
sustainability

Article

Modeling and Analysis of Electric Vehicle-Power
Grid-Manufacturing Facility (EPM) Energy Sharing
System under Time-of-Use Electricity Tariff

Xiaolin Chu 1, Yuntian Ge 2 , Xue Zhou 2, Lin Li 2,* and Dong Yang 3

1 School of Financial Technology, Shanghai Lixin University of Accounting and Finance,
Shanghai 201209, China; cxlin2016@126.com

2 Department of Mechanical and Industrial Engineering, University of Illinois at Chicago,
Chicago, IL 60607, USA; yge20@uic.edu (Y.G.); zhouxue@uic.edu (X.Z.)

3 Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China;
yangdong@dhu.edu.cn

* Correspondence: linli@uic.edu; Tel.: +1-312-9963405

Received: 17 May 2020; Accepted: 11 June 2020; Published: 13 June 2020
����������
�������

Abstract: Electric vehicles (EVs) have obtained increasing public interest due to the associated economic
and environmental benefits. Recently, studies regarding the economic advantages of adopting EVs
as energy storages for commercial/residential buildings are emerging. In fact, according to the
U.S. Energy Information Administration, the industrial sector consumes more energy than all of
the other sectors combined, which is about 54% of the world’s total delivered energy. The energy
consumption pattern in manufacturing facilities is based on production schedules and the heat transfer
between machines and the ambient surroundings, thus, differs greatly from commercial/residential
buildings. However, little research attention has been given to analyse the synergies of integrating
EVs and manufacturing facilities to improve energy efficiency. To fill this research gap, in this study,
a comprehensive model is established to evaluate the economic and environmental performance of
an energy sharing system that consists of the EVs, power grid, and manufacturing facilities (EPM)
under Time-of-Use (TOU) electricity tariff. The model is formulated as a mixed integer nonlinear
programming format by considering practical production schedules, heat exchange between machines
and ambient surroundings, as well as the heating, ventilation, and air conditioning (HVAC) system.
The case study results indicate that the presented EPM energy sharing system has great potential to
reduce energy cost and CO2 emissions. In addition, compared to the results from winter scenarios, it is
shown that more cost savings can be achieved in summer days.

Keywords: electric vehicles; smart grid; manufacturing facility; time-of-use electricity tariff;
cost modelling

1. Introduction

From 1980 to 2018, worldwide greenhouse gas (GHG) emissions increased by 95% [1]. In terms of
infrastructures, the industry and transportation sectors are the top two GHG emission contributors,
accounting for 21% and 14% of the total GHG emission, respectively [2]. As global warming is
becoming a serious concern and a threat to future generations [3], countries around the world
have made various efforts since the Paris Agreement to reduce GHG emissions, e.g., promoting
sustainable manufacturing [4], improving energy efficiency [5], and using non-fossil energy sources [6].
In particular, the adoption of electric vehicles (EVs) to replace conventional gasoline vehicles is widely
considered as an effective method to reduce the GHG emission [7].
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Compared to conventional vehicles with combustion engines, the application of EVs can reduce
the national dependency on fossil fuels, improve energy efficiency and reduce carbon dioxide (CO2)
emissions [8,9]. As a result, EVs have obtained growing attention worldwide. Subsequently, the global
EV market increased by 65% from 2017 to 2018 [10]. Moreover, nearly 2.7 million EVs are anticipated
to be on the road in the U.S. by 2020 [11]. However, the large adoption of EVs brings challenges to
the power grid stabilization due to the current lack of supporting infrastructures and difficulties in
overcoming technological barriers. For example, the electricity consumption rate of EVs is around
three times more than the average household electricity consumption rate, which can overload the
power grid, especially during peak demand hours [12]. The existing electricity infrastructure might
not be capable of providing enough power to satisfy the surge in power demand [13].

To alleviate the excessive load and further enhance the economic and environmental sustainability
of power grid, a modern power grid infrastructure used to improve the utilization of real time
communications technology has emerged [14]. It is also referred to as the “vehicle-to-grid” (V2G)
operation, which is a bi-directional communication and electricity flow between EVs and the power
grid [15]. Although the V2G application may increase the number of charge–discharge cycles and
reduce the useful life of battery, the EV batteries can be reused in homes or other business applications
as an energy storage device to extend the life cycle [16]. In addition, there are substantial benefits
to adopting V2G operation. For the power grid, the V2G operation has the potential to enhance
operation and control in power systems by providing additional flexibility [17]. On the other hand,
for customers, EVs can be considered as dispersed energy storages to achieve monetary savings by
shifting power usages from on-peak demand to off-peak demand periods [18]. Extensive research
efforts have been devoted to the V2G integration regarding systematic design and optimization [19–21],
economic performance improvement [22–25], environmental sustainability evaluation [7,24,26], etc.
For example, Iacobucci et al. developed a simulation-based model to examine the potential of V2G
integration using shared autonomous EVs and found that demand–response strategies can significantly
decrease cost of the system [27]. In addition, Bashash et al. proposed a convex quadratic programming
framework for the charging pattern optimization of plug-in hybrid electric vehicles under time-varying
electricity price signals and demonstrated that an adequate fuel economy could be achieved via the
proposed V2G integration [28]. Furthermore, Sarker et al. established a centralized model to improve
the transformer loss-of-life with the benefits for EVs’ owners on charging/discharging management [29].

With the increasing adoption of EVs, studies regarding the economic benefit of energy
sharing between EVs and other energy end users have been emerging. Vehicle-to-building
(V2B) technology is proposed to reduce the energy cost of buildings and EVs [30] and provide
multiple power sources, higher electricity quality for buildings, and peak power shaving by
demand side management [31], as well as reduce the CO2 emissions [32]. Most recent studies are
focused on promoting the energy communication strategies between EVs and commercial/residential
buildings [33–39]. Quddus et al. developed a collaborative decision model to study energy sharing
among buildings and charging stations and achieved 14.24% overall energy cost reduction [40].
Moreover, Wang et al. developed a V2B energy sharing scheme to improve the power supply reliability
and comfort management for smart buildings [41].

However, in current literature, few research efforts are dedicated to studying the energy sharing
and collaboration between EVs and industrial facilities. As the largest energy user and GHG
emission contributor, in the industrial sector, manufacturing activities account for 90% of the energy
consumption and 84% of the energy-related CO2 emissions [42]. In fact, there are many differences in
energy management methods between manufacturing facilities and commercial/residential buildings.
For example, the electricity demand curve is determined by the production schedule in manufacturing
systems by applying electricity demand management. The heating and cooling energy demand to
manage a facility’s indoor temperature can be changed by taking into account the convective and
radiant heat transfer from the manufacturing operation [43]. Therefore, existing methods for V2B
operation are not completely applicable in the EVs in manufacturing operations. It is important and
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necessary to comprehensively consider the energy sharing between EVs, the power grid, and the
manufacturing facility (EPM) from a systematic view.

To fill this research gap, in this study, the concept of vehicle-to-manufacturing (V2M) bidirectional
communication operation is proposed to reduce energy cost and GHG emissions for industry facilities
and EVs. With the application of a smart garage, the EV charging/discharging control system and
infrastructure are widely available. Therefore, the V2M model is viable in real life. Based on this
V2M model, a comprehensive EPM energy sharing system is established, in which the electric power
exchanges between EVs and the manufacturing facility when EVs are parked and connected to the
power grid. A collaborative operation decision model is presented for the EPM energy sharing system
to quantify the cost saving, carbon dioxide emission (CDE) reduction and primary energy consumption
(PEC) decrease.

In this paper, it is assumed that the EVs of the industrial practitioners arrive at the parking area in
the morning and leave in the afternoon or evening. In addition, the manufacturing facility is assumed to
have a serial production line with multiple machines and buffers, which is the most common structure
in manufacturing plants [44]. It is also assumed that the manufacturing facility adopts a Combined
Cooling, Heating and Power (CCHP) system as self-sufficient generation system. The objective is to
obtain optimized solutions for the EPM energy sharing system under Time-of-Use (TOU) electricity
rates by minimizing the total cost under the constraints of production throughput target, EVs battery
demand and energy balance. A mixed integer nonlinear programming (MINLP) collaborative decision
model is established and solved by a particle swarm optimization (PSO) algorithm. In the case studies,
one-shift and two-shift scenarios are investigated to illustrate the applicability and effectiveness of the
presented model. Furthermore, the environmental and energy evaluations of the optimal schedule
solution are conducted.

The rest of this paper is organized as follows. The problem description is provided in Section 2.
In Section 3, a novel collaborative decision model is formulated to depict the energy sharing in the
EPM system. The solving procedures to achieve the optimal solution of the model via a PSO algorithm
is presented in Section 4. The numerical results from the case studies for the proposed EPM energy
sharing system compared to the baseline cases under the TOU tariff are reported in Section 5. Finally,
Section 6 gives the conclusions and offers future research directions.

2. Problem Description

In this section, the EPM energy sharing system consisting of the power grid, manufacturing
facility, and EV charging stations is proposed to improve the overall energy efficiency. The electricity,
heating, and cooling loads of manufacturing facility are supplied from CCHP system, power grid,
and/or EVs. The electricity demands of EVs are satisfied by the power grid and manufacturing facility.

The structure of the EPM energy sharing system is presented in Figure 1. The solid lines show the
electrical energy flows and the dashed lines signify the heating/cooling energy flows. In relation to
manufacturing facility, electricity demand is supplied from power generation unit (PGU) by adopting
a gas turbine as a prime mover. The heating demand is fulfilled by the waste heat of the PGU and/or
heat from an auxiliary boiler through a heat exchanger. An absorption chiller using a heating source to
generate cooling energy is applied as the cooling component in the CCHP system. The absorption
chiller takes pure water as the refrigerant and uses lithium bromide (LiBr) solution as the absorbent.
In the charging station, EVs can be charged or discharged when connected to the power grid by
bidirectional electricity flow. The manufacturing facility can sell its surplus electricity to the power
grid and/or sent to EVs, while EVs can share redundant electricity with manufacturing facility or sell
back to power grid.
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In this paper, the manufacturing facility with a typical serial manufacturing system consisting 
of ܰ machines and ܰ— 1 buffers (as shown in Figure 2) is considered. The electricity load of this 
production system is supplied by the CCHP system, power grid and EVs. The power grid would 
provide electricity to the manufacturing system when the electricity generated by the PGU cannot 
meet the electricity demand; otherwise, the extra power generated by PGU would be sent to the EVs 
or sold back to the power grid. The electricity demand of EVs is met by the power grid. The electricity 
of EV batteries also can be sent to the manufacturing facility and the power grid when needed. The 
heating energy generated from PGU and the auxiliary boiler can be used by the heat exchanger and 
absorption chiller to satisfy the manufacturing facility’s heating load (e.g., hot water and space 
heating) and cooling load, respectively. In addition, the heating energy generated by the machines’ 
operation in the manufacturing system can affect the facility heating or cooling load. 
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Figure 2. A Typical Serial Manufacturing Production Line with ܰ Machines and ܰ— 1 Buffers. 

As demonstrated in Figure 1 and Figure 2, the objective of this study is to identify the optimal 
production and energy management strategy for the power grid, EVs, and manufacturing facility 
under the TOU electricity tariff with a minimal total cost. In the TOU rate, the electricity price during 
the on-peak period is higher than in the mid-peak and off-peak period. By using the optimal strategy, 
the proposed system cost, consisting of electricity billing cost, fuel cost, CCHP investment cost, 
electricity demand charge, and EVs battery use cost, can be minimized under the constraints of 
manufacturing system characteristics: production target, CCHP system features and EVs 
characteristics (e.g., EV battery balance and arriving/leaving time). The CDE and PEC of the system 
optimal strategy are investigated in the case studies, which can provide a better view of 
environmental and energy performance (i.e., CDE and PEC). 

3. Mathematical Modelling 

In this section, a MINLP model is formulated to minimize the overall cost by obtaining the 
optimal strategy for the EPM energy sharing system. The model is established based on a systematic 
perspective by considering the interrelationships between each component. In addition, the most 
vital assumptions are fully adopted to assure the accuracy of the calculation results. Moreover, all 
units are converted to eliminate the heterogeneity of the model and deliver correct results. 

Figure 1. The electric vehicles, power grid, and manufacturing facilities (EPM) Energy Sharing
System Structure.

In this paper, the manufacturing facility with a typical serial manufacturing system consisting
of N machines and N—1 buffers (as shown in Figure 2) is considered. The electricity load of this
production system is supplied by the CCHP system, power grid and EVs. The power grid would
provide electricity to the manufacturing system when the electricity generated by the PGU cannot meet
the electricity demand; otherwise, the extra power generated by PGU would be sent to the EVs or sold
back to the power grid. The electricity demand of EVs is met by the power grid. The electricity of EV
batteries also can be sent to the manufacturing facility and the power grid when needed. The heating
energy generated from PGU and the auxiliary boiler can be used by the heat exchanger and absorption
chiller to satisfy the manufacturing facility’s heating load (e.g., hot water and space heating) and
cooling load, respectively. In addition, the heating energy generated by the machines’ operation in the
manufacturing system can affect the facility heating or cooling load.
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Figure 2. A Typical Serial Manufacturing Production Line with N Machines and N1 Buffers.

As demonstrated in Figures 1 and 2, the objective of this study is to identify the optimal production
and energy management strategy for the power grid, EVs, and manufacturing facility under the TOU
electricity tariff with a minimal total cost. In the TOU rate, the electricity price during the on-peak
period is higher than in the mid-peak and off-peak period. By using the optimal strategy, the proposed
system cost, consisting of electricity billing cost, fuel cost, CCHP investment cost, electricity demand
charge, and EVs battery use cost, can be minimized under the constraints of manufacturing system
characteristics: production target, CCHP system features and EVs characteristics (e.g., EV battery
balance and arriving/leaving time). The CDE and PEC of the system optimal strategy are investigated
in the case studies, which can provide a better view of environmental and energy performance
(i.e., CDE and PEC).

3. Mathematical Modelling

In this section, a MINLP model is formulated to minimize the overall cost by obtaining the
optimal strategy for the EPM energy sharing system. The model is established based on a systematic
perspective by considering the interrelationships between each component. In addition, the most vital
assumptions are fully adopted to assure the accuracy of the calculation results. Moreover, all units are
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converted to eliminate the heterogeneity of the model and deliver correct results. The notations of
indexes, parameters and variables used in the model are shown in the Appendix A.

3.1. Objective Function

The objective function is formulated in Equation (1). In this equation, COST represents the overall
cost of the proposed system, which consists of manufacturing facility cost and EV cost. CF and CEVs

denote the costs that are related to manufacturing facility and EVs, respectively.

Min COST = CF + CEVs (1)

3.2. Constraints

3.2.1. Environmental and Energy Evaluation

In this paper, CDE and PEC are adopted to assess the environmental and energy criteria. CDE is
the amount of carbon dioxide emissions from fuel consumption of the PGU, boiler and the power
grid, and it can be quantified by Equation (2). PEC is identified as the sum amount of site energy
consumption and energy losses during the generation, distribution, and transmission of energy, and it
can be formulated by Equation (3).

CDE =
∑

t

µcchp
·

(
f pgu
t + f boiler

t

)
+

∑
t

µgrid
·

e f grid,m f
t +

∑
i

e f grid,ev
i,t

 (2)

PEC =
∑

t

σcchp
·

(
f pgu
t + f boiler

t

)
+

∑
t

σgrid
·

e f grid,m f
t +

∑
i

e f grid,ev
i,t

 (3)

In Equation (2), µcchp and µgrid are the carbon dioxide emission conversion factors for the CCHP
system fuel and the power grid electricity, respectively. In Equation (3), σcchp and σgrid represent
the site-to-primary energy conversion parameters for the CCHP system fuel and the power grid
electricity, respectively.

3.2.2. Manufacturing Facility Operation Decision Model

The manufacturing facility cost is described by Equation (4) which includes electricity cost, fuel
cost, energy transaction cost, investment cost and electricity demand charge. The first term of the
function represents the electricity cost associated with the power grid. The second term indicates the
fuel cost consumed by PGU and boiler. The third term shows the energy transaction cost between
facility and EVs. The fourth term is the capital cost of each piece of equipment in the CCHP system in
one day, where the capital recovery factor can be obtained by Equation (5). The last term represents
the electricity demand charge according to the maximum electricity purchased from the power grid
during peak periods in the whole production time.

CF =
∑
t

(
Ppur

t · e f grid,m f
t − Psell

t · e f m f ,grid
t

)
+

∑
t

P f
t ·

(
f pgu
t + f boiler

t

)
+

∑
i,t

(
Ptrans

t · e f ev,m f
i,t − Ptrans

t · e f m f ,ev
i,t

)
+ A ·

(∑
q

Ccc
q ·Capq

)
/365

+RD
· max

t∈ONP

(
e f grid,m f

t /∆t
)

(4)

A = r(1 + r)y/
{
(1 + r)y

− 1
}

(5)
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Manufacturing System Constraints

Constraint 6 states that each buffer’s occupancy at the beginning of a time interval ranges from
zero to its maximum capacity. Equation (7) represents the material balance in the serial manufacturing
production line. Constraint 8 is considered to guarantee that the number of produced parts during the
planning horizon is no less than the production target. Constraint 9 is to ensure that the electricity
from the PGU, power grid and EVs to the manufacturing facility is equal to the electricity demand
of the manufacturing system and electricity sent from manufacturing facility to the power grid or
EVs. The relationship between the heating from the manufacturing operation and the machine motor
efficiency at time t is shown in Equation (10). The heat transferred to the environment correlates with
the convective and radiative split ratio of machines, and the instantaneous convective heating and
non-instantaneous radiant heating can be calculated by Equations (11) and (12) respectively. In Equation
(12), the radiant time series st. represents the radiant fraction of the heating which is transferred into
the room. Constraint 13 shows the heat transferred from the manufacturing system operation to the
surroundings. The constraints expressed in Equations (14) and (15) describe that the space heating or
space cooling state depends on the relationship between indoor temperature and outdoor temperature.
Equations (16) and (17) show that space heating or space cooling energy are needed to maintain
the indoor temperature, except for the manufacturing system operation, respectively. Constraint 18
specifies that additional heating energy supplied from CCHP system is needed when the space heating
demand is more than the heat transferred from manufacturing operation. Otherwise, cooling energy
is needed when the space heating demand is less than the heat transferred from the manufacturing
operation, which is described in Equation (19).

0 ≤ Bn,t ≤ CAn·n = 1...N − 1,∀t (6)

Bn,t = Bn,t−1 + xn,t−1 · PRn · EFFn · ∆t− xn+1,t−1 · PRn+1 · EFFn+1 · ∆t
n = 1...N − 1,∀t

(7)∑
t

xN,t · PRN · EFFN · ∆t ≥ PT (8)

e f pgu
t + e f grid,m f

t +
∑
i

e f ev,m f
i,t

=
∑
n

xn,t·Dn·∆t + e f m f ,grid
t +

∑
i

e f m f ,ev
i,t

∀t

(9)

GQt = ∆t ·
[∑

n
Dn · xn,t ·

(
1− ηstation

n

)]
∀t (10)

CQc
t = cs ·GQt ∀t (11)

CQr
t = ∆t ·

[∑t

k=1

∑N

n=1
(1− cs) · st−k+1 ·Dn · xn,t ·

(
1− ηstation

n

)]
∀t (12)

CQt = CQc
t + CQr

t ∀t (13)

Zsh
t =

{
1
0

i f Temin
t ≥ Temout

t
otherwise

∀t (14)

Zsc
t =

{
1
0

i f Temin
t < Temout

t
otherwise

∀t (15)

Qsh
t = Zsh

t ·c·p·V·
(

Temin
t − Temout

t

)
∀t (16)

Qsc
t = Zsc

t ·c·p·V·
(

Temout
t − Temin

t

)
∀t (17)
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Zheat
t =

{
1
0

i f Qsh
t ≥ CQt

otherwise
∀t (18)

Zcool
t =

{
1
0

i f 0 < Qsh
t < CQt

otherwise
∀t (19)

Constraints for CCHP System

The energy generated from the PGU and boiler is restricted by their capacities, as shown in
Equations (20) and (21). Equation (22) describes that the electric energy by the PGU is restricted
by the fuel consumption and electricity conversion efficiency. Constraint 23 is to guarantee that the
heating energy generated by the PGU and boiler are consumed by heat exchanger and absorption
chiller. Equation (24) denotes that the manufacturing facility heating demand, which consists of hot
water, space heating and the heat generated by manufacturing operations, can be satisfied by the heat
exchanger in CCHP system. The constraint expressed in Equation (25) indicates that the absorption
chiller in CCHP system can provide cooling energy to meet the manufacturing facility cooling demand
for space cooling or space heating considering the effect of manufacturing operation.

f pgu
t ≤ Cappgu ∀t (20)

f boiler
t ≤ Capboiler ∀t (21)

f pgu
t =

{
a · e f pgu

t + b i f e f pgu
t > 0

0 i f e f pgu
t = 0

∀t (22)

qhc
t + qcc

t ≤ ηrec
· f pgu

t + ηbo
· f boiler

t ∀t (23)

ηhc
·qhc

t = Qhhw
t + Zheat

t ·

(
Qsh

t −CQt
)
∀t (24)

ηcc
· qcc

t = Zsc
t ·

(
Qsc

t + CQt
)
+ Zcool

t ·

(
CQt −Qsh

t

)
∀t (25)

3.2.3. Electric Vehicles Operation Decision Model

During the EV parking time, Equation (26) shows that the energy cost of all the EVs is associated
with the electricity cost from power grid, electricity energy transaction cost with the manufacturing
facility and EV battery use cost. Equations (27) and (28) represent the EV battery charging and
discharging balance, respectively. The constraint expressed in Equation (29) indicates that EVs cannot
be in charging and discharging states at the same time. Equations (30) and (31) ensure that the EV
battery charging and discharging electricity is restricted by their maximal and minimal charging and
discharging rate, respectively. Constraints 32–33 denote the energy storage balance of the EV battery.
Equation (34) enforces that the electricity stored in the EV battery is limited by their upper and lower
bound. Constraint 35 states that the EV owners’ desired battery electricity levels are achieved when
the EVs leave the parking area.

CEVs =
∑
i,t

(
Ppur

t · e f grid,ev
i,t − Psell

t · e f ev,grid
i,t

)
+

∑
i,t

(
Ptrans

t · e f m f ,ev
i,t − Ptrans

t · e f ev,m f
i,t

)
+ Pev

·

(∑
i,t

(
e f ev,ch

i,t + e f ev,disch
i,t

))
/2 ·Capev

(26)

e f grid,ev
i,t + e f m f ,ev

i,t = ηev,ch
·e f ev,ch

i,t ∀i, t ∈
[
Tarv

i , Tdep
i

]
(27)

e f ev,grid
i,t + e f ev,m f

i,t = ηev,disch
·e f ev,disch

i,t ∀i, t ∈
[
Tarv

i , Tdep
i

]
(28)
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xci,t + xdi,t ≤ 1 ∀i, t ∈
[
Tarv

i , Tdep
i

]
(29)

Si·α
cmin
i ·xci,t ≤ e f ev,ch

i,t ≤ Si·α
cmax
i ·xci,t ∀i, t ∈

[
Tarv

i , Tdep
i

]
(30)

Si·α
dmin
i ·xdi,t ≤ e f ev,disch

i,t ≤ Si·α
dmax
i ·xdi,t ∀i, t ∈

[
Tarv

i , Tdep
i

]
(31)

esi,t = esi,t−1 + e f ev,ch
i,t − e f ev,disch

i,t ∀i, t ∈
[
Tarv

i , Tdep
i

]
(32)

esi,t = Si·SOCarv
i + e f ev,ch

i,t − e f ev,disch
i,t ∀i, t = Tarv

i (33)

Si·SOCmin
i ≤ esi,t ≤ Si·SOCmax

i ∀i, t ∈
[
Tarv

i , Tdep
i

]
(34)

esi,t ≥ Si·SOCdep
i ∀i, t = Tdep

i (35)

4. Solution Approach

The MINLP model is established for the optimization problem of the collaborative energy sharing
among the manufacturing facility, EVs and the power grid. The mathematic model is non-convex due
to the objective function 1 and Constraints 14, 15, 18, 19, 22. Moreover, the binary decision variables
also increase the complexity of the solution. The PSO algorithm provided a powerful tool to solve
the problems of non-convex and discrete decision variables [45]. The PSO is an evolutionary method
based on the stochastic optimization technique, and is inspired by the social behavior of animals
(birds) [46]. In the PSO algorithm, each particle, characterized by position and velocity, represents a
feasible solution, which moves according to its own previous best position and the swarm’s previous
best position. Particles in swarms have fitness values, which are evaluated by the fitness function.
Particles, like birds, fly through the search space towards global optimal solutions. Owing to its good
performance with fast convergence rates and ease of implementation, the PSO algorithm has been
successfully used to solve non-convex problems in wide areas such as power generation systems
dispatch [47], intermodal transportation [48], and optimal power flow problem in power systems [21].

Therefore, the PSO algorithm is adopted to obtain the optimal solutions of manufacturing schedule,
EVs, and power grid in this study. In the PSO algorithm, each candidate solution of the manufacturing
system production, CCHP operational strategy and EV charging/discharging schedule is considered as a
particle in the swarm. For a swarm of population size S and iteration size K, the D-dimensional particle,(
Lk

d,s, vk
d,s

)
, is described as the position and velocity of each particle, where k = 1, . . . , K, d = 1, . . . , D

and s = 1, . . . , S. The initial solution of all the decision variables is randomly generated within their
ranges. The evolution of position and velocity can be guided by following formulae in the searching
space over iterations.

vk+1
d,s = w·vk

d,s + c1·r1·
(
pbestk

d,s − Lk
d,s

)
+ c2·r2·

(
gbestk

s − Lk
d,s

)
∀k, d, s (36)

Lk+1
d,s = Lk

d,s + vk+1
d,s ∀k, d, s (37)

Term k and k+ 1 denote the kth and (k + 1)th iteration, respectively. In the kth iteration, pbestk
d,s shows

the sth particle’s best solution and gbestk
s represents the global best solution obtained by the entire

swarm. In Equation (37), the second and third term are stochastic terms. In addition, r1, r2 are
random numbers generated in the range of [0,1], and are intended to simulate the slight unpredictable
component of natural swarm behavior. The positive learning factors c1, c2 determine how much the
particle is influenced by pbest and gbest, respectively. Moreover, it is suggested by the PSO developers
that c1 = c2 = 2 is a good choice, and able to render the stochastic terms a mean of 1 to make the
particles “overfly” the pbest and gbest around half of the time [49,50].

In the PSO algorithm, balancing the local and global search throughout the course of run is
critical, which is controlled by the inertia weight w. A large value of w represents better global search
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ability, while a small w value means better local search ability. The search process is non-linear and
complicated, thus a linear decreasing function from inertia PSO is used to dynamically adjust the
search ability in the iterative process [51,52]. As shown in Equation (38), w changes from the maximum
inertia weight wmax to the minimum inertia weight wmin through the course of a PSO run, which means
a greater global search ability at the beginning and a greater local search ability near the end. Term w
linearly decreasing from 0.9 to 0.4 is proved to be capable of greatly improving the performance of
PSO on the benchmark problems [50]. Therefore, wmax and wmin are set to be 0.9 and 0.4, respectively.

w = wmax − [(wmax −wmin)/K]·k ∀k (38)

Since both position and velocity of particles are renovated using real numbers in Equations (36)
and (37), further steps, as shown in (39) and (40), are needed to restrict the velocity and position of the
machine state, EV charging state, and EV discharging state in the sets {−1,0,1} and {0,1}, respectively.

vk+1
d,s =


−1
0
1

i f
i f
i f

vk+1
d,s < −0.5

−0.5 ≤ vk+1
d,s ≤ 0.5

vk+1
d,s > 0.5

∀k, d, s (39)

Lk+1
d,s =

 0
1

i f
i f

Lk
d,s + vk+1

d,s ≤ 0

Lk
d,s + vk+1

d,s ≥ 1
∀k, d, s (40)

The fitness function of each particle can be evaluated by Equation (41) with the Constraints 6, 8, 20,
21, 23, 29, 30, 31, 34 and 35 integrated as penalty terms, where A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 are
ten large real numbers.

COST
+A1·min

[
(CAn − Bn,t, 0)2 + min(Bn,t, 0)2

]
+A2·

(∑
t

xN,t·PRN·EFFN·∆t− PT, 0
)2

+A3·min
(
Cappgu − f pgu

t , 0
)2
+ A4·min

(
Capboiler − f boiler

t , 0
)2

+A5·min
[
ηrec
· f pgu

t + ηbo
· f boiler

t −

(
qhc

t + qcc
t

)
, 0

]2

+A6·min[1− (xci,t + xdi,t), 0]2

+A7·

[
min

(
Si·α

cmax
i ·xci,t − e f ev,ch

i,t , 0
)2

+ min
(
e f ev,ch

i,t − Si·α
cmin
i ·xci,t, 0

)2
]

+A8·

[
min

(
Si·α

dmax
i ·xdi,t − e f ev,disch

i,t , 0
)2

+ min
(
e f ev,disch

i,t − Si·α
dmin
i ·xdi,t, 0

)2
]

+A9·

[
min

(
Si·SOCmax

i − esi,t, 0
)2
+ min

(
esi,t − Si·SOCmin

i , 0
)2

]
+A10·

(
esi,t − Si·SOCdep

i , 0
)2

∀i, t

(41)

The learning factors c1 and c2 are usually assumed as c1 = c2 = 2; the wmax and wmin are set to
be 0.9 and 0.4, respectively [53]. There exists a tradeoff between computational cost and accuracy
of the optimal solution in the PSO algorithm [54]. The parameter combinations of S and K have
to be tested and selected to balance the computational efficiency and solution quality. The PSO
implementation is concisely depicted in Figure 3. In addition, the relative standard deviation (RSD) is
used to help determine the optimal result. First, the PSO-based solution algorithm is run for multiple
trials, usually more than 100 times, to obtain the optimal result. Next, the RSD of the total cost values
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are calculated for all trials. If the RSD is smaller than 1%, we conclude that the obtained results are
stable; otherwise, more trials will be conducted until the RSD is less than 1%. Then, we use the
lowest total cost of all trials as the optimal result. In this way, we can avoid the result falling into a
local optimum.
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5. Case Studies

To evaluate the economic criterion of the proposed system using the formulated MINLP model,
cases are investigated for the EPM system located in San Francisco, U.S. The manufacturing system is
assumed to be in a one-story and one-thermal-zone facility, whose floor area is 20 x 20 m and the height
is 10 m. The specific heat capacity and density of air are 0.00028 kWh/kg and 1.29 kg/m3, respectively.
Two production schedules, one working shift (8 h) and two working shifts (16 h), are considered.
The TOU electricity tariff can charge different prices at three periods (i.e., on-peak, mid-peak, off-peak)
in one day. In order to analyze the EPM system under the TOU electricity tariff, a winter day and a
summer day for one-shift/two-shift production are conducted in this study.

In this section, the manufacturing facility, including a five-machine-four-buffer serial
manufacturing production line, is adopted. Each machine parameter, e.g., production rate and
rated power, is displayed in Table 1. The parameters of each buffer, i.e., initial contents and capacities,
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are also presented in Table 1. The radiant and convective sections of the machines are assumed to be
0.3 and 0.7, respectively [55]. The radiant time series are assumed as shown in Figure 4 [56].

Table 1. Machine and Buffers Parameters.

Machine Parameters Basic Setting of Buffers

Machine Production
Rate (unit/h)

Power
(Kw) Efficiency Motor

Efficiency Buffer Initial
Contents Capacity

M1 40 26 90% 0.85 B1 90 180
M2 40 30 90% 0.85 B2 80 160
M3 40 42 90% 0.80 B3 75 150
M4 40 32 90% 0.85 B4 80 180
M5 40 40 90% 0.80 - - -
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According to the literature [57], the capacities and unit prices of the CCHP system equipment
are assumed as shown in Table 2. Other parameters related to the manufacturing facility are
shown in Table 3 [58]. The electricity transaction price is assumed to be a constant and is set to
be 0.00367 USD/kWh [58,59]. For the facility, it is expected that the parking area has a maximum
capacity of 100 vehicles and 30% of the parked vehicles are EVs. Moreover, it is assumed that there
are 30 EVs in the parking lot and each EV has a battery capacity of 30 kWh with 95% charging and
discharging efficiencies. The EVs arrive at the parking lot with 30% battery charged and prefer to
leave with 80% charged battery [7]. In addition, all the workers are assumed to arrive and leave on
time. The minimal and maximal charging/discharging rates for EVs are set to be 2 kW and 20 kW,
respectively. The depreciation cost of one EV’s charging cycle (i.e., charge EV’s battery from empty to
fully charged, then discharge it to empty) is assumed to be 10 $US.

Table 2. Parameters of CCHP System Equipment.

PGU Boiler Heat Exchanger Absorption Chiller

Capacity (kW) 900 1200 300 600
Unit price (USD/kW) 1046 46 30 185
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Table 3. The Manufacturing Facility Related Parameters.

Parameter Value Unit

a 2.97 -
b 11.66 -
ηrec 0.51 -
ηbo 0.9 -
ηhc 0.85 -
ηcc 0.7 -
r 0.03 -
y 20 -
P f

t
0.027 USD/kWh

Psell
t 0.00367 USD/kWh
µcchp 0.000184 tons/kWh
µgrid 0.000554 tons/kWh
σcchp 1.047 -
σgrid 3.336 -

In order to validate the economic advantage of the proposed EPM energy sharing system, a baseline
case is conducted in this section. In the baseline case, no interrelation exists between EVs and the
manufacturing facility. In addition, the CCHP system is not used for the manufacturing facility.
The manufacturing system electricity demand is met by the power grid, while the heating and cooling
demand are supplied by boiler. The power grid supplies electricity to each EV. Moreover, the facility
and EVs cannot sell electricity to the power grid. The baseline case parameters are the same as the
proposed system.

The optimal problems are solved by the PSO algorithm. In order to balance the optimal solution
and computational cost, the reasonable population size and maximum number of iterations are set as
S = 2000 and K = 200 by trying different parameter combinations. The proposed MINLP model and
PSO algorithm are coded in MATLAB on a desktop computer equipped with an Intel(R) Core (TM)
i5-8265U CPU @1.60GHz processor, and 8GB memory.

5.1. One-Shift Production Schedule

In the one-shift production horizon, the period is from 9:00 a.m. to 5:00 p.m. The time period
is divided into 32 15-min intervals since the electricity demand is charged over each 15-min interval.
The target PT for the one-shift production is set at 252. The demand charge is based on the maximal
electricity consumption during on-peak period.

5.1.1. Winter Days for One-Shift Production

In this section, the TOU electricity rate from the PGE company [60] as shown in Table 4 is utilized
as the electricity price from the power grid. In this winter day for one-shift production schedule case,
the 8 h are all during the on-peak period.

Table 4. The winter electric rate under time-of-use (TOU) tariff from PGE for one-shift production.

Months On-Peak
Electric Charge (USD/kWh) Demand Charge (USD/kW)

On-Peak On-Peak

Nov–Apr 8:30–21:30 0.10171 14.84

From 9:00 a.m. to 5:00 p.m. in the winter day, the outdoor temperature [61] and the expected
indoor temperature of the manufacturing facility in San Francisco are shown in Figure 5.
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Figure 5. The outdoor and expected Indoor Temperature for one-shift production.

The hot water demand of facility is calculated as shown in Figure 6a by considering the hot water
set point as 60 ◦C, the outdoor temperature and the industrial facility size [62].
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Figure 6. The 15-min basis hot water demand (kWh) of the manufacturing facility for one-shift production.

The optimal strategy of the proposed system and baseline case in the winter day for one-shift
production are obtained by adopting the PSO algorithm to solve the formulated MINLP model.
The PSO algorithm is executed with 100 independent runs, and the averaged time as well as the
statistical results are provided in Table 5. The calculated RSD is quite small, which means the fitting
value of the PSO algorithm is stable at the parameter combinations. The solutions that result in the
least total cost are used as the optimal solutions for the EPM system and baseline case.

Table 5. The statistical results of the EPM system and baseline case solved by PSO Algorithm with 10
trial runs on the winter day for one-shift production.

Avg. Time (s) Min (USD) Mean (USD) Max (USD) RSD (%)

Optimized case 460.71 2417.37 2446.74 2470.47 0.82
Baseline case 260.14 3133.11 3151.70 3189.59 0.64

By using the PSO algorithm, the optimal solution of the EPM system is obtained. The optimal
production schedule for the manufacturing system is shown in Figure 7a, and the vertical axis and
horizontal axis present machines and time, respectively. The electricity supply and demand curve in
the winter day for the one-shift production are illustrated in Figure 7b, which shows the electricity
balance in EPM energy sharing system. The electricity flows among the power grid, manufacturing
facility and EVs are shown in Figure 7c. Note that in Figure 7b,c, the negative values denote the reverse
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flow of electricity. For example, electricity is sold back to the power grid at 16:15 as shown in Figure 7b,
and the power is fed back to the power grid from manufacturing facility at 9:15 in Figure 7c.
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The economic performance comparison between the proposed EPM system and the baseline case
under the TOU tariff in the winter day for one-shift is presented in Table 6. Table 6 demonstrates that
the overall cost obtained by adopting the EPM energy sharing system is 22.84% lower than the baseline
case. The largest portion of the system cost is from the demand charge, which accounts for 73.67%
of the total cost. In addition, the results indicate that the demand charge in the EPM energy sharing
system is 33.22% less than the baseline case. The main reason is that the electricity peak demand is
reduced by using EVs as the energy storage. Moreover, the EV battery depreciation cost in the system is
more than that of the baseline case, which indicates that the EV battery charging/discharging frequency
is increased in the EPM energy sharing system.

Table 6. The cost (USD) comparison between the optimized case and baseline case on the winter day
for one-shift production.

Total Cost
Electricity

Fuel
Equipment

EVs Battery Demand Charge
Facility EVs CCHP Boiler

Optimized case 2417.37 45.18 44.93 162.49 205.62 - 178.35 1780.8
Baseline case 3133.11 134.47 58.73 234.17 - 39.04 91.43 2666.71
Cost saving 22.84%

To better assess the benefits of the proposed system, the environmental and energy performance
of the optimal strategy are investigated. By adopting the optimal solution, the CDE and PEC results
for the EPM energy sharing system and baseline case are shown in Table 7. It is demonstrated that
the system can achieve 39.62% CDE reduction and 39.75% PEC saving compared with the baseline
case, respectively. In addition, CDE and PEC of the power grid are reduced by 53.33% and 52.84%
compared with the baseline case. Furthermore, 30.63% and 30.61% reduction can be achieved in CDE
and PEC of the equipment, respectively.

Table 7. The CDE and PEC comparison on the winter day for one-shift production.

CDE (Tons) PEC (kWh)

Total Equipment Power Grid Total Equipment Power Grid

Optimized case 1.60 1.11 0.49 9289.26 6301.15 2988.11
Baseline case 2.65 1.60 1.05 15,417.22 9080.48 6336.74

Reduction 39.62% 30.63% 53.33% 39.75% 30.61% 52.84%

5.1.2. Summer Days for One-Shift Production

The differences between winter days and summer days for one-shift production lie in the electricity
price, outdoor temperature, hot water demand, and demand charge rate. In this case, the TOU rate
from the PGE company [60] is applied for the electricity price from the power grid in the summer day
(shown in Table 8). During the 8 h in the summer day, the outdoor temperature [61] and expected
indoor temperature for the facility are shown in Figure 5. The hot water demand of the manufacturing
facility is obtained as shown in Figure 6b when the hot water set point is 60 ◦C [62].

Table 8. The summer electric rate under the TOU tariff from PGE for one-shift production.

Months On-Peak Mid-Peak
Electric Rate (USD/kWh) Demand Charge (USD/kW)

On-Peak Mid-Peak On-Peak

May–Oct 12–18 8:30–12; 18–21:30 0.14944 0.10739 32.19

The setup for baseline case in summer days for one-shift production follows the same logic as
the one-shift production in winter days. The optimized production schedule for the manufacturing
system is illustrated in Figure 8a. The electricity equilibrium of the EPM system is presented in
Figure 8b. The electricity flows among the power grid, manufacturing facility and EVs are shown
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in Figure 8c. According to Figure 8c, during on-peak period (i.e., 12:00-17:00) with higher electricity
prices, electricity is sold back from the manufacturing facility to the power grid at 12:00, 12:30, 13:15,
13:30, 14:45 and 16:00.
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In the summer day for one-shift production, the cost breakdowns of the proposed EPM energy
sharing system and the baseline case are obtained as shown in Table 9. The overall cost is reduced by
34.81% compared with the baseline case. In addition, the purchased electricity from the power grid
is 50.70% less than the baseline case. Compared with winter days scenarios, the cost saving is more
significant for one-shift production in the summer day. This is probably because the cost for cooling
energy demand can be saved when production is adjusted to the off-peak hours during summer day.

Table 9. The cost (USD) comparison between the optimized case and baseline case on the summer day
for one-shift production.

Total Cost
Electricity

Fuel
Equipment

EVs Battery Demand Charge
Facility EVs CCHP Boiler

Optimized case 3883.29 58.39 62.33 214.16 205.62 - 190.89 3151.89
Baseline case 5957.17 168.49 76.40 200.98 - 39.04 90.05 5472.22
Cost saving 34.81%

The CDE and PEC of the presented EPM energy sharing system and baseline case are shown
in Table 10 when the optimal strategy is adopted. Compared with the baseline case, the system can
achieve 18.00% CDE reduction and 18.53% PEC saving. It is interesting to observe that the equipment
caused CDE and PEC between the optimized case and baseline case are quite close in summer scenarios,
while these values in the optimized case decreases considerably in the winter. This indicates that more
energy is consumed for cooling in summer than the energy for heating in winter, since machines can
off-set part of the heating energy.

Table 10. The CDE and PEC comparison on the summer day for one-shift Production.

CDE (tons) PEC (kWh)

Total Equipment Power Grid Total Equipment Power Grid

Optimized case 1.96 1.46 0.51 11,345.80 8304.64 3041.16
Baseline case 2.39 1.37 1.02 13,925.65 7793.72 6131.93

Reduction 18.00% −6.57% 50% 18.53% −6.56% 50.40%

5.2. Two-Shift Production Schedule

The two-shift production horizon consists of two periods. The first shift takes place from 6:00 a.m.
to 2:00 p.m. and the second shift is from 2:00 p.m. to 10:00 p.m. The production target of each shift is
set at 252. In addition, the electricity demand charge is the fee of the highest electricity demand during
on-peak time in the whole day.

5.2.1. Winter Days for Two-Shift Production

For two-shift production, the electricity rates during on-peak/off-peak periods and electricity
demand charge rate are listed in Table 11 for the winter day [61].

Table 11. The Winter Electric Rate under the TOU Tariff from PGE for Two-Shift Production.

Months On-Peak Off-Peak
Electric Charge (USD/kWh) Demand Charge (USD/kW)

On-Peak Off-Peak On-Peak

Nov–Apr 8:30–21:30 21:30–8:30 0.10171 0.08704 14.84

From 6:00 a.m. to 10:00 p.m. in the winter day, the outdoor temperature [61] and expected indoor
temperature for the manufacturing facility in San Francisco are shown in Figure 9. The hot water
demand of the industrial facility is calculated, as shown in Figure 10a, by considering the hot water set
point as 60 ◦C, the outdoor temperature, and the industrial facility size [62].
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The optimal production schedule for this manufacturing system is presented in Figure 11a,
and Figure 11b shows the electricity supply and demand curve. It can be observed from Figure 11b that
electricity is sold back to power grid at some time intervals (e.g., 8:45 and 20:00) during the on-peak
period (i.e., 8:30-21:30), while no electricity is transferred to the power grid during the off-peak period.
The electricity exchange among EVs, the manufacturing facility and the power grid is illustrated in
Figure 11c, which also shows that the electricity can be supplied from EVs to manufacturing facility in
the on-peak time (e.g., 11:00 and 19:00).

In the winter day for two-shift production, the cost breakdown of the overall EPM energy sharing
system and baseline case are presented in Table 12. It can be noted that the proposed system total
cost can achieve 16.73% reduction, compared to the baseline case. The largest share of total cost is the
demand charge, which accounts for 57.89% of the total cost. The fuel cost is the second largest cost
component with 16.80%. Compared with the baseline case, the purchased electricity cost contributes to
the greatest saving with 56.89%. However, the equipment cost exhibits the largest increase. In addition,
Tables 6 and 12 indicate that the two-shift production optimal strategy cost saving is smaller than
one-shift production optimal solution cost reduction in the winter day. This is mainly because the fuel
consumption is actually higher in the optimized case, while the fuel cost is lower than baseline case in
the one-shift scenario in winter days.
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Table 12. The Cost (USD) Components Between the Optimized Case and Baseline Case on the Winter
Day for Two-Shift Production.

Total Cost
Electricity

Fuel
Equipment

EVs Battery Demand Charge
Facility EVs CCHP Boiler

Optimized case 3076.11 63.59 94.67 516.73 205.62 - 414.70 1780.8
Baseline case 3694.17 265.14 110.7 437.96 - 39.04 177.25 2841.31
Cost saving 16.73%

Table 13 shows that the system in the winter day for two-shift achieves about 13.16% CDE
reduction and 14.12% PEC saving than the baseline case, respectively. The CDE and PEC of the
equipment in the system are 18.12% and 17.99% larger than the baseline case, respectively; while the
power grid CDE and PEC are 57.25% and 57.13% lower than the baseline case, respectively.

Table 13. The CDE and PEC Comparison on the Winter Days for Two-Shift Production.

CDE (tons) PEC (kWh)

Total Equipment Power Grid Total Equipment Power Grid

Optimized case 4.42 3.52 0.902 25,471.58 20,037.50 5434.08
Baseline case 5.09 2.98 2.11 29,658.42 16,983.09 12,675.33

Reduction 13.16% −18.12% 57.25% 14.12% −17.99% 57.13%

5.2.2. Summer Days for Two-Shift Production

The differences between winter days and summer days for the two-shift production are also
reflected in electricity price, outdoor temperature, hot water demand, and demand charge rate. For the
two-shift production, the TOU price for on-peak/off-peak periods and electricity demand charge rate are
given in Table 14 [60]. During the 16 h in the summer day, the outdoor temperature [61] and expected
indoor temperature for the manufacturing facility in San Francisco are shown in Figure 9. The hot
water demand is shown as Figure 10b by considering the hot water set point as 60 ◦C, the outdoor
temperature, and the industrial facility size [62].

Table 14. The Summer Electric Rate under TOU Tariff from PGE for Two-Shift Production.

May-Oct On-Peak Mid-Peak Off-Peak

Time (hour) 12–18 8:30–12; 18–21:30 21:30–8:30
Electric charge (USD/kWh) 0.14944 0.10739 0.08036
Demand charge (USD/kW) 32.19 - -

The optimal production schedule of the manufacturing system is given in Figure 12a. The electricity
balance of the EPM system is illustrated in Figure 12b,c, representing the electricity exchange among
EVs, the power grid, and the manufacturing facility. According to Figure 12b,c, electricity can be
sold back to the power grid and electricity can be transferred from EVs to manufacturing facility or
power grid, due to a higher electric rate during the on-peak period (i.e., 12:00–18:00) and mid-peak
(e.g., 8:30–12:00).
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The cost components of the proposed EPM energy sharing system and baseline case results under
the TOU tariff in the summer day for two-shift are reported in Table 15. The results in Table 15 indicate
that the overall cost saving obtained from the optimal schedule is about 29.96% compared to the
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baseline case. As shown in Tables 12 and 15, the proposed EPM energy sharing system can achieve
more cost reduction than the baseline case for two-shift production in both the winter and summer
days. Moreover, the summer day optimal solution cost saving is larger than the winter day optimal
strategy cost reduction for two-shift production. The reason for this is that the cost for cooling energy
demand can also be saved when production is adjusted to off-peak hours during summer days for
two-shift production.

Table 15. The Cost (USD) Components between the Optimized Case and Baseline Case on the Summer
Day for Two-Shift Production.

Total Cost
Electricity

Fuel
Equipment

EVs Battery Demand Charge
Facility EVs CCHP Boiler

Optimized case 5185.95 111.24 113.83 481.60 205.62 - 410.85 3862.80
Baseline case 7404.47 317.25 130.92 479.25 - 39.04 177.50 6438.00
Cost saving 29.96%

The CDE and PEC of the proposed overall system and baseline case are shown in Table 16 when
the optimal strategy is adopted. As shown in Table 16, it is demonstrated that the proposed overall
system in the winter day for two-shift is about 18.59% CDE reduction and 19.25% PEC saving than the
baseline case, respectively. The CDE and PEC of the CCHP system in the EPM system are slightly
larger than that of the boiler in the baseline case; while the power grid CDE and PEC are 47.87% and
48.06% lower than the baseline case.

Table 16. The CDE and PEC Comparison on the Summer Day for Two-Shift Production.

CDE (tons) PEC (kWh)

Total Equipment Power Grid Total Equipment Power Grid

Optimized case 4.38 3.28 1.10 25,288.69 18,675.57 6613.12
Baseline case 5.38 3.27 2.11 31,316.77 18,584.40 12,732.37

Reduction 18.59% −0.31% 47.87% 19.25% −0.49% 48.06%

6. Conclusions and Future Work

In this paper, a cost-effective systematic framework under V2M operation is proposed.
A collaborative model is presented to study energy sharing among the manufacturing facility, the EVs
and the power grid under the TOU electricity tariff. The model is formulated in the format of a MINLP,
aiming to minimize the total cost while maintaining the desired production target, and solved using
PSO to obtain the optimal schedule of the CCHP system, manufacturing system, and EVs. The case
study results show that the presented system can achieve 22.84% cost saving in the winter day for
one-shift production, 34.81% in the summer day for one-shift production, 16.73% in the winter day for
two-shift production, and 29.96% in the summer day for two-shift production compared with baseline
cases. By adopting the optimal strategy, the CDE and PEC of the proposed collaborative system can be
reduced by 22% and 23% in average, respectively. Therefore, the optimal solution for the proposed
system has better economic, environmental, and energy performance compared with the ones obtained
by the baseline cases.

This research is one of the first studies to explore the potential benefits of integrating EVs as
energy storage units into manufacturing facilities. The synergies among the EVs, the manufacturing
facilities and the electricity grid are proved to be viable and beneficial to enhance economic viability,
energy efficiency, and environmental sustainability. Given the systematic modeling methodology
adopted in this study, the proposed model can be further developed to a cost-effective decision-making
tool to promote sustainable manufacturing.

In this study, although the most vital assumptions are all adopted, the presented model can
be improved by considering more realistic and complex situations to further enhance the accuracy.
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For future work, this research can be extended to consider uncertainties from the electricity price and
EV driving schedules. In addition, the cost saving potentials can be investigated when other renewable
energy sources are adopted to generate electricity in the manufacturing facilities.
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Appendix A

Nomenclature

Indices

t index of the slotted interval, t = 1, 2, . . . , T i index for the EVs, i = 1, 2, . . . , I

n
index of the machines and buffers in the

serial manufacturing production line,
n = 1, 2, . . . , N

q set for equipment, q =
{
pgu, boiler, hc, cc

}
Parameters

Ppur
t

electricity price from power grid at time t
(USD/kWh)

c the air specific heat capacity (kWh/kg·◦C)

Psell
t

the selling price of electricity to power grid
at time t (USD/kWh)

p the density of air (kg/m3)

P f
t the fuel price at time t (USD/kWh) V the volume of the manufacturing facility (m3)

Ptrans
t

electricity price between EVs and
manufacturing facility at time t (USD/kWh)

a PGU electric efficiency coefficient

A capital recovery factor b PGU electric efficiency parameter

Ccc
q

unit investment cost of CCHP system
equipment (USD/kWh)

ηrec PGU heating efficiency

Cap the capacity ηbo boiler heating efficiency
RD the demand charge ratio (USD/kW) ηhc heating component heating efficiency
r the interest rate ηcc cooling component heating efficiency

y number of years of operation of the system Qhhw
t

the manufacturing facility hot water demand at
time t (kWh)

ONP peak electricity time horizon Pev each cycle cost price for every EV (USD)
∆t 15 min time interval (h) ηev,ch EVs charging efficiency
CAn the capacity of the buffer n ηev,disch EVs discharging efficiency
PRn the machine n production rate (units/h) Si battery capacity of EV i
EFFn The machine n efficiency (%) αcmin

i minimal charging limit of EV i
PT the target of the producing period (units) αcmax

i maximal charging limit of EV i
Dn electricity demand of machine n (kWh) αdmin

i minimal discharging limit of EV i
ηstation

n the efficiency of machine n αdmax
i maximal discharging limit of EV i

cs the convective of each machine SOCarv
i battery electricity at arrive time of EV i

st the radiant time series SOCmin
i minimal electricity store rate of EV i

Temin
t expected indoor temperature (◦C) SOCmax

i maximal electricity store rate of EV i
Temout

t outdoor temperature (◦C) SOCdep
i

The demand electricity at departure time of EV i

Decision variables (in time period t)

e f grid,m f
t

electricity flow from power grid to
manufacturing facility (kWh)

CQt
the heat transferred from the

manufacturing operation

e f m f ,grid
t

electricity flow from manufacturing facility
to power grid (kWh)

Qsh
t

the heating demand to be added except for the
manufacturing operation

f pgu
t the fuel consumption by PGU (kWh) Qsc

t
the cooling demand to be added except for the

manufacturing operation
f boiler
t the boiler fuel consumption (kWh) qhc

t heat consumption of heat exchanger

e f ev,m f
i,t

electricity from EV i to manufacturing
facility (kWh)

qcc
t heat consumption of absorption chiller
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e f m f ,ev
i,t

electricity from manufacturing facility to
EV i (kWh)

e f grid,ev
i,t electricity from power grid to EV i

Bn,t
the buffer n contents at the beginning of

time t
e f ev,grid

i,t electricity from EV i to power grid

e f pgu
t the PGU generate electricity (kWh) e f ev,ch

i,t electricity charged in the EV i

GQt
the heat generated due to the

manufacturing operation
e f ev,disch

i,t electricity discharged in the EV i

CQc
t

the heat transferred by instantaneous
convection from the

manufacturing operation
esi,t stored electricity of the EV i

CQr
t

the radiant heat transferred from the
manufacturing operation

Binary decision variables (in time period t)

xn,t 1 if machine n is producing; 0 otherwise Zcool
t

1 if the manufacturing facility need cooling;
0 otherwise

Zsh
t

1 if indoor temperature no less than
outdoor temperature except for

manufacturing system; 0 otherwise
xci,t charging stage of EV i

Zsc
t

1 if indoor temperature small than outdoor
temperature except for manufacturing

system; 0 otherwise
xdi,t discharging state of EV i

Zheat
t

1 if the manufacturing facility need heating;
0 otherwise
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