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Abstract: Public transport systems’ effectiveness is a well-recognized pillar of their sustainability.
In this study, we employed order-m efficiency estimators to investigate the effectiveness of 57
bus public transport operators that provide services in both large and medium sized European
cities. Their effectiveness was simulated through a tailored production model and was evaluated
against critical exogenous variables, which were mostly extracted from Eurostat database. Results
showed that the effectiveness of the examined operators is generally satisfactory. Our research
suggests that certain exogenous factors significantly affect operators’ effectiveness and thus create
either advantageous or disadvantageous operational environments for maintaining public transport
sustainability. Among these factors, household size, unemployment and car ownership rates were
found to be unfavorable to bus public transport operations. Contrary to them, the presence of
university students and metro systems in cities create a favorable operational environment for bus
public transport effectiveness. These findings assist in the identification of sustainable development
policies that would both contribute to public transport sustainability and to the fulfillment of wider
community goals. Our findings also rationalize benchmarking exercises in the public transport
industry, since they enable fair performance comparisons between systems that seek to incorporate
successful management practices to improve their sustainability.

Keywords: public transport; conditional non-parametric analysis; data envelopment analysis;
performance; exogenous factors; benchmarking; sustainable urban mobility

1. Introduction

Sustainable transport systems seek to provide efficient services while minimizing the environmental
impact [1]. Public transport (PT) sustainability is typically assessed against four categories of indicators,
which are (a) environmental, (b) social, (c) economic and (d) system effectiveness indicators [2,3]. The latter
category, which is an addition to the three basic pillars of sustainability, has two essential components:
(a) cost-effectiveness, i.e., the relationship between PT physical inputs (such as vehicles, labor and
energy) and consumed PT services (ridership) and (b) service effectiveness, i.e., the relationship between
produced PT services (such as vehicle or seat kilometers) and consumed PT services [4,5].

In this context, to ensure their sustainability, PT agencies, among others, need to come up with
successful management practices that will enable them to improve both effectiveness components.
Cost-effectiveness reflects the PT agencies’ point of view [6]. It is evaluated through traditional
indicators, such as the operating expense per passenger or passenger-km, which, however, are not
always linked to customer-oriented issues [6,7]. Service-effectiveness better represents the passengers’
point of view, since the consumption of PT services is seriously dependent on their quality [8].
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The delivered quality of PT services, however, does not always coincide with the perceived or desired
quality from PT customers [9]. Delivered quality can be measured objectively by indicators, such as PT
service frequency and speed, but in the case of perceived and desired quality, customer satisfaction
and travel preferences surveys have to be employed in order to determine subjective evaluations
of PT services’ aspects, such as accessibility, cost, comfort, travel time [7–10]. Therefore, in order to
obtain a comprehensive evaluation of PT effectiveness, PT agencies develop performance measurement
systems, which reflect both PT service providers’ and passengers’ viewpoints and thus incorporate
both traditional and quality of service indicators [6,11,12]. To this end, any PT management practices
that seek to increase effectiveness should aim to utilize available PT resources in order to both decrease
operating expenses and improve quality of services so as to attract and sustain an important share
of travelers.

However, in the PT sector, as with any other industry, the management practices not only
shape effectiveness levels but also the external environment in which the respective organizations
operate. The exogenous or external variables are the variables that may influence the execution and
effectiveness results of PT operations but without being under the direct control of the respective PT
agencies [13–15]. Variables such as the type of service area [16], type of ownership [17,18], structure
of PT network [12,17,19], population density [20–22] and traffic congestion [17,23] are only some
of the external variables that scholars have discussed regarding their influence on PT performance
(effectiveness is the one of the two basic elements of PT performance, the other being efficiency [4,5]).
In this respect, the operational environment of PT systems should be defined by all the exogenous
variables that affect the production of PT services. If operational environment is not properly considered,
PT effectiveness, and thus sustainability, evaluations will be probably biased and lead to misguided
decision-making, especially when benchmarking comparisons and exchanges of best practices are
performed among PT systems in different cities and operational environments.

This study focused on PT system effectiveness as a discrete component of PT sustainability.
We evaluated the effectiveness of 57 bus PT operators in Europe and investigated the impact of the
exogenous environment on their effectiveness scores. We employed advanced non-parametric efficiency
measurement methods, namely order-m measures [24], to indicate the exogenous determinants of bus
PT effectiveness. In contrast to the traditional non-parametric techniques, i.e., data envelopment analysis
(DEA) and free disposal hull (FDH), which have been widely applied in PT related literature [25],
the order-m method facilitates more robust and reliable inclusion of external factors to the production
processes explored [15,26]. During the last decade, this method was gradually adopted in order
to investigate the impact of exogenous variables on production processes, which refer to a wide
range of industries and disciplines including, inter alia, the educational sector [27], the financial
sector [28], hospitals [29] and public services [30]. To the best of our knowledge, the order-m method is
a relatively unexplored technique in PT research with very few applications so far [14]. Non-parametric
techniques, in general, also avoid the weaknesses that are associated with indicators’ comparisons
(Fox’s paradox) [31–33], which have been previously used for PT sustainability assessments [2,3].

The remainder of the paper is organized as follows. The next section reviews the external factors
that influence PT effectiveness along with the corresponding analysis tools that have been employed.
Section 3 analyzes the production model we built to evaluate PT system effectiveness and gives the
basic mathematic formulae for performing the order-m methodology in this study’s context. The data
used for this study are presented in Section 4. Section 5 is devoted to the results and their discussion.
Section 6 presents our conclusions.

2. Literature Review

Though the studies that focus on PT sustainability assessment are few [2], they explicitly highlight
the importance of PT effectiveness in the overall appreciation of system sustainability. Specifically,
Miller et al. [3] used four PT effectiveness indicators, i.e., PT occupancy rates, reliability, annual PT
trips per capita and modal split, to demonstrate the role of effectiveness in evaluating the sustainability
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of various PT modes in Vancouver, Canada. De Gruyter et al. [2] used a similar list of PT effectiveness
indicators for measuring the PT sustainability in 26 cities of Asia and the Middle East. The authors
emphasize the fact that operational environment characteristics, such as urban form and land use
densities of the examined cities, may greatly determine the PT sustainability assessment results [2].

The studies that have investigated the impact of exogenous variables on PT effectiveness can
be divided into two categories: (a) studies that attempt to demonstrate the magnitude and the
sign of exogenous influence on PT effectiveness indicators using regression analysis techniques and
(b) benchmarking exercises, where non-parametric methods (DEA and FDH) are usually employed in
order to simulate the cost and service effectiveness of different PT agencies and estimate performance
scores and rankings.

Regarding the first category of studies, PT effectiveness is usually investigated by examining the
relationship between PT ridership indicators and external variables. The respective regression models
use dependent variables, such as PT mode shares for commuting or for other travel purposes [34],
the number of daily or annual PT boardings in absolute terms or per capita [20,22,35–37] and PT
supply and demand figures, such as the number of seat-kms and passenger-kms per capita [21]. In his
meta-analysis, Leck [38] reviewed regression models that were developed at local, state and national
levels in the USA and showed that PT use had a statistically significant and positive relationship
with residential density, employment density and mix of land uses. Paulley et al. [23] synthesized
findings from related studies in the UK and concluded that income and private car ownership rates
are fundamental exogenous variables for determining PT demand. Ingvardson and Nielsen [36]
developed linear regression models to interpret PT ridership per capita across 48 European cities and
found that cities with higher economic inequality showed lower PT ridership. Cordera et al. [39],
however, detected a positive impact on bus PT ridership during the period of economic recession in
Spain, where high unemployment rates appeared. Schwanen et al. [40] analyzed the Dutch national
travel survey data and proved that income is negatively correlated with PT use for commuting but
positively correlated for leisure related trips. In the same study, it is found that women travel by PT,
bicycle and on foot more often than men. Albalate and Bel [21] analyzed PT supply and demand data
from 45 European cities using regression analysis models and found that certain institutional and
geographical variables, such as being a political capital and contracting out to private firms, influence
supply and have some influence on demand as well. Taylor et al. [20] investigated PT demand in 256
urbanized areas in the USA and observed that PT operations are favored in cities with, among others,
a high percentage of college students and immigrants. Kitamura et al. [37] discovered no significant
correlation between PT patronage and household sizes in the San Francisco Bay Area. With regard
to commuting trips, Schwanen et al. [40] did not find a statistically significant correlation between
age and choice of transport mode. The negative correlation between car ownership rate and PT use
has been highlighted in many studies [20,21,35,40–42]. Souche [22] selected the cost of using a private
car as one of the independent variables of her model and found that it is positively correlated with
PT demand.

The studies of the second category compare one or more performance aspects among n PT
systems, where each performance aspect is determined by the composition of a particular production
model. These production models may reflect PT efficiency, effectiveness or combined expressions of
PT performance. The effect of external factors on DEA/FDH performance scores is determined by
performing one-stage and/or two-stage analysis. In the one-stage process, the exogenous variables are
included as inputs or outputs of the production models, while in the two-stage process DEA/FDH
performance scores are regressed on exogenous variables so as to explain performance differences
among compared units. More specifically, Kerstens [43] developed DEA and FDH production models
to explore the performance of more than 100 urban PT operators in France. He used a two-stage
analysis and found that population density, network speed and age of fleet did not considerably
influence PT performance. In the same study, the private ownership of operators and duration of PT
contract, among others, created a favorable operational environment for PT. Viton [17] analyzed supply
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and demand data of 217 bus PT providers in the USA using DEA techniques. He both employed one-
and two-stage analyses to estimate the impact of traffic congestion, terrain, stop-spacing, average
fleet age, extent of service and ownership (public/private) status on PT performance but found no
strong correlations for his hypotheses. A great variety of external variables, such as the predominant
activity of cities (i.e., industrial or concentrated on services), the geographical extension of cities,
population density, number of cars, income per capita and age of the population were tested against
the DEA performance scores of 15 bus transport providers of cities located in Catalonia, Spain, but
no significant exogenous impact on performance was detected [18]. Boame [13] discovered that the
average commercial speed had a statistically important and favorable effect on the performance of
30 Canadian bus PT systems and justified this on the grounds of lower congestion and costs that
appeared in their networks. Karlaftis [44] analyzed data from 256 US bus PT systems and built
DEA models to evaluate their efficiency, effectiveness and combined performance over a five-year
period. Under an on-stage analysis setting, he highlighted the positive relationship between efficiency
and effectiveness as well as the existence of scale economies, indicating the role of bus fleet size
in shaping PT performance ratings. For Norway, Odeck [45] performed two-stage DEA analysis
to examine whether the effectiveness of 33 bus operators is affected by the size of the providers,
their ownership status and the type of service area (urban or rural) and concluded that none of
these factors exerted a significant influence. Pina and Torres [46] proved that the deregulation of PT
sector and the introduction of competitive tendering favored the performance of 73 bus PT systems
globally by using one- and two-stage DEA methods. Sampaio et al. [47] developed a DEA model to
compare cost-effectiveness of 19 metropolitan PT systems globally and stressed the importance of
power partition among the components of the administrative agency of the transport system as well as
the diversity of tariff structure for achieving better performance results. Merkert et al. [48] performed
a DEA global benchmarking exercise to compare performance of 58 bus rapid transit systems and
pointed out population density, status of ownership and number of stations as serious explanatory
factors of cost-effectiveness. Georgiadis et al. [14] developed a conditional non-parametric setting
to highlight population density as a critical exogenous determinant of bus PT effectiveness within a
sample of 34 multimodal PT systems worldwide.

3. Methodology

Our methodological framework relies on a tailored production model and synthesizes four
analysis settings. To simulate the effectiveness of bus PT operators, we built a production model that
incorporates both cost-effectiveness and service effectiveness dimensions and thus integrates both
PT agencies’ and communities’ objectives (Section 3.1). Then, we used order-m efficiency estimators,
originally developed by Cazals et al. [24], to obtain bus PT effectiveness scores and rankings (Section 3.2).
We used the conditional non-parametric analysis framework, proposed by Daraio and Simar [15,26],
to indicate and describe the influence of exogenous factors on bus PT effectiveness (Section 3.3). Within
this framework, we adopted a more recent and reliable approach for selecting the bandwidth required
to calculate the conditional order-m measures [49]. Finally, in order to highlight the statistically
significant exogenous factors in our nonparametric environment, we implemented a consistent test
of significance, which was originally proposed by Racine et al. [50] and Racine [51]. The following
sub-sections present in more detail our methodological concept.

3.1. Production Model

In order to evaluate bus PT effectiveness and investigate the exogenous factors that influence
it, we first need to define a production model that demonstrates the basic production processes of
cost-effectiveness and service effectiveness. To construct this model, we selected the number of bus
vehicles as an indicator of physical inputs (x1), the number of total vehicle kilometers as an indicator
of the produced services (x2) and the number of passenger boardings as a variable that represents
the amount of consumed services (y). The simultaneous combination of all these three variables into
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a production model allows the development of a combined effectiveness production model [14,33].
In terms of cost-effectiveness (operator’s point of view), our model’s inputs, i.e., the number of bus
vehicles and vehicle kilometers, reflect a great deal of the expenses required for producing PT services,
while our model’s output, i.e., passenger trips, is associated with the acquired revenue. In terms of
service effectiveness (passenger’s point of view), the model’s inputs are related to the delivered quality
of PT services, while the model’s output is related to the extent to which PT services are attractive
to the travelers. Specifically, vehicle kilometers, among others, represent the temporal availability of
PT services and along with number of vehicles demonstrate the capacity availability of the system.
The size of the bus fleet, on its own, also reflects the capability of the operators to more successfully
respond to vehicle breakdowns and maintain the required number of scheduled buses. This enables
them to keep higher service reliability rates and allows for a better distribution of capacity availability
within PT networks, especially if these extend in multiple directions to accommodate the integration
of various districts. Though the passenger kilometers, as a production model output, would better
describe the consumption of PT services, our model uses passenger boardings instead. This is because
the use of passenger kilometers would be associated with two shortcomings, one theoretical and one
practical. First, passenger kilometers would be very much correlated with one of our model’s inputs,
i.e., vehicle kilometers, and thus our results would be biased in favor of the comparatively large bus
PT operators [52]. Secondly, passenger kilometers is a variable that is less often reported by bus PT
operators [53], and thus we would not be able to compile a critical sample of observations for our
analysis. We selected an output-orientation for this production model, since the overall sustainability
objective of PT systems should be to achieve higher patronage figures by enhancing the management
(utilization, quality) of their available resources and not necessarily by increasing them.

3.2. Bus PT Effectiveness Estimation

In a non-parametric environment, we may assume that a group of Decision Making Units (DMUs)
can produce a set of q outputs by utilizing a set of p inputs following a so-called production process.
The production set Ψ includes the points that represent the operation of DMUs [15] (Equation (1)):

Ψ =
{
(x, y)

∣∣∣x ∈ Rp
+, y ∈ Rq

+ , (x, y) is feasible
}

(1)

In this study we treated each European bus PT operator as one DMU, and as stated before we
have p = 2 inputs and q = 1 output. Feasibility of the vector (x, y) implies that within the operator
under examination, it is physically possible to convert the input quantities x1, . . . , xp into the output
quantities y1, . . . , yq. DEA [54] and FDH [55] methods compare the performance of j = 1, 2, . . . .n
DMUs, with p input items (x1 j, . . . , xpj) and q output items (y1 j, . . . , yqj), against an efficient frontier.
In the case of DEA, this frontier is constructed by the linear combination of points that stand for the
best performing DMUs, which are found within Ψ. Contrary to the DEA frontier, the FDH efficient
frontier does not account for the convexity assumption, which implies that when two observations
(x1, y1) and (x2, y2) are feasible then all the linear combinations that lie between them are also feasible.

According to Daraio and Simar [26], the production process can be also described by the joint
probability measure of (X, Y) on Rp

+ ×R
q
+. Equation (2) gives the corresponding probability function

HXY(., .):
HXY(x, y) = Prob (X ≤ x, Y ≥ y) (2)

In this paper, we consider an output orientation for bus PT system effectiveness assessment, since
the objective of the production model (Section 3.1) is to achieve as much as high ridership figures
(outputs) for a given level of vehicles and vehicle-kms (inputs). In the output-oriented framework,
Equation (2) can be decomposed as follows [15] (Equation (3)):

HXY(x, y) = Prob (Y ≥ y
∣∣∣X ≤ x)Prob(X ≤ x) = SY|X (y

∣∣∣x)FX(x) (3)
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where SY|X (y
∣∣∣x) = Prob (Y ≥ y

∣∣∣X ≤ x) and FX(x) = Prob(X ≤ x). Therefore, for each DMU0 (x0 y0),
the output-oriented efficiency score λ represents the relative increase of outputs that this DMU0 would
require so as to reach the best performing observations within its sample (Equation (4)) [15]:

λ (x, y) = sup
{
λ
∣∣∣SY|X (λy

∣∣∣x) > 0
}
= sup

{
λ
∣∣∣HXY(x,λy) > 0

}
(4)

DEA and FDH methods suffer from the curse of dimensionality, and their results may be biased
due to extreme and outlier observations [15]. This mostly happens because both DEA and FDH are
full frontier methods, i.e., their production sets Ψ enclose all the (x, y) observations. Responding to
these drawbacks, Cazals et al. [24] originated the concept of partial frontier methods. They labelled
them as order-m frontiers because they allow the assessment of a DMU0 against m other DMUs, where
m ≤ n. These m DMUs operate with inputs ≤ X0. Therefore, the order-m method provides for a less
strict assessment of DMUs compared to the DEA and FDH techniques. The order-m output efficiency
score is defined as follows [26] (Equation (5)):

λ̂m,n(x, y) =
∫
∞

0
[1−

(
1− ŜY|X,n(uy

∣∣∣x))m
]du =λ̂n(x, y) −

∫ λ̂n(x,y)

0

(
1− ŜY|X,n(uy

∣∣∣x))m
du (5)

3.3. Assessment of Exogenous Influence

Daraio and Simar [15,26], used the probabilistic approach of Equation (2) in order to explore the
influence of other exogenous variables Z ∈ Rr, which do not participate as inputs or outputs of the
production process but possibly affect its results. Equation (6) gives the conditional production process,
which they proposed, and represents the probability of a DMU (x, y) to operate under lower efficiency
levels when compared with other DMUs, which function under the same set of exogenous factors Z = z:

HXY|Z(x, y
∣∣∣z) = Prob (X ≤ x, Y ≥ y

∣∣∣Z = z) (6)

Within this setting, Equation (7) gives the conditional order-m output efficiency score [15]:

λ̂m,n(x, y
∣∣∣z) = ∫

∞

0 [1−
(
1− ŜY|X,Z,n(uy

∣∣∣x, z)
)m
]du

= λ̂n(x, y
∣∣∣z) − ∫ λ̂n(x,y|z)

0

(
1− ŜY|X,Z,n(uy

∣∣∣x, z)
)m (7)

In order to estimate λ̂m,n(x, y
∣∣∣z), we may utilize the following non-parametric smoothed estimator

of SY|X ,Z(y
∣∣∣x, z) [15] (Equation (8)):

ŜY|X,Z,n(y
∣∣∣x, z) =

∑n
i=1 I(Xi ≤ x, Yi ≥ y)K

( z−Zi
hn

)
∑n

i=1 I(Xi ≤ x)K
( z−Zi

hn

) (8)

where K and hn, are the kernel and the bandwidth, which are needed for smoothing on Z. In this
research we used the Epanechnikov kernel function when Z was a continuous variable. Aitchison and
Aitken [56] kernel function was used when Z had unordered discrete values, and Wang and Ryzin [57]
kernel function was used when Z had ordered discrete values. We used the process developed by
Simar et al. [49] to estimate the bandwidth hn. The required calculations were made in R version 3.0.2
software (R Foundation for Statistical Computing, Vienna, Austria) [58] on the “np” package [59].

In order to determine the impact of each external factor Zi (see Section 4.2) on the production model
process of Section 3.1., we followed the method proposed by Daraio and Simar [15,26]. We produced
scatter plots that combined the ratios Q̂z,m,n (Equation (9)) and the Zi values. In the scatter plots we
demonstrated the relationship between these two sets of variables by their smoothed nonparametric
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regression line ĝ(z) (Equation (10)). This line was estimated by the simple smoothed nonparametric
regression estimator of Nadaraya [60] and Watson [61]:

Q̂z,m,n =
effm(x, y

∣∣∣z)
effm(x, y)

=
λ̂m (x, y

∣∣∣z)
λ̂m (x, y)

(9)

ĝ(z) =

∑n
i=1 K

( z−Zi
hn

)
Q̂z∑n

i=1 K
( z−Zi

hn

) (10)

In our output-oriented setting, if the regression line ĝ(z) is increasing along with Zi, then we may
characterize the influence of Zi as favorable to the production process. If it is decreasing, then this
influence will be unfavorable. If ĝ(z) remains straight, i.e., λ̂m (x, y

∣∣∣z) = λ̂m (x, y), then Zi will have no
impact on the production process.

In this paper, we used the Gauss kernel function and the least square cross validation criterion to
select the bandwidth hn in Equation (10) [8]. We performed the estimations of ĝ(z), and we produced
the respective scatter plots by employing the R version 3.0.2. software [58] and the “np” package [59].
Furthermore, we followed the nonparametric significance test of Racine et al. [50] and Racine [51] to
indicate the exogenous factors that significantly influence the modeled production process. This test is
analogous to a simple t-test in a parametric regression setting [59], and when it returns a p-value lower
than 0.05, it highlights a statistically important influence of Zi on the variation of Q̂z,m,n ratios.

This conditional non-parametric environment for assessing exogenous influence avoids
incorporating the theoretical and practical shortcomings of the one-stage and two-stage DEA methods,
which have been extensively applied in PT DEA literature (Section 2). Specifically, in the case of
the one-stage method, Daraio and Simar [15] described two disadvantages: (a) we have to assume
beforehand the positive or negative role of an external indicator to the production process so as to
appropriately allocate it to the production model, and (b) we have to assume the free disposability
of the augmented Ψ. Regarding the two-stage approach, (a) Boame [13] noted that results may be
biased if the variables used in the first-stage are highly correlated with the second-stage variables,
and (b) Simar and Wilson [62,63] proved that bootstrap algorithms are necessary to remove bias from
the results of such regression analyses.

4. Data

The data of our study were mainly compiled from two databases: (a) the Union Internationale
des Transports Publics (International Association of Public Transport) Digest (UITPD) database [53]
was our main source for the supply and demand variables of European bus PT operators, and (b) the
Eurostat Urban Audit Database (EUAD) [64] was our main source for the exogenous variables, which
define the operational environment where these PT operators provide services. The reference year
for both data extractions is 2009. In this year, we were able to observe a satisfactory availability of
data in both databases regarding the bus PT operators in the UITPD and their corresponding cities in
the EUAD so as to examine as many exogenous variables and operators as possible. This data-driven
approach resulted in the selection of n = 57 European bus PT operators for further analysis.

4.1. Bus PT Effectiveness Variables

The UITPD is a global PT database of supply and demand figures concerning operator members
of the UITP. The UITPD contains basic annual service variables for PT operators, such as the type of PT
service (e.g., urban, rural), number of staff, passengers, passenger-km, vehicle-km, number of road/rail
vehicles, number and length of PT lines. These variables are reported only for fixed routes and not for
night or other on-demand routes. Access to the UITPD is only allowed for UITP subscribers. In this
study we compiled a sample of n = 57 European bus PT operators who either systematically report
full annual data in the UITPD or announce annual performance reports publicly. Table 1 provides
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some basic statistics of the three PT variables we used in order to simulate the production model for
evaluating the effectiveness of these operators. Table 1 figures indicate that our sample represents both
large and small sized PT operators.

Table 1. Descriptive statistics for the bus public transport (PT) variables of the 57 operators in our
sample (2009) [53].

# Variables Mean Standard
Deviation Max Min

y Passenger boardings
(millions) 75.22 104.32 447 8.50

x1
Number of buses

(equivalent) 370.67 397.35 2060 64

x2
Total vehicle-km

(millions) 17.67 19.89 95.54 3.60

4.2. Exogenous Variables

The EUAD collects 170 variables and calculates 60 indicators that cover several aspects of life in
over 1500 European cities [65]. EUAD information was collected for two basic spatial reference levels in
each European city: (a) the city and (b) the functional urban area (FUA). The city area is determined by
its administrative boundaries, while the FUA includes the city and its commuting zone. Appendix A
reports the population figures of FUAs for all the 57 cities we considered in our analysis [64]. Each of
these cities is one-way assigned to a bus PT operator in our sample. Of the total of 57 cities, 46 come
from the largest European countries, i.e., France (22), Germany (8), Italy (8) and Spain (8). Almost half
of the cities (28) range between approximately 150,000 and 500,000 residents. Eleven cities exceed
1 million citizens, and the largest of them are in Germany and Spain (Table A1, Appendix A).

Table 2 reports the descriptive statistics for the 16 exogenous indicators (z1 − z16), which we
tested regarding their influence on the effectiveness of the n = 57 bus PT operators. We considered
the five major groups of factors that affect PT ridership, i.e., the output of our production model.
These groups are [20]: (a) regional geography (urbanization, population density, population, climate
etc.), (b) metropolitan economy (GDP, unemployment etc.), (c) population characteristics (age
distribution, percent of immigrants and college students etc.), (d) auto/highway system (congestion,
parking availability, car ownership rates etc.) and (e) PT systems characteristics (fares, transit modes,
service frequencies etc.). Due to the fact that at the European level there are no standardized databases
to fully cover all these aspects, we used the EUAD to finally select a short but yet comprehensive list of
external variables to account for, as much as possible, these five groups of indicators. Therefore, Table 2
variables refer to demographics (z1 − z6), living conditions (z7, z8), economy (z9, z10), urban transport
(z11 − z14) and other secondary factors (z15, z16) that characterize the n = 57 PT operational environments
in the cities under examination. We underline the fact that we did not include variables that describe
PT services’ characteristics, such as frequency, fares and reliability, since these variables cannot be
considered as exogenous given that they are more under the control of PT operators. No strong
correlations (coefficients up to 0.5) were found among Table 2 variables, and we were able to examine
them independently from each other [15]. The variables mainly derive from FUAs, considering that
FUAs better capture the service areas of the n = 57 European bus PT operators, since urban bus
networks usually extend beyond the administrative boundaries of cities and are used by the commuters
who reside in cities’ suburbs. Exceptions were made when certain exogenous indicators were only
measured by the EUAD at city level (z14 − z16) or metropolitan (z6) and Nomenclature of territorial
units for statistics (NUTS)-3 level (z8).
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Table 2. Descriptive statistics for the exogenous variables in our sample and initial hypotheses for their
impact on bus PT effectiveness (2009) [64].

# Exogenous Variable Mean Std. Dev. Min Max Hypothesized
Influence

z1 Population on the 1st January, total 970,726.47 1,240,633.89 162,575.00 6,271,638.00 Favorable
z2 Women per 100 men 106.69 3.46 100.62 121.46 Favorable

z3

Age dependency ratio
(population aged 0–19 and 65 and

more to population aged 20–64)
66.87 5.76 45.73 75.87 Ambiguous

z4 Population change over 1 year 100.77 0.95 98.86 103.86 Favorable

z5
Non-EU foreigners as a proportion of

total population 4.74 3.48 1.16 19.32 Favorable

z6
Students in higher education per 100

resident population aged 20–34 50.68 30.99 13.38 129.46 Favorable

z7 Population Density (inh/Km2) 279.10 249.17 60.00 1221.00 Favorable
z8 Average size of households 2.24 0.18 1.83 2.69 Ambiguous

z9
Gross Domestic Product per

inhabitant in PPS of NUTS-3 region 29,616.67 12,816.36 14,900.00 76,200.00 Unfavorable

z10 Unemployment rate (%) 10.07 3.01 3.91 15.80 Favorable

z11
Number of registered cars per

100 population 49.53 8.46 19.60 66.70 Unfavorable

z12
Private/Public operator (1 = private,

2 = public) 1.70 0.46 1.00 2.00 Ambiguous

z13 Bus fleet size (vehicles) 370.67 397.35 64.00 2060.00 Unfavorable

z14

Mix of operator’s PT modes
(1=only buses, 2=buses and tram,
3=buses and tram or/and metro)

1.65 0.79 1.00 3.00 Ambiguous

z15
Country Capital (Capital = 1,

Non-Capital = 2) 1.84 0.37 1.00 2.00 Ambiguous

z16 Total hours of sunshine 5.65 1.47 3.90 8.30 Ambiguous

We considered previous research findings (Section 2.) in formulating our initial hypotheses
for all 16 exogenous variables regarding the sign of their influence on bus PT effectiveness (last
column of Table 2). In short, urbanized areas with increasing population numbers should generally
favor PT [14,20,22]. There were studies [40] that highlighted comparatively greater PT use by women.
Population density has been repeatedly associated with beneficial impacts on PT performance [14,38,48].
Cities with comparatively lower GDP and higher unemployment rates probably create more favorable
PT operational environments [23,39]. Percentages of college students and foreigners are generally
positive exogenous factors [20]. A lot of studies have demonstrated the negative influence of car
ownership rates on PT [20,21,35,40–42]. We selected an unfavorable impact for the bus fleet size
due to the possible existence of economies of scale [44]. The exogenous indicators, which had been
either associated with mixed results in previous studies or had been comparatively less explored,
were assigned with ambiguous impact. In our analysis, if cities or FUAs had a missing value for the
exogenous variable under examination, then these cities or FUAs were temporarily kept out from the
analysis of the respective exogenous variable.

5. Results and discussion

5.1. Bus PT Effectiveness Scores

Table 3 presents partial frontier (order-m) performance scores for the combined effectiveness
production model of the n = 57 European bus PT operators. Performance scores are obtained from
Equation (5) for each bus PT operator separately (Table 1 figures) and appear as 1/λ̂ values to ease our
discussion. To save space, we present a summary of them. We tested several values of m to monitor
the percentage of bus PT operators that were left out of the order-m frontier (1/λ̂ > 1). Since this
percentage remained very stable for m > 30, we can finally select m = 40 to discuss the obtained
results [15,24]. Under m = 40, 20 bus PT operators were found that have effectiveness scores equal to
or greater than one (1/λ̂ ≥ 1) and therefore can be considered as best-performing examples among
their peers in our sample. This best-practice group of operators represents the ( 20

57 =) 35% of all 57
bus PT operators. The worst performing operator should increase its ridership by ( 1

0.335 = 2.985)
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198.51%, without using more inputs (i.e., vehicles and vehicle km) in order to reach the best performing
operators for its case. On average, however, a bus PT operator produces a level of ridership (output)
that is equal to 0.784 times the expected value of the maximum level of ridership of m = 40 other
operators drawn from the population of operators using a level of input, which is equal to or less than
the operator under evaluation. Table 3 also shows that these findings do not greatly deviate for the
other m values that were tested and thus indicate a generally satisfactory PT effectiveness level within
our European sample. The next section discusses whether specific exogenous factors can explain the
contrasts that were observed in the effectiveness scores of these bus PT operators.

Table 3. Summary of order-m output-oriented performance scores for various m values.

Statistic
Order-m Performance Scores

1/λ̂m=10
m,n 1/λ̂m=20

m,n 1/λ̂m=30
m,n 1/λ̂m=40

m,n 1/λ̂m=50
m,n

Mean 0.970 0.850 0.806 0.784 0.770
Standard deviation 0.394 0.303 0.272 0.257 0.248

Maximum 2.047 1.563 1.360 1.248 1.178
Minimum 0.376 0.344 0.337 0.335 0.334

Efficient bus PT operators 24 22 20 20 19

5.2. Exogenous Impact on Bus PT Effectiveness

Table 4 presents the results of the methodology explained in Section 3.3 and shows the influence,
which the selected 16 exogenous variables (Table 2) exhibit, on the combined effectiveness of the
n = 57 European bus PT operators. Conditional order-m scores were estimated for each bus operator
separately (Equation (7)) using the unconditional ones that were discussed in Section 5.1. Third and fifth
column of Table 4 interpret the scatter plots of the ratios Q̂z,m,n (Equation (9)) along with the smoothed
nonparametric regression lines ĝ(z) (Equation (10)). These scatter plots are given in Appendix B
(Figures A1–A4) for the exogenous indicators that had a statistically significant influence on bus PT
effectiveness (fourth column of Table 4).

The first six exogenous variables in Table 4 account for the population characteristics of the
examined European cities. In line with our initial hypothesis, total population (z1) has a favorable
effect on bus PT effectiveness, but this effect was not found to be statistically significant. The effect
of “Women per 100 men” (z2), though statistically significant, does not seem to follow a uniform
influence pattern and varies between favorable and unfavorable in accordance with the range of values
that appear in our sample. The percentage of active population, i.e., between 20 and 64 years old
(z3), seems to be indifferent when it comes to the explanation of bus PT effectiveness. Additionally,
the annual population change (percentage difference compared to the previous year) (z4), does not
have any obvious effect on PT effectiveness. This may be because this indicator is unable to capture
any growth / shrinking dynamics of cities and expresses a more momentary change. Proportion of
non-EU foreigners (z5), was also explored, since, in past studies it was considered to be as a proxy for
income inequality and poverty, but no significant influence was found. Given the result of “Students
in higher education per 100 resident population aged 20–34” (z6), we reconfirm that the presence of
university students in cities is accompanied by more favorable operational environments for bus PT
and encourage a relatively higher patronage.

When it comes to the living conditions in European cities, the case of population density confirms
our initial hypothesis since it is associated with a favorable influence on bus PT performance (z7).
However, this influence does not have any important statistical value. This may be due to the fact
that the EUAD does not report population density on cities or on FUAs and therefore the figures
which were used in this study refer to the respective metropolitan regions. These regions do not
always coincide successfully with the urban PT service areas under examination. Living conditions,
however, do have an impact on bus PT performance since the “Average size of households” (z8) is an
unfavorable factor with statistical significance.
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Table 4. Exogenous factors’ influence on bus PT effectiveness.

# Exogenous Variable

Exogenous Influence on bus PT Effectiveness

Influence Profile on Bus
PT Effectiveness

Regression Line ĝ(z) on
Order-m (Q̂z,m,n) Ratios

Statistical Significance
zi~Q̂z,m,n
(p-Value)

z1
Population on the 1st

January, total Favorable 0.103 Not significant

z2 Women per 100 men Varying 0.04 *
Varying influence when ranging

between 100.62 and 121.46
women per 100 men

z3 Age dependency ratio Neutral 0.133 Not significant

z4
Population change

over 1 year Neutral 0.486 Not significant

z5

Non-EU foreigners as a
proportion of total

population
Neutral 0.123 Not significant

z6

Students in higher
education per 100

resident population
aged 20–34

Favorable 0.012 *

Favorable influence when
increasing from 20 to 80

students per 100 residents aged
20–34 years old

z7 Population density Favorable 0.346 Not significant

z8
Average size of

households Unfavorable 0.004 **
Unfavorable influence when
increasing from 1.83 to 2.69

persons per household

z9

Gross domestic product
per inhabitant in PPS of

NUTS-3 region
Unfavorable 0.128 Not significant

z10 Unemployment rate Unfavorable 0.050 * Unfavorable influence when
increasing from 3.91 to 15.80 (%)

z11
Number of registered

cars per 100 population Unfavorable 0.008 **
Unfavorable influence when

increasing from 35 to 67 cars per
100 residents

z12 Private/public operator Favorable 0.007 **
Favorable influence when
operator is public rather

than private

z13 Bus fleet size Varying 0.006 **

Favorable influence when fleet
size is increasing from 64 to 1200

buses. Unfavorable influence
when increasing from 1200 to

2060 buses.

z14
Mix of operator’s

PT modes Varying 0.002 **
Favorable influence when

operator also runs tram and
metro systems

z15 Country capital Neutral 0.291 Not significant

z16
Total number of hours of

sunshine per day Neutral 0.34 Not significant

* Significance at 5% level, ** Significance at 1% level.

In contrast to our initial hypothesis, rising unemployment rates (z10) are clearly associated with
negative influence on bus PT effectiveness. This indicates that the sustainability of European bus PT
systems is generally favored under high employment activity. GDP had no statistically important
impact (z9). This may be because GDP indicators probably do not adequately reflect the expenses
required for travelling by PT and other transport modes in relation to the disposable income of residents.

Regarding the transport system characteristics of the cities, in line with our hypothesis, the number
of registered private cars per 100 inhabitants has a negative impact on bus PT combined effectiveness
(z11). Public operators were found to be more successful than private ones (z12). However, this result
is probably too generic because this variable fails to incorporate the various PT organizational and
management regimes, which are often determined by PT service contracts, no matter if the operators
are private or public. Unfortunately, we were not able to locate any standardized database to construct
variables for accounting for such contracting arrangements. The impact of bus operators’ size on their
systems’ effectiveness was measured through the proxy variable of bus fleet size (z13). The results
indicate the existence of economies of scale. Thus, for fleet sizes of up to 1200 vehicles, the operational
environment is favorable, but, for larger fleet sizes, it is deteriorating. The mix of PT modes (z14) was
found to be a significant factor and demonstrates the creation of a favorable operational environment
in cities where bus, tram and metro networks coexist.
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Finally, our results also showed that both the capital status and climate of European cities (z15, z16)

do not exert any important influence on bus PT combined effectiveness.

5.3. Consolidation

Empirical findings indicated seven significant exogenous factors (z12 is excluded due to the reasons
explained in Section 5.2.) and demonstrate that the operational environment does influence bus PT
effectiveness and thus sustainability. We can now return to the very essence of our production model,
so as to appropriately explain the variations of bus PT effectiveness scores that were observed among
operators (Section 5.1.). Therefore, if bus PT operator A presents higher effectiveness when compared
to bus PT operator B, then we may assume that operator A achieves higher ridership figures using the
same or less inputs than operator B because of (a) management practices on utilization of vehicles and
route scheduling and/or (b) quality of PT services and/or (c) the operational environment of operator A
is more successful or favorable than that of operator B. In other words, bus PT demand is dependent
on both endogenous (points a and b) and exogenous factors (point c). As such, the challenge of PT
operators is to design and implement measures that aim to increase their patronage by improving their
cost and service effectiveness while also considering the properties of their operational environment.
In this context, we recognize two main fields for utilizing our research results.

First, our findings could assist in the formulation of sustainable development policies that
would both contribute to increasing PT demand and sustainability as well as in the fulfillment of
wider community goals. Specifically, it was made evident that policies which reduce private car use
(z11), along with their well-known various environmental and social benefits, could also increase
PT effectiveness. University students (z6) are recognized as a group of travelers that PT systems
should further embrace in order to obtain effectiveness and sustainability yields. The intensification
of employment (z10) may be emphasized as a policy that favors both economic and PT systems’
sustainability. The introduction of rail PT systems (z14) generally supports sustainable urban mobility
lifestyles, and, in line with this notion, our results also showed that this favors the greater use of bus
PT services. The conditional non-parametric setting we adopted allowed us to also highlight the
range of values (Table 4) where such exogenous factors could be either beneficial or detrimental to
PT effectiveness. Therefore, the design of the above policies could be more specific, since a set of
corresponding quantitative targets may be more easily determined.

Secondly, the consideration of the seven exogenous factors, which we found to be significant,
may act as a prerequisite for conducting fair benchmarking comparisons among different PT systems.
Specifically, the examination of these indicators among different cities allows the identification
of benchmarking peers, i.e., bus PT agencies who share as much as possible similar operational
environments. Therefore, any comparatively lower or higher effectiveness of such bus PT agencies will
be only due to their unsuccessful or successful management practices, which need to be identified
or (in the latter case) exchanged within their benchmarking networks. Considering the combined
effectiveness model we built, such successful management practices would lead to comparatively
higher effectiveness levels but without the need to increase PT resources (i.e., vehicles and vehicle
km) and may, for instance, refer to the improvement of quality of PT services (e.g., fares, customer
care, speed, comfort) and/or to a more sophisticated utilization of the available PT resources (e.g.,
modification of depots, span of services, scheduling, network design) in order to increase service
effectiveness (PT passengers’ viewpoint) and cost-effectiveness (PT agencies’ viewpoint). In this
benchmarking context, the comparatively best performing PT operators would also be associated
with management practices that enable them to more successfully adapt their PT operations to their
exogenous environment and PT demand characteristics. The utilization of these seven exogenous
factors as peer-grouping criteria for European PT benchmarking exercises provides important benefits,
since (a) they are continuously monitored and reported by the EUAD and thus enable single bus PT
organizations to perform customized benchmarking comparisons with other systems, and (b) they are
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determined under the combined effectiveness model, which, as previously explained, stands for some
of the most basic sustainability objectives of PT systems.

6. Conclusions

In this study, we applied advanced non-parametric analysis methods, namely order-m
conditional and unconditional efficiency measures, to evaluate a basic component of PT sustainability,
i.e., PT systems’ effectiveness, and to investigate its exogenous determinants. Our dataset was
representative enough, since it was composed of 57 bus PT operators who are active in large and
medium sized European cities, where all combinations of road and rail PT modes are apparent.
Our production model incorporated variables that reflected the combined effectiveness of PT systems
and thus successfully encompasses a basic pillar of PT sustainability.

Our results indicated that the examined European bus PT operators generally present a satisfactory
level of effectiveness. We also highlighted that seven specific exogenous factors may have a meaningful
influence on such bus PT effectiveness scores. Within these exogenous indicators, household size,
unemployment and car ownership rates are negatively associated with PT effectiveness, while the
presence of university students and metro networks support the creation of more favorable operational
environments for PT sustainability. These exogenous indicators correspond to specific topics, where
appropriate sustainable development policies could upgrade both the quality of life in local communities
and the sustainability of the respective bus PT systems. Moreover, these indicators can function
as initial peer-grouping criteria for selecting comparable benchmarking partners. Within such PT
benchmarking networks, the identification and exchange of successful practices will both increase PT
systems’ effectiveness and contribute to the improvement of their sustainability.

Due to certain limitations of the EUAD and other data sources we used, we were not able to
sufficiently explore important exogenous factors such as population density, income inequality and
transport system characteristics as well as PT contracting arrangement and network design features,
which in certain cases may also act as exogenous factors in some bus PT systems. Another limitation
of our study is the fact that due to breaks in time series in the PT and Eurostat databases we used,
we obtained results only for one year (2009) and we were not able to repeat our analysis for consecutive
years so as to further establish our findings and account for economic and technological changes
that occurred afterwards and may have also affected the bus PT sector. This is especially true for the
results we acquired regarding external indicators such as GDP, unemployment rates, car ownership
rates and possibly population change. The year 2009 was characterized by global economic crisis,
and this may have been reflected in these indicators’ figures. The consideration of more recent years
would probably have enabled us to investigate a differentiated distribution of values that would be
possibly less skewed and, along with 2009 results, would return a more representative estimation of
these indicators’ influence on bus PT effectiveness. Forthcoming research should develop additional
production models that will reflect alternative expressions of PT effectiveness and the other basic
sustainability aspects of PT systems to further investigate their interrelationships and their influence
from the respective PT operational environments.
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Appendix A

Table A1. European cities in our sample and their population figures (2009) [64].

# Country Cities
(Functional Urban Areas) Population

1 Belgium * Bruxelles / Brussel 2,468,014

2
Czechia

Praha 2,131,451
3 Brno 767,535

4

Germany

Berlin 5,025,272
5 Hamburg 3,187,338
6 Frankfurt am Main 2,531,970
7 Leipzig 998,688
8 Solingen 161,779
9 Osnabrück 521,522

10 Paderborn 298,869
11 Bremerhaven 316,630

12 Estonia Tallinn 549,454

13 Greece Thessaloniki 1,032,530

14

Spain *

Madrid 6,521,738
15 Barcelona 4,880,459
16 Valencia 1,630,715
17 Málaga 837,010
18 Murcia 615,870
19 Las Palmas 637,211
20 Palma de Mallorca 673,673
21 Oviedo 316,625

22

France

Strasbourg 757,169
23 Nantes 858,701
24 Montpellier 628,007
25 Saint-Etienne 520,004
26 Le Havre 299,982
27 Nancy 474,667
28 Reims 316,527
29 Orléans 414,128
30 Dijon 395,564
31 Poitiers 259,576
32 Caen 426,034
33 Limoges 305,861
34 Grenoble 644,472
35 Tours 449,014
36 Angers 395,632
37 Brest 360,366
38 Le Mans 349,048
39 Avignon 309,845
40 Dunkerque 273,768
41 Nîmes 320,721
42 Montbéliard 193,150
43 Nice 845,800

44

Italy

Genova 722,125
45 Firenze 752,858
46 Bari 731,214
47 Sassari 211,063
48 Cagliari 476,833
49 Brescia 457,443
50 Foggia 172,194
51 Bolzano 185,228
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Table A1. Cont.

# Country Cities
(Functional Urban Areas) Population

52 Luxembourg Luxembourg 493,500

53 Portugal * Lisboa 2,803,915
54 Coimbra 280,786

55 Romania Bucuresti 2,186,359

56 Slovakia Bratislava 622,706

57 Switzerland Lausanne 334,028

* 2010 figures.
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