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Abstract: Buildings consume large amounts of materials and energy, making them one of the highest
environmental impactors. Quantifying the impact of building materials can be critical to developing
an effective greenhouse gas mitigation strategy. Using Athena Impact Estimator for Buildings (IE4B),
this paper compares cradle-to-grave life-cycle assessment (LCA) results for a 12-story building
constructed from cross-laminated timber (CLT) and a functionally equivalent reinforced concrete
(RC) building. Following EN 15978 framework, environmental impacts for stages A1–A5 (product
to construction), B2, B4, and B6 (use), C1–C4 (end of life), and D (beyond the building life) were
evaluated in detail along resource efficiency. For material resource efficiency, total mass of the CLT
building was 33.2% less than the alternative RC building. For modules A to C and not considering
operational energy use (B6), LCA results show a 20.6% reduction in embodied carbon achieved
for the CLT building, compared to the RC building. For modules A to D and not considering B6,
the embodied carbon assessment revealed that for the CLT building, 6.57 × 105 kg CO2 eq was emitted,
whereas for the equivalent RC building, 2.16 × 106 kg CO2 eq was emitted, and emissions from CLT
building was 70% lower than that from RC building. Additionally, 1.84 × 106 kg of CO2 eq was stored
in the wood material used in the CLT building during its lifetime. Building material selection should
be considered for the urgent need to reduce global climate change impacts.

Keywords: whole building; cross-laminated timber (CLT); environmental impacts; embodied carbon;
cradle-to-grave

1. Introduction

The building sector is one of the major industries producing a large amount of greenhouse
gases [1,2]. It contributes about 36% of global energy use and 39% of energy-related carbon dioxide
(CO2) emissions [3]. Therefore, the building sector represents significant potential for reducing
emissions and mitigating global climate change.

Two major approaches are currently being adopted to reduce environmental impacts from the
building sector. One is selecting materials wisely, and the other is optimizing energy use during the
service life of a building [4,5]. Hafner [1] calculated through life-cycle analysis that the operational
phase accounts for 45% to 80% of total carbon emission, depending on the energy standard with which
the buildings are built. That leaves 20% to 55% of total carbon emissions related to materials used
in buildings and their embodied carbon. Therefore, the greenhouse gas (GHG) emissions of whole
buildings can be significantly influenced by the selection of construction material. Considering the
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large amounts of standardized products used, such as concrete, masonry, and steel, the process of
design and construction must consider environmental impacts. Concrete is responsible for 4% to 8% of
the world’s CO2 emissions [6]. The steel industry generates between 7% and 9% of direct emissions
from the global use of fossil fuels [7]. Recently, research has focused on developing materials with low
CO2 emissions that can mitigate climate change, either by reducing carbon emissions or storing carbon
for long periods of time [8].

Wood construction of various types, rather than steel, concrete, or masonry construction, has a
long history in many countries [9]. Now wood construction is becoming popular for mid- to high-rise
buildings, because of the rapid growth of mass timber (MT) products, such as cross-laminated timber
(CLT) [10,11]. Wood buildings are considered lower carbon (less fossil fuel intensive) constructions
than non-wood buildings [12–15]. Wood and mass timber products have been demonstrated with
benefits in reducing global warming potentials, only if they are sourced from sustainably managed
forests. Building with wood contributes to the critical benefits related to mitigating climate change,
because wood can not only be used as a substitute for other materials to reduce GHG emissions, but
also has a unique function of storing large amounts of carbon in the building structure, a property other
materials do not possess [16]. In addition to serving as a construction product during a building’s
lifespan, after the building’s service life, the wood can be re-used in other construction, as feedstock
for another engineered wood product, or, as a last resort, burned for energy as a substitute for fossil
fuel [17–19]. CLT is just one of many MT products available for construction, including glulam,
dowel-laminated timber (DLT), nail-laminated timber (NLT), and massive plywood veneer, which are
used in conjunction with CLT primarily for multi-story buildings.

As mentioned, CLT is a new wood structural product that can be used for residential, commercial,
and institutional buildings in a cost-effective way [20]. It is a form of large timber board, built up of
layers of planks with adjacent layers at right angles to each other. It usually consists of three, five,
seven, or nine uneven layers of boards [21]. As an engineered timber product, CLT is used primarily as
a structural building material, but can also be used as exterior wall material and secondary structural
material, such as for interior walls and floors [8]. It is also now practical to use computer numerical
control (CNC) technology to cut openings of different sizes and shapes on CLT panels for windows
and doors with precision value added [22].

Research on MT, including life-cycle analysis, has been a focus for the past decade [23,24].
According to Darby [25], CLT has notable effects on reducing GHG emissions, regardless of its final
disposition after the building reaches the end of its serviceable life. Robertson [22] conducted a
cradle-to-gate LCA analysis sourcing from BEES 4.0, Athena EcoCalculator, CORRIM and US LCI.
He showed that maximizing wood use (including glulam and CLT) in buildings could reduce the
global warming impact by 71% when compared to concrete. Skullestad [26] followed the ISO standard
provided framework and calculated the climate change impact (CC) with the ReCiPe method using
SimaPro v7 software equipped with Ecoinvent v3.2 database. Skullestad reported a 34% to 84% GHG
reduction from four building construction types by substituting wood (glulam and CLT) for steel and
concrete. Milaj [27] studied six cases of commercial buildings using cradle-to-grave life-cycle analysis
with Athena Impact Estimator for Buildings to evaluate the environmental benefits of using wood in
place of concrete and steel, and results showed an average GHG reduction from wood substitution of
60% across the six buildings. Gu and Bergman [28], collaborating with the Athena Sustainable Material
Institute and the University of Massachusetts, conducted a whole building life-cycle assessment (LCA)
on a four-story educational building called the Design Building, which used a large amount of CLT in
the roof, floor, and stair-core wall panels. They developed the first Environmental Building Declaration
(EBD) in the United States, and the building ultimately achieved LEED credit for its reduction in
LCA impact.

This paper aims to investigate the environmental impacts of a MT high-rise multi-functional
building, compared with its more traditional RC counterpart, using Athena Impact Estimator for
Buildings (IE4B). There are two commercially available software tools to perform Whole Building LCA
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(WBLCA) focusing on US data. They are Tally and IE4B. Tally is an Autodesk Revit application to help
architects and engineers to compare environmental impacts of different building designs. Tally extracts
data from Revit models to calculate embodied impacts. We chose IE4B, because we do not have the
Revit model, but only material take-off (Table A1) data from the architects. The embodied carbon for
both buildings is analyzed and reported, to compare their environmental impacts. Embodied carbon
refers to the GHG emissions from the life-cycle stages of the whole building except for operational
energy emissions.

2. Materials and Methods

2.1. Building Design

The building studied here was based on the Framework building designed by LEVER Architecture,
a 12-story mixed-use building with 8,360 m2 floor area (Figure 1). The Framework building was the
first high-rise MT building designed in the United States to obtain approval for construction. It was
designed to be built for mixed-use with combined retail and public exhibition on the ground floor, five
levels of office, and 60 units of affordable housing. The framework’s structural system was to be made
from glulam columns and beams, and the floors and walls were from large amounts of CLT materials.
The foundation, one of the heaviest parts of the building, would have been constructed of concrete and
steel rebar.
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Figure 1. The building design with the cross-laminated timber (CLT) is a high-rise building structure
in Portland, Oregon, USA.

2.2. Goal and Scope

The goal of this study was to conduct a whole building LCA using the IE4B, to estimate
environmental impacts from the building materials of assemblies, construction, and the end of building
life treatment during a 60-year period [29]. Comparison of the LCA was between the MT building
and a functionally-equivalent RC building specifically examining the effect of CLT use in high-rise
residential buildings for global climate change mitigation potential.

The system boundary was defined as “cradle to grave,” which includes the product stage (A1–A3),
construction stage (A4–A5), use stage (B2, B4), and end of life stage (C1–C4) [30], as shown in Figure 2.
System expansion was employed to take into account the net benefits related to reuse and recycling
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of the materials and products, as well as energy recovery from materials, such as wood incineration
beyond the system boundary (D).
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Figure 2. Assessment system boundary based on EN15978 (bolded and italicized items not included in
this analysis).

For this study, several stages within Module B were excluded from the comparative LCA, because
of the assumption of functional equivalence for the two buildings in their use stage and lack of empirical
data for repairing and refurbishing of MT buildings and lack of water consumption data. Thus, B1-Use,
B3-Repair, B5-Refurbishment, and B7-Operational Water were excluded from the analysis. Although
the global warming impact from the whole building LCA comes mainly from operational energy, such
as electricity and natural gas used during the building’s lifetime, the two comparison buildings were
designed as functionally equivalent. Thus, no difference would be shown for the operational energy
impacts (B6). This analysis mainly focuses on the impacts resulting from materials and other activities.

2.3. Software Tool

IE4B is an open free software tool that provides a cradle-to-grave life-cycle inventory (LCI), mostly
developed for north American building industries, to estimate a whole building’s environmental
impacts. The LCI results comprise flows from and to nature: energy and raw material inputs into the
system and emissions out to air, water, and land.

Athena has developed a set of regional North American LCI datasets for major building products,
such as concrete, steel, and wood products, covering 90% to 95% of the structural and envelope systems
applicable to typical commercial, institutional, light industrial, and residential buildings. Additional
databases related to regional electricity grids, fuel use, and transportation by various modes are taken
from the U.S. LCI Database.

The IE4B tool conforms to EN 15978 standard, which includes impacts from production,
transportation, construction, use, and demolition, as well as operational energy and water use. End
of life (EoL) building disposal and transportation were also included in the assessment. The process
of calculation for IE4B is shown in Figure 3. The IE4B tool used the “Tool for the Reduction and
Assessment of Chemical and other environmental Impacts” (TRACI) environmental impact assessment
method to aggregate the impacts from the LCI flows [31]. TRACI provides characterization factors for
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the life cycle impact assessment (LCIA). Characterization factors quantify the potential impacts that
inputs and emissions have on specific impact categories in common equivalence units, such as global
warming (GW) (kg CO2 eq), acidification (AC) (kg SO2 eq), eutrophication (EU) (kg N-eq), ozone
depletion (OD) (kg chlorofluorocarbons-11-eq), smog formation (SF) (kg O3-eq), and human health
(HH) (CTU).
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Figure 3. Athena Impact Estimator for Buildings (IE4B) calculation process based on ASMI (2019b).

3. Results and Discussion

3.1. Building Material Comparison

Material inputs for the building LCA were taken from the building’s design blueprints provided
by LEVER Architecture, the Framework designers. The MT and RC buildings were designed to be
functional equivalent for a fair comparison. Building materials identified by the architectural blueprints
are summarized in Appendix A. The total mass of the major (structural) materials for the MT Building
was 5.30 × 106 kg, whereas the RC building was about 50% heavier at 7.93 × 106 kg.

The materials of the MT and RC buildings were grouped into different building assemblies, such
as ceilings/roof, floors, foundations, columns and beams, and walls (Appendix A). Figure 4 shows the
materials classified into the steel, wood, concrete, gypsum board, mortar and the rest in others based
on the summary of bill of materials (BOM) used in both buildings. The most material used by weight
in both buildings was concrete, which was followed by gypsum board and steel in the RC building,
and wood and gypsum board in the MT building. Figure 4 shows that 1.12 × 106 kg more wood was
used in the MT building than the RC building, and 3.8 × 106 and 0.22 × 106 kg more concrete and steel
used, respectively, in the RC building. Additionally, 0.23 × 106 kg of gypsum board was added to the
MT building to meet fire codes, which added more environmental burdens to LCA results for the MT
building. Considering carbon storage in wood products and assuming wood moisture content at 12%,
a total of 1.14 × 106 kg of wood material used in the MT building translates to about 1.84 × 106 kg of
CO2 eq stored in the building during its service life. In addition, using the mass of wood building
materials and the carbon displacement factor [32,33] to estimate avoided product emissions, results
showed that the MT building saved 3.51 × 106 kg CO2 eq of GHG emissions. The displacement factor
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computes the sum of GHG emission reduction attained per unit of wood use. In essence, building
with wood avoids the consumption of about three times as much fossil fuel as a wood product needs,
a substantial GHG benefit even when considering biogenic CO2 emissions. Figure 5 demonstrates the
material quantity and percentage for different building assemblies in both buildings. Floors made up
the largest share (by mass) of materials among all assemblies, followed by walls.
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Figure 5. Mass of materials used by the different assemblies for the MT and RC buildings.

Table 1 lists specific breakdowns of material usage for the two buildings. A thin sheet of concrete
is used on top of CLT floors for sound-deadening purposes. About 0.61 × 106 kg of CLT was in the floor
assembly for the CLT building; this reduced concrete use in the floor assembly from 4.69 × 106 kg for the
RC building to 2.33 × 106 kg for the CLT building. The total mass of floor materials is 3.02 × 106 kg in the
CLT building and 4.88 × 106 kg in the RC building (Figure 5 and Table 1). Similarly, for walls, the total
mass was 1.37× 106 kg in the CLT building land 2.07× 106 kg in the RC building. This was due to the use
of 0.24 × 106 kg CLT to replace the use of 1.0 × 106 kg concrete and 0.11 × 106 kg steel, although there is
0.23 × 106 kg more gypsum board used in the CLT building. Additional gypsum board was required for
high-rise MT buildings in the roof and walls to meet building code requirements. Table 1 was extracted
from the BOM generated in the IE4B. The BOM is an ingredients list for constructing the buildings.
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The materials were classified into five groups: steel, wood, concrete, mortar, and gypsum board. CLT
and glulam were classified as wood. Only the top five weighed materials are listed in Table 1, which
accounted for 97.26% and 98.71% of the total mass for the MT building and RC buildings, respectively.
Floors and walls make up most of the total mass in the building, so the designer may consider selecting
less fossil-fuel intensive materials in building designs to reduce environmental impacts, while still
meeting building code and other construction requirements.

Table 1. Grouped material for two high-rise building types by mass (Unit: 106 kg).

Building Type Material Column & Beam Floor Foundation Roof Wall Total

MT Building

Steel 0.0448 0.0586 0.0390 0.0177 0.0445 0.2045

Wood 0.2630 0.6173 0.0000 0.0005 0.2574 1.1382

Concrete 0.0000 2.3287 0.3118 0.0000 0.1889 2.8294

Mortar 0.0000 0.0054 0.0000 0.0000 0.1036 0.1091

Gypsum
board 0.0000 0.0000 0.0000 0.2092 0.6628 0.8720

RC Building

Steel 0.0628 0.1736 0.0133 0.0136 0.1575 0.4208

Wood 0.0001 0.0033 0.0000 0.0000 0.0163 0.0197

Concrete 0.4043 4.6930 0.3729 0.0000 1.1652 6.6354

Mortar 0.0000 0.0054 0.0000 0.0000 0.1033 0.1088

Gypsum
board 0.0000 0.0000 0.0000 0.0983 0.5445 0.6428

3.2. Life-Cycle Assessment Comparison for Environmental Impacts of the Two Buildings

Figure 6 shows the whole building life cycle (from Module A to C, excluding maintenance,
replacement, operational energy, and water use in Module B) environmental impacts of the CLT MT
building and its equivalent concrete alternative. The results illustrate that the MT building had a
lower environmental impact than the RC building in three of six categories: GW, OD, and EU. The MT
building demonstrated 8%, 29%, and 21% reductions in OD, EU, and GW, respectively, over its RC
counterpart. The MT building had higher impacts in categories of HH, AC, and Smog (SF). Figure 7
displays the environmental impacts of each stage (excluding the operational energy emission) of the
whole building LCA results. Over 75% of the total environmental loads are from the production and
construction stages for both the MT and RC buildings, except HH. Future research should be focused
on ways to reduce impacts of the production and construction stages.
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3.3. Comparison of Global Warming Impacts

Global warming (GW) impact is a term used to describe the contribution of a product or service to
potential warming of the atmosphere, which could contribute to climate change.

3.3.1. Global Warming Summary

The GW impact for each life-cycle stage of each building type is shown in Table 2 and plotted in
Figure 8 (for stage B, only including modules B2 and B4). In Table 2, a negative rate of change indicates
that the RC building performs better than the MT building for the specific stage. The operational
energy usage (B6) is the same for both buildings, according to the data provided by the architects
who designed the two buildings, so the focus can be on structural elements (i.e., embodied carbon).
Not including B6, total carbon dioxide emissions from modules A through C was about 2.15 × 107

kg CO2 eq for the RC building and 1.70 × 107 kg CO2 eq for the CLT building. When considering
module D, total carbon dioxide emissions for the RC building increased to 2.16 × 107 kg CO2 eq, but it
decreased to 6.57 × 106 kg CO2 eq for the CLT building. Stage D involves reuse, recycling, and recovery
of building materials. The increase of GHG emissions for the RC building is due to the carbon dioxide
emissions during transportation or reuse activities. Due to the stored carbon in wood, the MT building
exhibits substantially lower global warming impacts over its RC counterpart in module D.
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Table 2. Detailed comparison of global warming impact by life-cycle stage for RC and MT buildings.

Stage Process RC MT Difference =
RC −MT

Rate of Change =
Difference/RC

Unit kg CO2 eq kg CO2 eq kg CO2 eq

PRODUCT
(A1 to A3)

Manufacturing 1.82 × 106 1.28 × 106 0.54 × 106 29.7%

Transport 1.96 × 104 3.62 × 104
−1.66 × 104 −84.7%

Total 1.84 × 106 1.32 × 106 5.18 × 105 28.2%

CONSTRUCTION
PROCESS
(A4 & A5)

Construction-Installation
Process 7.47 × 104 5.09 × 104 2.38 × 104 31.9%

Transport 7.95 × 104 1.55 × 104
−7.55 × 104 −95.0%

Total 1.54 × 105 2.06 × 105
−5.17 × 104 −33.6%

USE
(B2, B4 & B6)

Replacement
Manufacturing 3.21 × 104 5.57 × 104

−2.36 × 104 −73.5%

Replacement Transport 2.13 × 103 3.59 × 103
−1.46 × 103 −68.5%

B2,B4 Total 3.42 × 104 5.93 × 104 -2.51 × 104 −73.4%

Operational Energy Use
Total 2.34 × 107 2.34 × 107 0.00 × 100

Total 2.34 × 107 2.34 × 107
−2.51 × 104 −0.1%

END OF LIFE
(C1 to C4)

De-construction,
Demolition, Disposal &

Waste Processing
9.60 × 104 9.79 × 104

−0.19 × 104 −2.0%

Transport 2.66 × 104 2.32 × 104 0.34 × 104 12.8%

Total 1.23 × 105 1.21 × 105 1.55 × 103 1.3%

BEYOND BUILDING
LIFE (D)

BBL Material 6.49 × 103
−1.05 × 106 1.06 × 106 16332.8%

BBL Transport 0.00 × 100 0.00 × 100

Total 6.49 × 103
−1.05 × 106 1.06 × 106 16332.8%

EMBODIED
EMISSIONS 1

A to C 2.15 × 106 1.71 × 106 4.43 × 105 20.6%

A to D 2.16 × 106 6.57 × 105 1.50 × 106 69.5%

TOTAL EMISSIONS 2
A to C 2.55 × 107 2.51 × 107 0.04 × 107 1.6%

A to D 2.55 × 107 2.40 × 107 0.15 × 107 5.9%
1 Does not include operating energy. 2 Includes operating energy.

3.3.2. Product Stage Analysis

Product stages A1 through A3 include raw material extraction from nature, transportation to
manufacturers, and product manufacturing. Both the RC and the MT buildings produced considerable
amounts of GHG emissions. According to Sjunnesson [34], the production of concrete generates the
most GHG emissions in the concrete building’s life cycle, which constitutes approximately 85% of
its total GW impact. For the RC building, 92% of the material mass is concrete (Figure 4), and this
material accounted for 85% of total GHG emissions shown in Table 2 (emissions from A1–A3 divided
by embodied emissions A–C). The MT building uses more wood and less concrete, so GHG emissions
were 5.18 × 105 kg CO2 eq (Table 2) less than the RC building, or 28.2% less than the RC building.

3.3.3. Construction Stage Analysis

The construction stage includes transportation of materials from factory to construction site by truck
or rail (A4) and construction work, such as product installation and groundwork (A5). Table 2 shows that
1.55 × 105 kg CO2 eq and 5.09 × 104 kg CO2 eq emissions resulted from transportation and construction,
respectively, for the MT building; these values for the RC building were 7.95 × 104 kg CO2 eq and
7.47 × 104 kg CO2 eq, respectively. GHG emissions from this stage were lower than from the product
stage. This is because the Framework building has not been built, so the practical construction onsite
energy use is not available, but the IE4B default fossil fuel energy use calculation for crane operation
was included only in this stage of environmental impacts. For the RC building, the construction stage
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GHG emissions are only 7.1% (emissions from A4 to A5 divided by embodied emissions from A to
C) of its total embodied carbon, whereas for the MT building it is about 11.7%. The reason for there
being more carbon emissions from the MT building than from the RC building is the greater distance
between the CLT manufacturer and the construction site. For concrete, given its weight and extensive
use in urban areas, providers are normally within 25 miles of the building site, so the transportation
of concrete tends to consume less fossil fuel than transportation of MT materials. There are limited
CLT manufacturers in the United States and Canada, which leads to longer transportation distances
and results in higher impacts for the MT building for A4. As additional CLT and other MT product
manufacturers arise, these transportation distances will tend to shorten, resulting in lower A4 impact
for MT buildings. Furthermore, the lighter weight of CLT building materials leads to lower GHG
emissions during erection of the building structure compared to the RC building.

3.4. Use Stage Analysis

The use stage includes only maintenance (Module B2), replacement (Module B4), and Operational
Energy (Module B6). Modules B1 (Use), B3 (Repair), B5 (Refurbishment), and B7 (Operational Water)
are all excluded, due to the assumption of functional equivalency for the two buildings and a lack
of empirical data for B3-Repair and B5-Refurbishing for MT buildings. Repair and Refurbishing of a
building in the use stage can make an impact in GWP if the waste stream from repair and refurbishing
is significant. However, for the current paper, due to the lack of such data from this new building
sector, they are excluded, but only including the maintenance components (B2) and replacing building
materials (B4). Both the MT and RC buildings produced very small amounts of GHG emissions for
modules B2 and B4 (Table 2), about 0.1 % and 0.2% of their total embodied carbon from cradle to grave
(A to C). Carbon emissions in this stage from the MT building were a little higher than those from the
RC building, because the wood requires more maintenance to meet fire codes and prevent moisture
intrusion into the building envelope.

3.5. End of Life Stage Analysis

The end of life stage includes energy use of the demolition equipment (C1), materials transportation
from site to landfill (C2), waste sorting and processing (C3), and disposal equipment energy use (C4).
Carbon emissions in this stage from the MT building and the RC building are only slightly different,
1.21 × 105 kg CO2 eq and 1.23 × 105 kg CO2 eq, respectively (Table 2). This means that, although the
mass of materials used in the MT building was less than that in the RC equivalent, the two buildings
consumed a similar amount of energy at the end of building life stage.

3.6. Beyond Building Life Stage

Stage D quantifies the net environmental benefits or loads due to reuse, recycling, and energy
recovery resulting from the net flows of materials and energy exported beyond the system boundary.
A biogenic carbon accounting methodology is adopted in IE4B, in accordance with the internationally
accepted carbon footprint standards: PAS 2050 [35], ISO 14067 [36], and WRI GHG Protocol [37] for
Products. According to the principle of these three standards, if the forest will be renewed after logging,
forest growth leads to the reduction of carbon dioxide in the atmosphere, which is considered negative
carbon emission [38]. Figure 9 demonstrates the negative carbon emissions derived in stage D for
the large quantity of CLT used in the MT building. This carbon benefit has also been demonstrated
in another paper [8]. Overall, the CLT wood product has a positive GW impact when considering
carbon storage in products’ life. For every cubic meter of CLT (380 oven dry kg wood) used in the MT
building, about 190 kg of carbon are stored, which is equivalent to 700 kg CO2.

Table 2 shows the embodied GHG emissions in relation to module D (beyond building life).
Including D, it shows that the MT building produced 69.5% less GHG emissions than the RC building
compared to 20.6% from stages A through C. When considering building operating energy, these
numbers drop to 5.9% and 1.6%, respectively. This indicates the importance of building operating
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energy along with masking the importance of structural element material. For module D, the wood
products used in the building exhibited an environmental carbon savings of 1.05 × 106 kg CO2 eq from
the carbon stored (Figure 9).
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4. Comparison of Global Warming Impact by Building Assembly Groups

Figure 10 shows the GHG emissions by assembly groups for the two building types from Stage A
to D. GHG emissions were mainly from wall and floor for the RC building, in which floors accounted
for almost 50% and wall accounted for 36% of its total emissions. For the MT building, floors accounted
for only 24%, and walls accounted for 58% of its total carbon emissions. The value of GHG emissions
from MT building walls and floors were dramatically reduced by 50% and 80% from the RC building
assemblies, respectively. This is due to the large amount of CLT substituting concrete and steel, as
shown in the materials summary of Figure 5 and Table 1. Therefore, in building construction, replacing
traditional concrete and steel materials with CLT mass timber materials as structural members results
in significant environmental benefits.
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5. Conclusions

This study conducted a comparative whole-building LCA of two functionally equivalent high-rise
buildings using the Athena IE4B. The designs were based on the Framework building in Portland,
Oregon, USA. For material resource efficiency, the MT building weighed about 67% of its RC equivalent,
a substantial advantage for mass timber building designs. GW, AC, EU, and other impact indicators
were reported from the whole-building LCA from cradle-to-grave analysis. Results showed that
substituting wood for concrete and steel in these buildings would bring significant GHG emission
reductions. From Stages A through C, the embodied carbon was 21% lower for the MT building due
to these substitutions. If considering carbon stored by the CLT material in the MT building, then the
GHG emissions reduction would increase to 69.5%. This comparative study demonstrated CLT as a
smart choice for structural frames, such as walls and floors, compared to traditional concrete and steel
building materials.

Research focusing on reducing emissions in the building sector has shifted from improving
operational energy use and its associated emissions through efficiency measures to the selection
of low-carbon-footprint materials for better environmental influence. Buildings constructed with
wood products are considered to have low environmental loads, especially if carbon stored effects
are considered. The results reported in this paper can support decision makers seeking better
choices of material for high-rise buildings, in order to minimize environmental burdens and mitigate
climate change.
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Appendix A

Table A1. Total Building Material Quantities for Each Building Design.

Materials Used in Different Assemblies Unit Amount CLT 1 Building Amount Concrete Building

Materials-Ceilings/Roof

Acoustic ceiling tile m2 220.4 228.6

Cold formed structural steel tonne 11.4 7.4

Cross laminated timber m3 1.1 0.0

Mineral wool; high density m2 (25 mm) 295.7 295.7

Paint; interior acrylic latex L 2657.0 1328.4

Polystyrene board (XPS); Pentane foaming agent m2 (25 mm) 104.6 104.6

Steel; sheet tonne 5.7 5.7

Suspended grid tonne 0.4 0.4

Wall board; gypsum; fire-resistant (Type X) m2 14907.0 5945.4

Wall board; gypsum; natural m2 4153.8 3336.7
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Table A1. Cont.

Materials Used in Different Assemblies Unit Amount CLT 1 Building Amount Concrete Building

Materials-Floors

Adhesive; acrylic tonne 0.1 0.1

Cement grout; Cement mortar m3 2.5 2.5

Coated steel deck tonne 0.1 0.1

Cold formed structural steel tonne 0.4 0.4

Cross laminated timber m3 1278.7 0.0

Exterior grade plywood m2 (9 mm) 699.0 699.0

Polystyrene board (XPS); Pentane foaming agent m2(25 mm) 2948.8 2948.8

Steel; reinforcing rod tonne 53.2 170.3

Steel; sheet tonne 4.2 0.9

Steel; welded wire mesh tonne 0.1 0.1

Structural concrete m3 961.6 1937.9

TPO membrane m2 351.5 351.5

Materials-Foundation

Structural concrete m3 128.7 154.0

Steel; reinforcing rod tonne 38.6 13.1

Materials-Columns and Beams

Glue laminated timber m3 557.1 0.0

Cold formed structural steel tonne 43.1 38.8

Hot rolled structural steel tonne 0.4 0.4

Composite wood I-joist m2 (9 mm) 12.5 12.5

Structural concrete m3 0.0 166.9

Steel; reinforcing rod tonne 0.0 22.1

Steel; sheet tonne 0.8 0.8

Materials-Walls

Aluminum extrusion tonne 4.6 4.6

Aluminum-faced composite wall panel, sheet, siding tonne 26.4 26.4

Cold formed structural steel tonne 31.9 30.0

Concrete masonry unit (CMU); hollow-core blocks 3132.6 3127.1

Cross laminated timber (CLT) m3 502.0 0.0

Exterior grade plywood; US m2 (9 mm) 3418.5 3418.5

Mortar type S m3 4.5 4.5

Thickset mortar m3 43.2 43.1

Paint; interior acrylic latex L 7809.6 4413.7

Polystyrene board (XPS); Pentane foaming agent m2 (25 mm) 5541.2 5541.9

Sealant; silicone tonne 0.6 0.6

Steel; reinforcing rod tonne 12.1 126.0

Structural concrete m3 49.2 452.4

Wall board; gypsum; fire-resistant (Type X) m2 57330.3 47096.9

1 Specific gravity of the cross-laminated timber is 0.380.
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