNA, formate) characterized only dark-coloured honeys 

according to the literature data [10,18,26]. Thus, discriminating information between dark and light 

honeys could be found specifically in the signals of the minor components [19]. Moreover, in the 

OPLS–DA score plot (Figure 3) the light and dark honeys were also separated into different 

subgroups, according to the producers, along the first orthogonal component (intra-class variation). 
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Figure 3. OPLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X = 0.793; R2Y = 0.98; Q2 = 0.97) for light 

and dark honey samples. Sample symbols are coloured according to different Producers. 

This observed clustering clearly indicates that the honey intraclass variability was producer 

dependent and related to both dark and light products obtained from the same farm. Moreover, the 

OPLS-DA data of Figure 3 confirmed the hint of further grouping according to producers observed 

in the PCA scores plot (Figure SM1). Therefore, the whole honey sample set was further studied with 

supervised analysis aimed at discrimination of the different producers. A supervised PLS–DA was 

performed, according to different producer classes, considering dark and light honeys separately. 

Furthermore, chemometric methods were applied to the different spectral regions of the aliphatic 

(from 0 to 3.14 ppm) and the aromatic (6 to 10 ppm) areas in order to identify and characterize the 

functional groups of the molecules (organic acids, amino acids, aromatic molecules) responsible for 

samples discrimination. The possible presence of low-intensity signals of potential discriminating 

markers for the analyzed honeys and their contribution to samples differentiation were evaluated by 

excluding the sugar signals region in the statistical analysis [19]. 

2.3. Aliphatic Region 

In the case of light honeys, the supervised PLS–DA resulted in a model with very good 

descriptive and predictive parameters (four components gave  R2X = 0.915; R2Y = 0.945, Q2 = 0.889; 

p[cv] - ANOVA= 1.015 × e−12) (Figure 4). 
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Figure 4. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X = 0.726; R2Y = 0.631; Q2 = 0.543) for 

light honey samples from different producers (black triangles, Producer A; red five-point stars, 

Producer B; grey circles, Producer C; blue five-point stars, Producer D. (b). Loading scatter plot for 

the model coloured according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). The colour bar 

associated with the plot indicates the correlation of the metabolites that discriminated different 

classes. w*c[1] and w*c[2] axes represented the weighted correlation vectors. 

The scores plot for the model revealed a clear separation between the samples according to 

considered membership class (Producer) (Figure 4a). The light honey samples from Producer B 

(samples 5, 6, and 13, depicted as red stars) could be observed at positive values of the main 

component t1, clearly separated from the samples of Producer A, placed at values close to 0 of the 

main component. Moreover, samples of producers C and D could be observed, such as two closely 

related groups, placed at negative values of the main component t[1]. The loading scatter plot (Figure 

4b) for the model revealed a higher relative content of lactate and proline characterizing light honey 

samples from Producers C and D, while the presence of ethanol characterized samples from Producer 

A. 

The PLS–DA, carried out on dark honey samples also revealed in this case a clear separation 

among the Producer-defined sample classes. Thus, the resulting model was characterized by 

excellent parameters (four components gave  R2X = 0.909; R2Y = 0.915, Q2 = 0.752; p[cv]—ANOVA = 

8.91 × e−2) (Figure 5). 
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Figure 5. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.705; R2Y= 0.603; Q2= 0.459) for 

dark honey samples from different producers (black triangles, Producer A; red five-point stars, 

Producer B; grey circles, Producer C; blue five-point stars, Producer D. (b) Loading scatter plot for the 

model coloured according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). The colour bar 

associated with the plot indicates the correlation of the metabolites that discriminated the classes. 

w*c[1] and w*c[2] axes represented the weighted correlation vectors. 

By visual inspection of t[1]/t[2] scores-plot (Figure 5a), the samples of producers A and D could 

be observed as two closely related groups at positive values of component t[1], separated from the 

Producer B samples along the t[1] component, at positive and negative values, respectively. 

Honeydew honey samples from Producer C were located at t[2] negative values and values close to 

0 of the main component t[1]. The discriminating metabolites, identified from the loading scatter plot 

for the model were lactate (1.32 ppm) and succinate (2.56 ppm) for producer A and D and 

monoterpenoid acid derivatives (1.38 ppm) for Producer B. The observed higher relative content of 

organic acid in honeydew samples from Producer D was already reported in the literature [42]. 

Honeydew samples from producer C were characterized by a higher relative content of proline (2.34 

ppm) (Figure 5b) as already observed for honeydews from different geographical origins [54,55]. 

Interestingly, the proline content was recently reported as a possible indicator of honey ripeness as it 

constantly decreases during storage [54]. 

2.4. Aromatic Region 

The multivariate statistical analysis was then applied to all 39 honey samples considering the 

spectral region between 6 and 10 ppm, characteristic of aromatic protons. The supervised 

discriminant analysis (PLS–DA) was therefore carried out for the aromatic region, considering 

separately the light and dark honeys, according to the membership class (Producer). The PLS–DA 

applied to the light honey samples gave a four-component model with descriptive and predictive 

parameters equal to R2X= 0.936, R2Y = 0.708, Q2 = 0.514; p[cv] - ANOVA= 2.35 × e−6 (Figure 6). 
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Figure 6. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.572; R2Y= 0.6; Q2= 0.461) for light 

honey samples from different producers (black triangles, Producer A; red five-point stars, Producer 

B; grey circles, Producer C, blue five-point stars, Producer D). (b) Loading scatter plot for the model 

coloured according to the correlation-scaled coefficient (* p(corr)≥|0.5|). The colour bar associated 

with the plot indicates the correlation of the metabolites that discriminated the classes. w*c[1] and 

w*c[2] axes represented the weighted correlation vectors. 

Once again from the score plot (Figure 6a), a separation of the samples based on the class 

producer could be observed. The loading scatter plot for the model described the molecular 

components underlying this separation. Specifically, the samples of Producer B, placed at negative 

values of component t1, were characterized by the highest relative content of formate (8.42–8.46 

ppm). Although this compound is normally present in honeys, a possible use of this organic acid in 

the treatment against an ectoparasitic mite (Varroa) could not be excluded [45]. Samples from 

Producer A were characterized by a higher phenylalanine content (7.42, 7.38, and 7.32 ppm) while 

the samples of Producers C and D were basically grouped in a single cluster, with positive values of 

the t[2] component, characterized by the presence of higher tyrosine (7.19 and 6.90 ppm) and other 

unidentified aromatic molecules (8.62 ppm). Interestingly, the latter (bucket at 8.62) was also 

observed but not identified in Finnish lingonberry honey as a specific signal at 8.60 ppm [42]. A 

possible attribution to niacin could be suggested according to the established presence of this 

metabolite in honey [56]. 

Finally, the PLS–DA was conducted on the aromatic region of dark honey samples, considering 

the different producers (Figure 7). 
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Figure 7. (a) PLS–DA t[1]/t[2] scores plot (t[1]/t[2] contribute: R2X= 0.715; R2Y= 0.543; Q2= 0.384) for 

dark honey samples from different producers (black triangles, Producer A; red five-point stars, 

Producer B; grey circles, Producer C, blue five-point stars, Producer D. (b) Loading scatter plot for the 

model coloured according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). The colour bar 

associated with the plot indicates the correlation of the metabolites that discriminated the classes. 

w*c[1] and w*c[2] axes represented the weighted correlation vectors. 

Separation among groups was also observed in this case. The model derived from the analysis 

was a good descriptive and predictive model (four components gave R2X = 0.896, R2Y = 0.935 and Q2 

= 0.803. p[cv] - ANOVA = 8.5 × e−4) characterized by a good separation among the samples from the 

different producers (Figure 7a). The class of dark honey samples from Producer B were observed in 

the score plot at negative values of the t1 component The observed deviation for one of the Sample 4 

technical replicates occurred only for the t[2] component and could be ascribed to the intrinsic sample 

inhomogeneity (the reason for preparing and analyzing technical replicates). Nevertheless, the 

residual variability was associated with decreases in the standard deviation as observed in the 

contribution plot (data not shown) and therefore the Sample 4 remained in the model. On the other 

hand, the three Sample 4 replicates appeared closely related to each other in the aliphatic region 

(Figure 5), and in the overall samples PCA (Figure SM1), Producer B group was characterized by a 

higher content of formate (8.42–8.46 ppm) as already observed for light samples from the same 

Producer B and typical signals of kynurenic acid (KYNA) (8.22, 7.86, 7.55, 6.94 ppm) [21]. Signals of 

phenylalanine (7.42, 7.38, and 7.32 ppm), an aromatic amino acid, characterized the dark honeys of 

producers A and D. Honeydew honey from Producer C was characterized by variables (loadings) 

corresponding to the NMR signals at 7.28 and 6.18 ppm typical of nucleoside derivatives (Figure 7b). 

2.5. Metabolites Comparison 

The variation in discriminating metabolites content for light and dark honeys, among the 

observed groups (Producer classes) was calculated by the integration of selected distinctive unbiased 

NMR signals. In particular, signals corresponding to proline, monoterpenoid acid derivative, lactate, 

ethanol, phenylalanine and lysine were integrated for light honey samples, whereas formate, 

monoterpenoid acid derivatives, proline, lactate, phenylalanine, nucleoside derivatives, succinate, 

and KYNA were integrated for dark honeys. Metabolites that showed a significant variation among 

groups were validated by one-way ANOVA with the HSD post-hoc test and are reported as the mean 

and standard deviation of integrals for each group in Table 2 (Figure SM2 and SM3). 
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Table 2. Quantitative comparison of light and dark honey discriminant metabolites. 

Metabolite 
Chemical Shift 

(ppm) 

F 

Value1 
P-Value2 FDR3 Tukey’s HSD4 

Light honeys 

Proline 2.34 100.38 
3.1531 × e -

12 

1.4709 × 

e−11 

C–A; D–A;C–B; D–B; D–

C; 

monoterpenoid acid 1.37 97.344 
4.2025 × e-

12 

1.4709 × 

e−11 
C–A; C–B; D–C; 

Lactate 1.34 37.096 
2.3111 × e-

8 

5.3937 × 

e−8 
C–A;D–A; C–B;D–B; 

Ethanol 1.17 16.166 
1.4282 × e-

5 

2.4993 × 

e−4 
B–A; C–A; D–B; D–C; 

Phenylalanine 7.42 6.8538 
2.3633 × e-

3 

3.3087 × 

e−3 
C–B; D–B; 

Lysine 2.90 3.5899 
3.1792 × e-

2 

3.7091 × 

e−2 
B–A 

Dark honeys 

Formate 8.45 3239.5 
1.2559 × 

e−12 

7.937 × 

e−12 

B-A; C–A; D–A; B–C; B–

D; 

monoterpenoid acid  1.37 2811.2 
1.9843 × 

e−12 

7.937 × 

e−12 

B–A; C–A; C–B; B–D; C–

D; 

Proline 2.34 172.71 1.3075 × e−7 
3.4866 × 

e−7 
C–A; C–B; C–D; 

Lactate 1.34 96.224 
1.2871 × e-

6 

2.5742 × 

e−6 

A–B; A–C; D–A; C–B; D–

B; D–C; 

Phenylalanine 7.42 64.339 
6.0743 × e-

6 

9.7188 × 

e−6 

A–C; A–D; B–C; B–D; D–

C; 

Nucleoside 

Derivatives 
6.18 57.138 

95529 2 × 

e-6 

1.2737 × 

e−5 
B–A; C–A; C–B; C–D; 

Succinate 2.54 4.3187 4.3517 × e-2 
4.4375 × 

e−2 
D–B; D–C; 

KYNA 6.94 4.2827 4.4375 × e-2 
4.4375 × 

e−2 
B–A; C–A; B–D; 

1 F value = Variance of the group means (Mean Square Between)/mean of the within group variances (Mean 

Squared Error);2 Statistical significance was set at p-value < 0.05 with the 95% confidence level;3 False Discovery 

Rate (FDR); 4 Tukey’s Honestly Significant Difference (HSD) post hoc test. Adjusted p-value (FDR) cutoff: 0.05. 

According to the obtained data, although limited to a relatively low sample number, but 

representing small-scale emerging production, the Salento honey shows at the molecular level, a 

range of specific characteristics features. These features are analogous to those exhibited by similar 

products originating elsewhere and well established in the literature [1,8,11,22,42,46]. Moreover, 

metabolic fingerprinting allowed us to clearly differentiate the studied production according not only 

to the macroscopic season-related character but also to the specific producer. , High levels of proline, 

representing a quality criterion with respect to sugar adulteration, were also observed, although not 

equally distributed in the samples [54]. Therefore, the suggested use of neonicotinoids [32] to control 
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the insect-vectored bacterium Xylella fastidiosa (subsp. pauca) should also take into account the need 

for preserving this emerging local foodstuff product. 

3. Materials and Methods 

3.1. Sampling 

A total of 13 samples of monofloral and polyfloral honeys and honeydew characterized by 

different colours were analyzed. Samples were obtained from thirteen different commercial jars 

supplied by four trusted honey producers located in the Apulia Region (Lecce and Taranto 

provinces). The studied honeys included eight polyfloral, three monofloral (one acacia, one orange, 

and one citrus sample), and two honeydew samples. The botanical origins were assigned according 

to the trusted producers’ declarations. Since polyfloral honeys can be considered a miscellaneous 

pool of samples of various botanical origins [57], whenever possible, the reliability of the declarations 

for monofloral samples was confirmed by the identification of 1H NMR signals of specific markers of 

botanical origin [20,21,23,27]. Nevertheless further melissopalynological analysis was necessary in 

order to characterize the pollen types in the studied samples. The different honey colours were 

assigned according to the trusted producers’ declarations. The different colours were also checked 

by visual comparison supported by unsupervised PCA without any a priori-defined class (including 

colour differentiation) scores plot (Figure SM1 a and b,) and pair-wise supervised analysis (OPLS–

DA) (Figure 3). All honeys were stored at room temperature and in the dark before spectral analysis. 

In order to minimize possible sample inhomogeneity, each honey sample consisted of three technical 

replicates obtained from a single specific commercial honey jar. Honey descriptions and pesticide-

free area production according to the producers (A, Margarito; B, Selvaggi; C, Greco; D, Salento 

Miele) are reported in Table 3. In order to check any possible variability in the sugar content for the 

different honey productions, the caloric content (as Kcal/100 g) of different producers’ honey samples 

(Figure SM4) was determined using an adiabatic calorimeter bomb (IKA C7000, Staufne, Germany). 

Table 3. Origin declaration and detailed description of honey samples. 

Sample Producers Description  Colour Area production 

1 A summer polyfloral dark Ugento (Lecce Province) 

2 A spring polyfloral light Ugento (Lecce Province) 

31 B polyfloral dark Taranto Province 

41 B polyfloral dark Taranto Province 

5 B polyfloral light Trepuzzi (Lecce Province) 

6 B monofloral (orange) light Taranto Province 

7 C spring polyfloral light Copertino (Lecce Province) 

8 C summer honeydew dark Copertino (Lecce Province) 

9 C spring polyfloral light Nardò Copertino (Lecce Province) 

10 D monofloral (acacia) light Surbo (Lecce Province) 

11 D polyfloral light Surbo (Lecce Province) 

12 D honeydew dark Surbo (Lecce Province) 

13 B monofloral (citrus) light Trepuzzi (Lecce Province) 
1. Although with a similar description supplied by the producer, these samples refer to different 

production batches. 

3.2. Sample Preparation for NMR Analysis 

Each of the 13 supplied honeys was used to prepare three technical replicates for a total of 39 

samples. Each sample was obtained by dissolving 100 mg of honey in 600 μl of deuterated water 

(D2O) containing the standard 3-trimethylsil-2,2,3,3-d4 propionic acid (TSP), 0.5 mM. The pH of 
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aqueous solution honey samples was not corrected for slight deviations as the buckets could be 

adjusted in the processing step in order to include possible chemical-shift deviations [12,58]. The final 

solution was placed in an NMR tube (0.5 mm diameter). 

3.3. 1H-NMR Spectra Acquisition and Processing 

All spectra were acquired at a constant temperature (300 K) on a Bruker Avance III 600 MHz 

Ascend NMR Spectrometer (Bruker Italia, Milano, Italy), operating at 600.13 MHz, equipped with a 

TCI cryoprobe (inverse Triple Resonance Cryoprobe Prodigy), incorporating a z axis gradient coil 

and automatic tuning-matching (ATM). Experiments were acquired in automation mode after 

loading individual samples on an integrated Bruker Automatic Sample Changer, interfaced with 

IconNMR software (Bruker). For each sample, a 1H NMR spectrum was acquired with water signal 

suppression (Bruker pulseprogram zgcppr), in a spectral window of 20.0276 ppm (12019.230 Hz), 

with 64 scans and a 90° pulse of 7.620 μsec. After the acquisition, the standard FID processing 

procedures were carried out, by using TopSpin 3.5 (Bruker, Biospin, Italy), such as Fourier transform 

(mathematical operation that converts signals into a frequency spectrum), phase and baseline 

correction, and 0.3 Hz line broadening. All NMR spectra were calibrated with respect to the internal 

standard TSP (δ = 0.00 ppm). The characterization of the metabolites was determined by the analysis 

of two-dimensional homo- and heteronuclear NMR spectra (2D 1H J-resolved, 1H COSY, 1H-13C 

HSQC, and HMBC) and by comparison with the literature data [1,3,11,18,21,22,24,46]. The NMR 

spectra were converted to a suitable form for multivariate analysis by Amix 3.9.15 (Analysis of 

Mixture, Bruker BioSpin GmbH, Rheinstetten, Germany) software. Specifically, each NMR spectrum 

was segmented into areas or histograms, with a fixed base width of 0.04 ppm normal rectangular 

bucketing”). The bucket tables thus obtained were subjected to a standardization procedure, in order 

to minimize the possible differences in the concentration of the various metabolites due to sample 

preparation and/or acquisition conditions. Subsequently, the data matrices (buckets) were subjected 

to centering and scaling operations: The Pareto scaling method, obtained by dividing each variable 

by the square root of the variable standard deviation centered around the mean value, was applied 

[59]. The total sum normalization was applied to minimize small differences due to metabolites 

concentration and/or experimental conditions among samples [59]. The data table, generated by all 

aligned buckets row-reduced spectra, was used for further multivariate data analysis. Each bucket 

row represents the entire NMR spectrum, with all the molecules in the sample. Moreover, each 

bucket, in a buckets row-reduced spectrum, is labeled with the value of the central chemical shift for 

its specific 0.04 ppm width. The variables used as descriptors for each sample in chemometric 

analyses are the buckets. 

3.4. Multivariate Statistical Analysis 

After the data processing step, an exploratory and discriminating analysis was performed, using 

a multivariate statistical approach, with the help of Simca-P version 14 (Sartorius Stedim Biotech, 

Umeå, Sweden) software. In particular, Principal Components Analysis (PCA), Partial Least Squares 

Discriminant Analysis (PLS–DA), and Orthogonal Partial Least Squares Discriminant Analysis 

(OPLS–DA) were performed. Unsupervised methods such as principal component analysis (PCA) 

represent the first step in data analysis. Principal component analysis is a chemometric technique 

aimed at extracting the maximum possible information from a multivariate data structure, 

summarizing it in a few linear combinations of the variables themselves [60]. PCA is frequently used 

in the first data processing step in order to obtain a general description of the samples distribution 

and possible grouping in homogeneous clusters [61]. The possible correlation between the clusters 

distribution of the analyzed samples and the considered classes is carried out with the subsequent 

analyses. By PCA, it is also possible to identify outliers (samples showing characteristics of variability 

of the data particularly different from the others). The assessment of the correlation between the 

clusters distribution of the analyzed samples (observed by PCA) and the considered classes (such as 

variety and/or geographical origin) is therefore carried out by using supervised multivariate 

statistical analyses such as PLS–DA(Projections to Latent Structures Discriminant Analysis, PLS - DA) 
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and OPLS–DA (Orthogonal Partial Least Squares Discriminant Analysis). In the present case, 

discriminating analysis of the PLS–DA type was performed to classify the honey samples and find 

indications for maximizing the separation among the classes (inter-class variability) while 

minimizing the dispersion within each class (intra-class variability). The PLS–DA technique is 

currently the most widely used for the discrimination of samples with different characteristics (by 

treatment, species, origin). The PLS–DA is performed in order to refine the separation between 

groups of observations, rotating the main components, i.e., the axes that express the variance of the 

data, so as to obtain a maximum separation between the classes and information on the variables 

responsible for this separation [62]. OPLS–DA is a modification of the PLS–DA method which filters 

out variation not directly related to the focused discriminating response. This is accomplished by 

separating the portion of the variance useful for predictive purposes from the non-predictive variance 

(which is made orthogonal). The result is a model with improved interpretability [63]. Validation of 

statistical models was performed and further evaluated by using the internal cross-validation default 

method (7-fold) and with permutation test (20 permutations) available in SIMCA-P software [64]. R2, 

Q2, and p[CV - ANOVA] parameters was used to describe the quality of the model. The first (R2) is a 

cross validation parameter defined as the portion of data variance explained by the models and 

indicates the goodness of fit. The second (Q2) represents the portion of variance in the data predictable 

by the model. The minimal number of components required can be easily defined since R2(cum) and 

Q2(cum) parameters display completely diverging behavior as the model complexity increases [65]. 

Cross-validated analysis of variance (p[CV - ANOVA]) provides a p-value indicating the level of 

significance of group separation in PLS–DA and OPLS–DA [63,65]. The variables responsible for the 

observed discrimination were identified by using the statistical tool loading scatter plot. This tool 

creates a scatter plot of the loading vectors for the first two components. The change in discriminating 

metabolite content among the observed groups was determined by analyzing the integrals of selected 

distinctive unbiased NMR signals after spectra normalization (to the total spectrum excluding the 

residual water region) [24,25]. Results, as mean intensities and standard deviation of the selected 

NMR signals, were validated by analysis of variance (one-way ANOVA) with Tukey’s honestly 

significant difference (HSD) post-hoc test by using MetaboAnalyst software [66]. Statistical 

significance was set at least at an adjusted p-value < 0.05. The use of chemometric methods, both of 

an exploratory nature and of a discriminating or classifying nature, of the metabolic components 

present in the samples, to verify the ”clustering” of the samples. The metabolomics based on Nuclear 

Magnetic Resonance (NMR) spectroscopy, allows to simultaneously detect a wide range of 

structurally different metabolites, bringing useful information to the discrimination of the samples. 

4. Conclusions 

In this work, the application of chemometric methods to 1H NMR spectra allowed us to 

preliminary characterize and discriminate the honeys produced by four different producers in a sub 

region (Salento, Lecce and Taranto Provinces), of Apulia, in South-East Italy. To the best of our 

knowledge, this research, based on an 1H-NMR fingerprinting approach, represents the first study 

applied to honeys from the Salento area within the Apulia Region. The suggested use of harmful 

neonicotinoids in the Xylella fastidiosa-infected area represents a serious risk for biodiversity and the 

ecosystem; these chemicals are highly toxic to insects such as bees, species of vital importance to 

humans [33]. Thus, the present preliminary study of Salento honeys demonstrated the need to protect 

this local natural food which could be clearly and profitably characterized as similar products 

reported in the literature. The unsupervised PCA showed among the other feature-related natural 

clustering, a clear separation of the samples into two macro classes according to the light and dark 

colour of the samples. We refined the separation analysis between the two observed macro-classes, 

dark and light samples, by a pair-wise supervised OPLS–DA aimed to specify the molecular 

components responsible for the observed differences. Interestingly, in accordance with literature 

data, the signals in the aliphatic region and those related to the phenolic compounds characterized 

specifically only the dark samples. The two macroclasses were analyzed separately, by discriminant 

analysis (PLS–DA), considering aliphatic and aromatic regions, in order to observe the distribution 
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of the samples according to the specific local producer. Signals of molecules responsible for the 

discrimination among the different local producers were clearly identified, and the differences 

among discriminant metabolites were quantified and statistically validated. Among these, high levels 

of proline, representing a quality criterion with respect to sugar adulteration, were also observed, 

although not equally distributed in the samples . This approach, based on the combination of NMR 

spectroscopy with unsupervised (PCA) and supervised analysis (PLS–DA) was confirmed as a high 

efficiency tool to characterize naturally complex honey samples. Thanks to the possibility of 

automation and the low cost per analysis required for screening, 1H-NMR profiling has already 

confirmed the potential for foodstuff traceability and authenticity assessment for commercial use. 

Although further investigations such as melissopalynological analysis are needed to better 

characterize this local product, the obtained data provide useful information to gain knowledge about 

Salento honeys. Composition features arising from this NMR–chemometric study as those exhibited 

by similar products originating elsewhere could be proficiently used as a starting point for a complete 

characterization of local honey production. Therefore, the impact on this production should be 

carefully considered when suggesting extensive use of pesticides for Xylella fastidiosa vectors fighting 

purposes. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1 (a) (b). PCA 

t[1]/t[2] scores plot for the studied samples on the bucket-reduced entire spectra. Figure S2. Discriminant 

metabolites multiple comparison graphical summary for light honey samples. Figure S3. Discriminant 

metabolites multiple comparison graphical summary for dark honey samples. Figure S4. Caloric content (mean 

± S.D.; n = 3) of different producers’ honey samples. 
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