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Abstract: Time series models are used to determine relationships, spot patterns, and detect
abnormalities and irregularities among data. We explore the application of time series analyses in
business research by discussing the differences among correlation, association, and Granger causality
and providing insight into their proper use in the sustainability literature. In statistics, two correlation
coefficients are typically calculated. The first one is the Pearson correlation coefficient and the second
is the Spearman correlation coefficient. In the commonly used correlation analysis (the Pearson
and the Spearman correlation coefficients), the focus is primarily on the changes in two variables
regardless of the effects of other variables. On the contrary, in association analyses, the researcher
examines the relationship between two variables while holding the effects of other related variables
constant (ceteris paribus). In the study of the causation, or the cause–effect relationship between two
variables, researchers are concerned about the effect of variable X on variable Y. The difficulty of
achieving the third condition of causation is believed to be the main reason that in business literature
causations are rarely used. The difficulty of achieving a causal relationship between two variables has
moved researchers toward a special form of causation called “Granger causality”. We offer practical
examples for correlation, association, causation, and the Granger causality and discuss their main
differences and show how the use of a linear regression is inappropriate when the true relationship is
non-linear. Finally, we discuss the policy, practical, and educational implications of our study.

Keywords: time series; Granger causality; business sustainability

1. Introduction

Time series models are used in analyzing millions of transactions in spotting patterns, determining
relationships, and detecting abnormalities and irregularities among dependent data. The emergence
of business sustainability creates an opportunity to further examine the application of time series
models using financial economic performance information and non-financial environmental, social,
and governance (ESG) sustainability performance information. We address the application of time
series models in business research by discussing the differences between correlation, association,
and Granger causality and provide practical examples of their application in analyzing financial and
non-financial sustainability data and their relationships. Time series analyses have traditionally been
used in many disciplines such as finance, marketing, engineering, and medical sciences. In economics,
finance, and marketing, the main use of time series analyses is forecasting. In marketing, the use of time
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series analyses is primarily focused on detecting the pattern of consumer buying habit to predict their
future purchases. Time series models such as random walk, random walk with drift, and white noise
are the most commonly used time series analyses in economics and finance. However, the use of time
series analyses is uncommon in accounting and auditing professions, particularly in the sustainability
literature. Thus, this study explores the use of time series analyses in examining the financial and
non-financial dimensions of sustainability performance and its consequences for decision-making by
all stakeholders.

Prior studies on sustainability-related research published in premier business and accounting
journals conclude that, despite more than several decades of research and more than 100
sustainability-related empirical studies, the results are mixed regarding the link between sustainability
performance and financial performance because of empirical model specifications [1,2]. Business
sustainability is defined in the literature as a process of achieving financial economic sustainability to
generate desired long-term returns on investment for shareholders while protecting interests of other
stakeholders in achieving environmental, social, and governance (ESG) sustainability performance [2].
We argue that the mixed results of prior sustainability studies are triggered by using different
periods, estimation methods, definition, and construction of related variables and, more importantly,
the interpretation of results in terms of correlation, association, and causation. Because of these
shortcomings and mixed results, we are motivated to study this topic and make an effort to add to
the sustainability literature by investigating differences and interpretations of correlation, association,
causation, and Granger causality. We present examples for correlation, association, causation, and
the Granger causality, examine their main differences and illustrate how the use of a linear regression
is inappropriate when the true relationship is non-linear. Finally, we discuss the policy, practical,
and educational implications by showing how time series models can be efficiently and effectively
applied in business sustainability, developing predictive models of managerial strategies, decisions and
actions, evaluating the feasibility, cost efficiency and effectiveness of new rules, regulations, and using
time series in data science algorithms to capture all relevant financial and non-financial information
for decision-making.

The remainder of this paper is organized as follows: Section 2 presents institutional foundation,
whereas Section 3 provides the literature review. Section 4 presents practical examples and implications
of these examples are offered in Section 5. The last section concludes the paper.

2. Institutional Foundation

In econometrics textbooks the most commonly used representation is a structural equation model
(SEM). This form of econometrics representation is so important that almost all econometrics textbooks
start with discussions of SEM. As an example, prior studies [3] examine the effect of excise cigarette
taxes on the extent of smoking by using the following simple linear regression model:

Y = β X + ε (1)

In this equation, the dependent variable, Y, is the extent of smoking, the independent variable, X,
is the excise cigarette tax and ε is the entire error included in the model (e.g., errors of measurements,
model mismedication). In this model, to estimate the β coefficient (called the effect coefficient), it is
critical that X and ε be independent of each other. The independence of X from ε is known as the
exogeneity of X, or X being an exogenous variable. Independent variables (X) and error term must
be independent of each other. In fact, the error term is the effects of all other variables that are not
included in the model. The X represents all variables that are included in the model. If X and error
term are not independent, then we will have serial correlation. Researchers argue that if all underlying
assumptions of the SEM are maintained, then the model can answer all questions related to causal
relationships [3].
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Haavelmo [4] concludes that in the linear equation of Y = β X + ε, the β X is the expected value
of Y given that we set the value of X at x or simply set β x = E [Y|x], which is different from the
conditional expectation [5]. Some studies argue that the above interpretation has been misunderstood
or questioned by many econometricians [6]. For example, Goldberger [7] agrees with the interpretation
that considers β X to be the expected value of Y given that x is fixed, while Wermuth [8] disagrees and
instead argues that β X is not E [Y|x].

The main difference between Goldberger [7] and Wermuth’s [8] interpretations, in which
econometrics textbooks fall, is whether the structural equations imply a causal meaning or not.
Some econometrics textbooks posit that SEM equations represent causal relationships, while other
textbooks posit that the SEM equations represent the joint probability distribution. These two points of
view are the extreme points and most econometrics textbooks fall somewhere between these two.

Chen and Pearl [6] argue that the main source of confusion is the lack of a precise mathematical
definition of casual relationship. They state that SEM equations are used for two different purposes:
one is for predictive problems and the other one is for causal problems or policy decisions. In predictive
problems, one seeks to answer the question of what the value of Y will be given that we observe the
value of X to be x. In predictive problems, we can define β by the expression of β x = E [Y|do(x)], but it
is incorrect to define β in the same way for casual relationship.

Another relevant concept is ceteris paribus. The concept of ceteris paribus is widely used in
economics and is directly linked to causal relationships. In econometrics when we talk about the
definition of demand, we state that when the price of a good rises, then the quantity demanded of
that good will decrease, ceteris paribus, or holding other factors fixed. With the same notion when we
hold all other variables fixed, or ceteris paribus, then any relationship between Y and X, in Y = β X + ε

relationship, must be a causal relationship.
Another concept that is tied to causal relationship is the discussion of X to be an exogenous

variable. The exogeneity of X in a linear relationship between Y and X is held when X is independent
of all other factors (variables) included in ε. For example, in a completely randomized process in
which all participants are randomly assigned to either control or treatment group, independent of
characteristics of the subjects, we can argue that X is exogenous. This interpretation of the exogeneity
of X is different from the alternative interpretation in which one defines β X as E [Y|X]. In other words,
if the researcher is only interested in a conditional expectation or prediction, then the causal relationship
is of no importance. This argument is consistent with textbooks authored by Hill, Griffiths and Lim [9].

As discussed earlier, in the equation representing the relationship between Y and X, it is necessary
for X to be exogenous and uncorrelated with ε in order to estimate β in the Y = β X + ε relationship.
In this equation, ε is the effect of all other variables causing change in Y that are not included in X.
The β represents the change in Y when X changes by one unit holding all other variables fixed, ceteris
paribus. In addition, Chen and Pearl [6] argue that if we incorrectly consider β X to be the expected
value of Y given X or E [Y|X], then the statement of independence of X of ε will be meaningless.
In this context, the E [Y|X], is called the conditional expectation of Y. If we are only interested in the
conditional expectation, then any bias in the causal relationship can be ignored, and we can reliably
use the regression equation for estimating α, or the slope of the equation.

Furthermore, Chen and Pearl [6] argue that if, through randomization, we force the exogeneity to
X, then we will not estimate the conditional expectation, but the interventional expectation. They added
that conditional expectation and the interventional expectation are not the same and posit that,
“by requiring that exogeneity be a default assumption of the model, we limit its application to trivial
and uninteresting problems, providing no motivation to tackle more realistic problems” [6].

In short, we argue that in business research, researchers need to differentiate between correlation,
association, causation, and Granger causality. Correlation is a statistical measure of the relationship
between two variables ignoring the effects of other variables. Correlation measure ranges between
−1 and +1 with −1 indicating a perfect negative correlation and +1 indicating a perfect positive
correlation. No correlation is represented by close to zero correlation and approaches zero when
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the two variables are not linearly dependent. In calculating the correlation coefficient, no effort is
made to control the effects of other related variables. However, in calculating the association measure,
the researcher examines the relationship between two variables while holding the effects of all other
related variables fixed. In other words, the association is represented by β in the relationship between
Y and X, which indicates the extent of change in Y when X changes, holding the effects of all other
variables unrelated to X and Y, ε, fixed (ceteris paribus).

In the study of the causation, or the cause–effect relationship between two variables, researchers
are concerned about the effect of X on Y. In other words, in the presence of a causal relationship we
posit that X causes changes in Y. For causation between X and Y in the direction from X to Y (for X to
cause Y) to hold, three conditions must be present: (1) X and Y must vary together, (2) X must occur
before Y and (3) no other variables must cause change in Y (when the effects of these other variables
are controlled). That is, the researcher should show that when X does not change, then there will be no
change in Y. We believe that condition (3) is the most difficult one to achieve. This difficulty is believed
to be the main reason that causation is rarely used or used incorrectly in the business literature.

The difficulty of achieving a causal relationship between two variables moved researchers toward
a special form of causation called “Granger causality.” Granger [10] introduced, for the first time,
a specific form of causation that later became known as “the Granger causality.” He posits that if a
variable Granger causes another variable, then we can use the past values of the first variable to predict
the value of the second one beyond the effects of past values of the second variable.

The above discussions reveal that the strongest relationship between two variables is a causal
relationship; however, when it is not possible to show a cause–effect relationship, then the next best
relationship is the Granger causality relationship. Furthermore, most business researchers are interested
in using a linear model to fit their data. Even though a linear model may be a good approximation to
fit data, the use of a linear model is not appropriate in many cases, as we have shown below.

Taken together, the extant business literature examines the relationship between two variables,
but in most cases, researchers do not properly differentiate between correlation, association,
and causation, and in many cases the researchers use these terminologies interchangeably despite
their major differences. Given the above discussions, this study is an attempt to show how the use
of a linear relationship can be misleading in some cases and shows how sustainability research can
extend beyond reporting only correlation and association between ESG sustainability performance and
financial performance. In our study, by using practical examples, we show how the Granger causality
test which is based on time series analyses can be incorporated into sustainability research.

3. Literature Review

A large body of the literature discusses the applications of econometrics tools such as correlation,
association, and Granger causality. Correlation analysis is used in almost all studies that use
regression equations to be sure that independent variables are not correlated with each other
because high correlation between independent variables can result in a multicollinearity problem.
The multicollinearity problem creates bias in the estimates of regression coefficients. Examples of
correlation analyses can be found in prior studies [11–14]

Regression analysis is extensively used by researchers in different fields. For example, Francis
and Mialon [15] examine the association between the duration of marriages and wedding expenses by
conducting a survey of 3000 married individuals in the United States and regress wedding expenses
(ceremonies and engagement rings) against marriage duration. Francis and Mialon [15] find a negative
association between these two variables suggesting that when wedding expenses increase, duration
of marriage decreases. Other studies examine the association between determinants of quality of
marriage and its duration [16–20].

In the area of Granger causality, Cevher [21] posits that X Granger causes Y if Y can be predicted
by considering the past observations of both X and Y. As an example, Cevher [21] argues that the extent
of parents’ expenditures on education for their children will result in the success of their children in
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the future, finding a positive association between spending on education and results of education.
This type of relationship provides an example of classical Granger causality, and its validity can be
tested when both variables (in a two-variable model) are stationary. When two variables are not
stationary, but are associated in long run (meaning that they are cointegrated), then it is not possible to
find a vector autocorrelation (VAR) model. In this instance, the classical Granger causality test is not
appropriate. However, when at least one variable is not stationary, the Toda–Yamamota test can and
should be used for the Granger causality test among variables [22].

There are two categories of Granger causality, classical Granger causality and modern (advanced)
Granger causality analyses. In classical Granger causality, Cevher [21] posits that the pairwise Granger
causality should be used when there is only one dependent variable and one independent variable.
Therefore, in this type of Granger causality relationship, the researcher analyzes variables only two by
two. On the contrary, in modern (advanced) Granger causality, there exist more than two variables and
dependent and independent variables are not determined in advance. Dependent and independent
variables in this type of Granger causality are determined by a tool called R Package. For a discussion
of R package and its application in advanced (modern) Granger causality, the reader can refer to the
Boelstraete and Rosseel [23] paper.

Granger causality can be either conditional or partial. Conditional Granger causality is used
when the Granger causality from X to Y and Z depends on other variables. When conditional Granger
causality fails (that is, when exogenous variables are present), then prior research concludes that partial
Granger causality should be applied [24]. Partial Granger causality takes into account the underlying
relationship among all variables in a network. Finally, authors question the validity of a special
type of Granger causality in neuroscience called the Granger–Geweke causality and concluded that
Granger–Geweke may not be applicable without considering the critical components of the system [25].
These authors argue that the lack of attention to the critical components of the system model can
lead to spurious results [25]. However, Barnett, Barrett and Seth [26] reject the above criticism and
argue that this criticism is the result of a misconception, as well as an incomplete review of related
literature. The next section provides several practical examples of using correlation, association,
causation, and Granger causality.

4. Theoretical Framework and Practical Examples

4.1. Correlation

In statistics, two correlation coefficients are typically calculated. The first one is the Pearson
correlation coefficient and the second one is the Spearman correlation coefficient. Another type of
correlation is the rank correlation presented by Kendall [27], which can be applied when comparing
two different rankings of the same set of variables and is more applicable in psychology than business
research. The Pearson coefficient, or the Pearson product–moment correlation coefficient, is a measure
of the linear relationship between two variables. The Pearson correlation coefficient ranges from −1
to +1, with −1 represents perfect negative linear relationship, +1 represents perfect positive linear
relationship and zero represents no correlation between two variables. The Pearson coefficient is used
when two variables, Y and X, are interval or ratio data. The formula used to calculate the Pearson
correlation coefficient is:

ρX, Y =
Cov(X, Y)
σXσY

(2)

where:

ρX,Y = Pearson correlation coefficient;
Cov = Covariance; σX = the standard deviation of X;
σY = the standard deviation of Y;
Cov(X, Y) = E [(X − µX)(Y − µY)].
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The Pearson coefficient was first introduced by Kari Pearson [28] who obtain this idea from
Francis Galton in the 1880s. The Spearman correlation coefficient, or the Spearman’s rank–order
correlation, is the nonparametric version of the Pearson linear correlation. The Spearman correlation
coefficient measures the strength, as well as the direction, of relationship between ranked variables.
The Spearman coefficient is used when variables are ordinal data. The formula for calculating the
Spearman correlation coefficient is:

S = 1−
6
∑

d2
i

n(n2 − 1)
(3)

where:

S = Spearman correlation coefficient;
di = difference in paired orders;
n = number of cases.

As an example of the linear correlation coefficient, we prepare descriptive statistics (Table 1) and
calculate Pearson correlation coefficient (Table 2) between two variables, quarterly net income (X) and
stock price (Y), of General Motors (GM) from the first quarter of 1979 until the last quarter of 2016.
The calculated Pearson linear correlation coefficients are shown in Table 2:

Table 1. Descriptive statistics.

Net Income PRICE

Mean 806.2118 37.11997
Median 876.9500 36.33750

Maximum 127,140.0 87.00000
Minimum −38,963.00 0.331000
Std. Dev. 11,190.71 15.71062
Skewness 9.169656 0.153299
Kurtosis 109.4908 3.938673

Jarque–Bera 73,951.91 6.175689
Probability 0.000000 0.045600

Sum 122,544.2 5642.235
Sum Sq. Dev. 1.89 × 1010 37,270.34
Observations 152 152

Table 2. Pearson correlation matrix.

Price (Y) Net Income (X)

Price (Y) 1.00000 −0.08658
Net Income (X) −0.08658 1.00000

The above table shows that the stock price and quarterly net income of General Motors move in
opposite directions. The p-value of −0.08658 is negative and considered marginally significant but not
highly significant. As we discussed earlier, in calculating correlation coefficient we ignore the effects of
other related variables. However, in the context of time series analysis, the partial correlation function
(e.g., partial autocorrelation) can be used to describe the linear relationship between two variables [29].

The calculated Spearman or ranked correlation coefficient is shown in Table 3:

Table 3. Spearman correlation matrix.

Price (Y) Net Income (X)

Price (Y) 1.00000 0.25225
Net Income (X) 0.25225 1.00000
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The above table shows that the stock price and quarterly net income of General Motors move in
the same direction when we use the Spearman correlation coefficient.

4.2. Associations

In association analyses, a researcher examines the relationship between two variables while
holding the effects of other related variables unchanged (ceteris paribus). Association is generally
represented by the following equation:

Y = β X + ε (4)

where:

Y = the dependent variable;
X = independent variable or variables;
β = slope of the equation;
ε = effects of all other variables that are not included in the equation.

In Equation (4), If X is a variable β is a single parameter (slope of the regression line and not slope
of the equation) while if X is a matrix (it contains more variables), then β is a vector of parameters.
The components of any regression equations, are dependent variable, independent variable, intercept,
and slope. By saying “slope of equation”, we refer to one of these components. Before running any
association model, the researcher should conduct the unit root test to be sure variables do not have
unit root. The reason for this test is to avoid the probability of having a spurious regression. Spurious
regression occurs when two variables have a unit root (increasing overtime) and when we regress one
against the other one, they show that they are associated with each other, when, in fact, they are not
associated with each other and a third variable causes both of them to move in the same direction.
In this situation, the researcher should regress the change in one variable against the change in the
other one. After regressing these two changes and observing that they are associated with each other,
we can conclude that these two variables are co-integrated or are associated with each other in long
run. Table 4 shows the result of unit root tests for main variables (net income and price) that are used
in our association model. The Augmented Dickey–Fuller test statistic indicates that we should reject
the null hypothesis because there exists unit root [30].

Table 4. Augmented Dickey–Fuller test statistic.

t-Statistic Prob.

Price −2.898704 0.0478
Net Income −13.33675 0.0000

In the following, we examine the linear association between stock price and quarterly net
income of General Motors (GM) by holding the effects of variables such as total assets, liabilities,
cash, and short-term investment, and dividend fixed. That is, we are running the following linear
regression model:

Price = β0 + β1 NI + β2ASSET + β3LIABIL + β4CASH + β5DVD (5)

where:

Price: stock price of GM at the end of the period;
NI: net income of GM for the period;
ASSET: total assets of GM at the end of the period;
LIABIL: total liabilities of GM at the end of the period;
CASH: total cash and short-term investment at the end of the period;
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DVD: dividend paid for the period.

The results of running the above model are shown in Table 5:

Table 5. Output of linear regression model (2).

Dependent Variable: PRICE

Variable Coefficient Std. Error t-Statistic Prob.

Const. 33.27471 2.913504 11.42086 0.0000
NI 3.91 × 10−6 8.75 × 10−5 0.044645 0.9645

ASSET 0.000160 4.49 × 10−5 3.569371 0.0005
LIABIL −7.02 × 10−5 4.46 × 10−5 −1.573200 0.1182

CASH_STI −0.000895 9.63 × 10−5 −9.294673 0.0000
DVD 0.001628 0.001968 0.827111 0.4098

R-squared 0.513012 Mean dependent var 38.92902
Adjusted R-squared 0.493532 S.D. dependent var 15.92523

S.E. of regression 11.33344 Akaike info criterion 7.738111
Sum squared resid 16,055.85 Schwarz criterion 7.869800

Log likelihood −500.8463 Hannan–Quinn criter. 7.791622
F-statistic 26.33593 Durbin–Watson stat 0.580953

Prob(F-statistic) 0.000000

The above table shows that if we hold the effects of variables such as assets, liabilities, cash,
and short-term investment and dividend fixed, then there will be no association between stock price and
quarterly net income of GM (0.05 < p = 0.9645). The same results hold when we examine the association
between stock price and liabilities (0.05 < p = 0.1182) or stock price and dividend (0.05 < p = 0.4098).
However, there is a significant positive association between stock price and total assets and stock price
and cash and short-term investment when we hold the effects of other related variables fixed. As we
mentioned before, association is an improvement over simple correlation relationship.

4.3. Non-linear Model

Further analysis of the above linear regression reveals that the relationship between net income
and stock price of GM is not linear, so to come up with a non-linear model that better represents
the relationship between these two variables, we have examined data using alternative models and
come up with the following model, which is an autoregressive conditional heteroskedasticity (ARCH)
model. The ARCH model is often used in finance to provide a systematic framework for volatility
modeling when the mean-corrected of the variable of interest (e.g., stock price, net income in our study)
is serially uncorrelated but dependent, and the dependence can be described by the lag values [31].
We use an autoregressive–moving-average (ARMA) model in analyzing data from the first quarter of
1979 to the last quarter of 2016. An ARMA model combines a moving average process with a linear
difference equation.

yt = β0 + β1yt−1 + β2yt−3 + β3xt + β4xt−1 + β5xt−2 + β6xt−3 (6)

where:

yt: price of GM stock at the end of quarter t;
yt−1: price of GM stock at the end of quarter t – 1;
yt−3: price of GM stock at the end of quarter t – 3;
xt: net income of GM during quarter t;
xt−1: net income of GM during quarter t – 1;
xt−2: net income of GM during quarter t – 2;
xt−3: net income of GM during quarter t − 3.
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The results of running Model (6) are shown in Table 6:

Table 6. Output of non-linear model (6).

Dependent Variable is yt

Variable Coefficient Std. Error z-Statistic Prob.
Const. 2.546087 1.394663 1.825593 0.0679

yt−1 0.758581 0.080714 9.398428 0.0000
yt−3 0.166931 0.084206 1.982401 0.0474
xt 5.95 × 10−5 2.48 × 10−5 2.400805 0.0164

xt−1 8.73 × 10−5 2.39 × 10−5 3.659156 0.0003
xt−2 0.000121 2.87 × 10−5 4.217008 0.0000
xt−3 0.000146 3.26 × 10−5 4.473418 0.0000

Results of variance equation as well as other statistics such as adjusted r-squared and model
selection criteria are shown in Table 7:

Table 7. Results of variance equation and other criteria of running non-linear model 6.

C 4.162009 3.129710 1.329839 0.1836
RESID(−1)ˆ2 0.253625 0.100411 2.525865 0.0115
GARCH(−1) 0.667588 0.134890 4.949123 0.0000

R-squared 0.801205 Mean dependent var 37.26751
Adjusted R-squared 0.792805 S.D. dependent var 15.83317

S.E. of regression 7.207045 Akaike info criterion 6.625644
Sum squared resid 7375.694 Schwarz criterion 6.827251

Log likelihood −483.6105 Hannan–Quinn criterion 6.707554
Durbin–Watson stat 1.923084

When the linear dependence between Xt and its past values Xt−1 is of interest, the concept
of correlation is changed to autocorrelation. Plots of calculated autocorrelation as well as partial
autocorrelation of residuals and squared of residuals are shown in Figures 1 and 2, respectively:
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Figure 1. Correlogram of residuals. (The bar on left is autocorrelation (AC) and the bar on right is
partial autocorrelation (PAC). An autocorrelation explains the strength of the relationship between past
and current observations of a time series data. In a partial autocorrelation the effects of the intervening
observation is removed.

The above figures show that there is no sign of autocorrelation or partial autocorrelation between
residuals of our estimated model, which indicates that the estimated model is reliable.
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Several procedures are performed to test if the correlation coefficient is equal to zero. To show the
robustness of our results using non-linear model (ARCH), we have also conducted the Quandt–Andrew
single break point test using a liner model. The results are calculated based on Hansen′s [32] method
and are shown in Table 8. The null hypothesis of the Quandt–Andrew test is no breakpoint within
fifteen percent trimmed data. Our overall results reject the null hypothesis of no breakpoint. That is,
the use of linear model is not appropriate for examining the relationship between stock price and net
income of GM.Sustainability 2020, 12, 4833 10 of 17 
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Table 8. Quandt–Andrews unknown breakpoint test.

Statistic Value Prob.

Maximum LR F-statistic (Obs. 128) 3.715142 0.0118
Maximum Wald F-statistic (Obs. 128) 26.00599 0.0118

Exp LR F-statistic 0.606979 0.4870
Exp Wald F-statistic 9.012185 0.0185

Ave LR F-statistic 1.006934 0.4276
Ave Wald F-statistic 7.048538 0.4276

Note: probabilities calculated using Hansen’s [28] method.

The Maximum likelihood ratio (LR) statistics is used to compare two different maximum likelihood
estimates of a parameter.

The Bai–Perron multiple breakpoints test is also conducted and the results are shown in Table 9:

Table 9. Bai–Perron tests of multiple breakpoints.

Break Test Options: Trimming 0.15, Max. Breaks 5, Sig. Level 0.05

Sequential F-statistic determined breaks: 5
Significant F-statistic largest breaks: 5

UDmax determined breaks: 3
WDmax determined breaks: 4

Scaled Weighted Critical
Breaks F-statistic F-statistic F-statistic Value

1 * 3.715142 26.00599 26.00599 21.87
2 * 4.164864 29.15405 33.59321 18.98
3 * 5.086327 35.60429 45.19244 17.23
4 * 4.703992 32.92795 46.31088 15.55
5 * 3.826573 26.78601 43.71717 13.40
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Table 9. Cont.

Break Test Options: Trimming 0.15, Max. Breaks 5, Sig. Level 0.05

UDMax statistic * 35.60429 UDMax critical value ** 22.04
WDMax statistic * 46.31088 WDMax critical value ** 23.81

* Significant at the 0.05 level.
** Bai–Perron critical values.

Estimated break dates:
1 128
2 74 96
3 74 96 128
4 53 75 97 128

The UDmax and WDmax are procedure that test the null hypothesis of the existence of a zero
break versus unknown number of breaks.

Consistent with the Qundt–Andrew single break point test, the Bai–Perron multiple break points
test confirms the existence of multiple breakpoints, confirming that the use of non-linear ARCH mode
is preferable to a linear model.

To test for the stability of the coefficients, we have conducted the Cumulative SUM control chart
test (CUSUM test). The results are shown in Figure 3. Even though the diagram stays within the
acceptable zone, it approaches the upper limit in one case. Figure 4 shows the behavior of the residuals
of our estimated ARCH model. Figure 5 shows the actual, fitted and residuals of our estimated ARCH
model. Finally, Figure 6 shows the actual, fitted, and residuals if we incorrectly used a linear model to
fit our data. An ARCH model, or autoregressive conditional heteroskedasticity, is a statistical timeseries
model that describes the variance of the current error terms as a function of the error terms in the
previous period.

All of the above test results and figures confirm that the relationship between stock price (Y) and
net income (X) of GM is non-linear, and the use of a linear model is inappropriate.
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4.4. Granger Causality

The results of the pairwise Granger causality test (in the classical G-causality sense) are shown
in Table 10. The null hypothesis of this test is that one variable does not cause change in the other
variable. As the results show, we cannot reject the null hypothesis that stock price (Y) does not cause
change in net income (X), but we reject the null hypothesis of net income (X) does not cause change in
stock price (Y). In other words, we conclude that the previous observations of quarterly net income of
GM can help to predict stock price of GM, but previous stock prices do not help us to predict quarterly
net income of GM.

Table 10. Pairwise Granger causality tests.

Null Hypothesis: Obs F-Statistic Prob.

X does not Granger
cause Y 147 5.79765 7 × 10−5

Y does not Granger cause X 0.55730 0.7325

As we discussed earlier, the association reporting is an improvement over correlation reporting,
and Granger causality reporting is an improvement over the association reporting.

5. Policy, Practical, Education and Research Implications

5.1. Policy Implications

The time series models presented in this study can be used by regulators, standard setting bodies,
and policy makers in evaluating the efficiency and effectiveness of new standards and rules in the sense
that economic consequences of new rules and standards be evaluated in terms of cost-benefit analyses
and cause and effect with intended objectives. The intended consequences of rules, regulations and
standards can be examined over time by using the time series models. We posit that the causation can be
used by regulators in evaluating the effects of their proposed regulations and standards. The causation
and association can help investors to better evaluate the pattern of data and detect unusual changes in
bottom line information.

We posit that the time series models can be used by regulators in evaluating the financial
statements of public companies. The Sarbanes-Oxley Act of 2002 requires that the Securities and
Exchange Commission (SEC) review financial statements of public companies at least once every
three years to prevent and detect fraud and irregularities. Time series models and analyses can be
submitted as supplementary information through the SEC’s Electronic Data Gathering and Retrieval
(EDGAR) website. This supplementary information can help investors to better evaluate the pattern of
data and detect unusual changes in bottom line information. Time series analyses are consistent with
Section 408 of the Sarbanes-Oxley Act that requires the SEC to review annual financial statements of
public companies to comply with the SEC rules and regulations. Lastly, time series analyses can be
used by the Public Company Accounting Oversight Board (PCAOB) in inspecting annual financial
statement audits.

Several organizations worldwide including the Global Reporting Initiative (GRI), International
Integrated Reporting Council (IIRC), Sustainability Accounting Standard Board (SASB), and the United
Nations Global Compact have issued guidelines regarding disclosure of non-financial environmental,
social, and governance (ESG) sustainability performance information [33]. These organizations can use
time series analyses presented in this paper in determining cause and effects of voluntary disclosure of
ESG sustainability disclosure and the materiality benchmark that should be used in determining the
type and extent of such disclosure.
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5.2. Practical Implications

Time series models and analyses can be used in practice for different purposes such as detecting
symptoms of financial misstatements caused by errors fraud and irregularities. It is practical to use past
data to build time series models for forecasting future events and financial earnings. These forecasts
can then be compared with actual data to detect unusual fluctuations of data and investigate the
variances (the differences between forecasted and actual data). Correlation, association, and special
cases of causation can be used in practice for different purposes such as the determination of the link
between non-financial ESG sustainability performance and financial performance. These types of
comparisons are of interest to both public companies and their investors in developing hypotheses of
the link between ESG sustainability and financial performance and then collecting data to support or
reject their hypotheses. Hypotheses are developed by evaluating the pattern of past data together with
the use of correlation, association, or Granger causality. In addition, time series information can be
used in testing the causes and effects of sustainability disclosures.

The relationship between financial performance and ESG performance has been extensively yet
inconclusively debated in the literature in the past decade, which has caused investors not to pay enough
attention to sustainability factors of risk, performance, and disclosure [2,34]. However, a growing
number of investors are now considering the impact of investing with a keen focus on financial return
and ESG sustainability factors, regulators mandate ESG sustainability performance disclosure and
public companies prepare and disseminate sustainability reports. In this era of sustainability-oriented
investors, directors and executives, a major challenge is to show that ESG sustainability factors
contribute to the bottom-line earnings and long-term return. Time series analyses can be used to
demonstrate the causes and effects of the global move toward sustainability initiatives.

5.3. Education Implications

As discussed earlier in this paper, time series models and analyses are not adequately utilized
and applied in business literature. Business schools and accounting programs can focus on the
differences between correlation, association, and causation to ensure that these concepts are not used
inappropriately and interchangeably. Educating students about these important topics are of great
importance for courses that deal with budgeting, sustainability, and forecasting. We posit that the
inadequate understanding of correlation, association, and causation is the result of unfamiliarity of
accounting students with these important topics. Therefore, we recommend that business schools and
accounting programs incorporate these topics into their related courses and better educate students in
this regard.

We posit that underutilization of time series models in business is the result of unfamiliarity of
academics, students, and practitioners with time series concepts. Even though time series courses are
offered and taught in economics departments of many universities, usually as part of college of art and
science, only a small number of business students take these courses because they are not classified as
core courses, and it is not a common practice for business students to take these courses. Therefore,
we recommend that business schools and accounting programs worldwide incorporate time series
courses in their business and accounting curricula.

5.4. Research Implications

As discussed in the literature review of this paper, business researchers have not yet adequately
used time series models and analyses in their studies. The common practice by business scholars is to
use the traditional statistics in which they develop hypotheses, then collect data to test their hypotheses.
However, in time series statistics, researchers collect data and investigate the pattern of data to generate
hypotheses. The complexity of real-life activities and the high cost of using a cross-sectional approach
and massive unobservable noises in the real life make the use of time series research more efficient and
effective. We hope our study will open a window of opportunities for using time series concepts in
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business and, particularly, in the emerging opaque sustainability area where the link between financial
economic performance and non-financial ESG sustainability performance is not well-established.
To structure and effectively lead the business and sustainability research, we recommend that a
framework and taxonomy for sustainability be developed to be used by researchers. We emphasize
that the availability and expansion of public data have enabled the use of a time series approach in
sustainability research in comparison with studies that use cross-sectional approach.

6. Conclusions

Time series models have been used in business research to transform unstructured and
semi-structured data into structured information in improving the quality of financial and non-financial
information. Researchers apply time series analyses in examining the value-relevance of non-financial
ESG information and its link to financial and market performance. These studies often find mixed results
of the relationship between financial economic sustainability performance information and non-financial
ESG sustainability performance information because of the use of different time periods, variables
definition and construction, hypothesis development and justification, and estimation methods.
The quality and usefulness of sustainability studies could also improve by proper interpretation of
results in terms of correlation, association, and causation. In this paper we discuss the differences
between correlation, association, and Granger causality and their implications in business research.
Business studies are often focused on the determination of the association between variables of interest
and, thus, researchers examine the relationship between two variables while holding the effects of other
related variables fixed (ceteris paribus). In science studies, researchers are able to examine the causation
or the cause–effect relationship between two variables (e.g., smoking and cancers). For causation
between X and Y in the direction from X to Y (for X to cause Y) to hold, three conditions must be
present: (1) X and Y must vary together, (2) X must occur before Y and (3) no other variables must
cause change in Y (when the effects of these other variables are controlled). These conditions are often
challenging and difficult to hold in business research.

The difficulty of achieving a causal relationship between two variables encourage business
researchers to consider a special case of causation called “the Granger causality” that focuses on using
the past values of the first variable to predict the value of the second variable beyond the effects of past
values of the second variable. We offer practical examples for correlation, association, and the Granger
causality and discuss their main differences. We present analyses regarding the improvement from
correlation (looking at movement of two variables without controlling the effects of other variables)
to association (looking at movement of two variables after holding the effects other variables fixed),
and to causation (what variables cause change in dependent variable). We conclude that because
achieving causation is extremely difficult, the alternative is the use of Granger causality, which is the
second best to causality. We show, using an empirical example, how the use of a linear regression may
not be appropriate when the true relationship is not linear. Finally, we discuss the policy, practical,
and educational implications of our paper. Academics conducting business sustainability research can
use our suggested example in examining the possible link between financial economic sustainability
performance and non-financial ESG sustainability performance, use time series analyses in detecting
patterns in unstructured data, develop testable research hypotheses, and estimate association models
that produce economically and statistically significant robust results.
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