o ey 4
<@ sustainability ﬂw\p\py

Article
Computing the Assembly Guidance for Maximizing
Product Quality in the Virtual Assembly

Chen-Kun Tsung 10, Tseng-Fung Ho %*{, Hsuan-Yu Huang 3, Shu-Hui Yang 3, Po-Nien Tsou 3,
Ming-Cheng Tsai 3 and Yi-Ping Huang 3

1 Department of Computer Science and Information Engineering, National Chin-Yi University of Technology,

No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan; ckt@ncut.edu.tw

Department of Industrial Engineering and Management, National Chin-Yi University of Technology, No. 57,
Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan

Mechanical and Mechatronics System Research Labs, Industrial Technology Research Institute, No. 195,
Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan; itriA50248@itri.org.tw (H.-Y.H.);
itriA40458@itri.org.tw (S.-H.Y.); BernieTsou@itri.org.tw (P-N.T.); GregTsai@itri.org.tw (M.-C.T.);
yiping@itri.org.tw (Y.-P.H.)

* Correspondence: fung@ncut.edu.tw

check for
Received: 7 May 2020; Accepted: 29 May 2020; Published: 8 June 2020 updates

Abstract: Assembly is the final process of manufacturing, and a good assembly plan reduces the
effect of the tolerance generated in the early stages by the tolerance elimination. In the current
assembly lines, the assemblers pick up the workpieces and install them together by the assembly
instructions. When the workpieces are oversize or undersize, the product can not be installed
correctly. Therefore, the assembler considers the secondary processing to fix the tolerance and
then installs them together again. The product could be installed, but the product quality may
be reduced by the secondary process. So, we formulate the assembly process as a combinatorial
optimization problem, named by the dimensional chain assembly (DCA) problem. Given some
workpieces with the corresponding actual size, computing the assembly guidance is the goal of the
DCA problem, and the product quality is applied to represent the solution quality. The assemblers
follow the assembly guidance to install the products. We firstly prove that the DCA problem is
NP-complete and collect the requirements of solving the DCA problem from the implementation
perspective: the sustainability, the minimization of computation time, and the guarantee of product
quality. We consider solution refinement and the solution property inheritance of the single-solution
evolution approach to discover and refine the quality of the assembly guidance. Based on the above
strategies, we propose the assembly guidance optimizer (AGO) based on the simulated annealing
algorithm to compute the assembly guidance. From the simulation results, the AGO reaches all
requirements of the DCA problem. The variance of the computation time and the solution quality is
related to the problem scale linearly, so the computation time and the solution quality can be estimated
by the problem scale. Moreover, increasing the search breadth is unnecessary for improving the
solution quality. In summary, the proposed AGO satisfies with the necessaries of the sustainability,
the minimization of computation time, and the guarantee of product quality for the requirements of
the DCA, and it can be considered in the real-world applications.

Keywords: dimensional chain assembly; virtual assembly; simulated annealing; combinatorial optimization

Sustainability 2020, 12, 4690; doi:10.3390/su12114690 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-0042-233X
https://orcid.org/0000-0002-5144-1477
http://dx.doi.org/10.3390/su12114690
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/11/4690?type=check_update&version=2

Sustainability 2020, 12, 4690 2of 14

1. Introduction

The automatic and intelligent manufacturing is the vision in Industry 4.0. The automation means
that the manufacturing process can be started and finish without human’s operation. The intelligence
allows the machines work together to discover the appropriate actions based on the actual status.
To realize the automation and the intelligence, the managers have to capture the status during the
manufacturing process. The infrastructure in current smart factories are ready in increasing the
manufacturing efficiency. For example, the data analysis tool for the web [1], context-based service [2]
and the transmission quality guarantee [3] are proposed to enhance the manufacturing processes. We
can use the infrastructure to increase the transparency of manufacturing.

Assembly is the final stage of manufacturing, and the assembly line manager aims addressing the
problem related to 5V properties, and they are Volume, Velocity, Variety, Veracity, and Value. Volume:
many workpieces must be installed; Velocity: the assembly guidance must be determined as soon as
possible; Variety: the target products are variant; Veracity: the assembly guidance must specify the
correct workpieces; Value: the product must fit the requirements of the product specification.

The product quality is the major concern for the managers. Outputting under-qualified products
results in the waste of time and money. Fortunately, the assembly process is the last step of
manufacturing, and the product quality can be used to improve. A product consists of some workpieces,
and the workpieces may touch with each other. Each contact surface of the workpiece has a design
size and an actual size, and they may be different. In the design phase, we can apply the tolerance
analysis models to calculate the virtual product tolerance [4]. The design size is the ideal value, but
the manufacturing process may generate the tolerance. That is the major reason of that the actual size
may be different from the design size. So, we can use the tolerance elimination to enhance the product
quality in the assembly phase.

Here is an example to show the tolerance elimination. Figure 1 is the sectional drawing of a
product that consists of two parts: shell and inner module. The assembler receives three workpieces
per part, and the size of each workpiece is listed in Table 1. The inner module is installed in the shell,
so the assembler should take one inner module and one shell and then installs them together. There is
a gap between the inner module and the shell as shown in Figure 1, and we call the gap as the final
size. Supposing the final size of the feasible product is bounded by 0 and 0.4, we can use the final
size to evaluate the feasibility of the given assembly guidance (AG). For example, after receiving the
assembly guidance AG; = {(1,1),(2,2), (3,3)}, the assembler installs the shell number 1 and the inner
module number 1, the shell number 2 and the inner module number 2, and the shell number 3 and the
inner module number 3 together. The final sizes are 0.2, 0.3, and 0.3, respectively, and AG; is feasible.
However, AG, = {(1,3),(2,2),(3,1)} is infeasible. The final sizes are 0.7, 0.3, and —0.2 in AG,, and
the final sizes of the first and third products are not acceptable, so AG; is infeasible.

The final size of the product N

Inner module

The size of inner module

The size of shell

Shell

Figure 1. A instance of the product assembly with two parts, where the inner module should be
installed in the shell.

Sustainability 2020, 12, 4690 3of 14

Table 1. The size information of each workpiece in the example illustrated in Figure 1.

Workpiece Index Inner Module Shell

1 35.5 35.7
2 35.7 36
3 35.9 36.2

In the assembly line, the assembler receives some workpieces as shown in Figure 2 and the
installation specification including the assembly instructions and the assembly process. The assembler
randomly or sequentially picks up a workpiece of each part and then installs the workpiece one by one.
Once the unacceptable final size is detected, the assembler will consider the secondary processing to fix
the final size. However, the secondary processing is inappropriate, because the secondary processing
only fixes a portion of size and lack for the dimensional chain evaluation [5,6]. So, the module’s quality
can not be guaranteed.

Figure 2. An example of the cassette body tray and some workpieces are waiting for cutting while
some are finish.

An appropriate solution is to compute the AG in advanced, and the AG guides the assembler to
install the products. Therefore, the properties of the products are controlled by the AG. To compute
the AG, we have some considerations:

1. The sustainability: most production lines in the industry 4.0 factories provide non-stop works
except for the maintenance. So, the AG computation must cover all kinds of product assembly
processes that includes different number of workpieces and parts, the assembly sequence, the final
size, etc.

2. The minimization of computation time: the AG computation can not disturb the assembly
process. Once the assembly process is postponed because of the delay of the AG computation,
the utilization of the assembly line is decreased. The AG computation can be processed while the
workpieces are moving, and the AG can be prepared when the assemblers receive all workpieces.

3. The guarantee of product quality: when the assembler follows the assembly instruction provided
by the AG, all output products are acceptable. In other words, the AG computation has to
guarantee the product quality.

To reach the necessary listed above, we first formulate the AG computation as the dimensional
chain assembly (DCA) problem, and the goal of DCA problem is to output the acceptable AG for
assemblers. We prove that the DCA problem is a NP-complete problem, and the search algorithms [7,8]
requires huge computation time to find the optimal solution. The requirement of the minimum
computation time is violated. The combinatorial optimization techniques help us to compute the
optimal solutions [9], but the combinatorial optimization algorithms may be modified for installing new
products. So, we survey the general optimization approaches that are satisfied with the sustainability.
We adopt the single-solution evolution (SSE) to reach the consideration of the minimum computation
time. To guarantee of product quality, we modify the simulated annealing (SA) algorithm to design
the assembly guidance optimizer (AGO) to calculate the AG.

Sustainability 2020, 12, 4690 4 of 14

To evaluate the performance of the proposed AGO, we build a Windows-based platform to
simulate the AG computation, and measure the performance of the AGO. We obtain following
properties from the simulated results:

1. The sustainability: the assemblers obtain the AG from the proposed AGO in the different DCA
problems (to install various products). So, the assembly manager can use the AGO to compute
the AG sustainably.

2. The minimization of computation time: the AGO outputs the AG for installing thousands of
workpieces in few seconds, and the computation is finish before all workpieces arrive at the
assembly line.

3. The guarantee of product quality: the final size of all products are satisfied with the product
specification, and the AG outputted by the AGO provides high solution quality.

Moreover, given an assembly configuration of the AGO, the increase of the computation time and
the decrease of the solution quality is linear to the problem scale. It means that the computation time
and the product quality of the AGO can be predicted by the scale of the assembly instance. Therefore,
the AGO can be applied to the real-world assembly lines for computing the AGs of various products.

2. Related Works

Calculating the optimal solution with minimum gap between the product size and the ideal size in
the DCA problem can be reduced to the exact weight perfect matching problem from a given bipartite
graph. Therefore, solving the DCA problem is NP hard, as shown in Section 3.3. There are two major
approaches of solving the DCA problem, and they are listed as follows:

e Greedy algorithms: deriving the near-optimal or optimal (when the instances meet the specific
condition) solutions by the problem properties [10,11].

e Soft-computing algorithms: deriving the near-optimal solutions by continuously refining the
solution quality [9,12-15].

Greedy algorithms output the solutions efficiently, but the optimal solution is not guaranteed.
Soft-computing algorithms seek the solutions with better quality one by one, so soft-computing
algorithms require more computation time than that of greedy algorithms. Moreover, because greedy
algorithms are problem-based approaches, the algorithms should be modified in solving different
problems. Therefore, the soft-computing algorithms are more appropriate than greedy algorithms in
terms of the industrial purpose.

Although the soft-computing algorithms require more computation time to derive near-optimal
solutions, we still can get the acceptable solutions in a short period of time because of the increase
of the computation power. Therefore, soft-computing algorithms are applied to broad-range
applications, such as the decision evaluation in the banks [14,16], the timetable calculation of the
train scheduler [17,18], the vehicle route determination [19,20], etc.

Soft-computing algorithms are classified into two categories: the single-solution evolution
(SSE) [12] and the multiple-solution evolution (MSE) approaches, e.g., such as genetic algorithm [14,21],
particle swarm optimization [22], and ant colony optimization [23]. In each iteration, the SSE
approaches only consider one solution while some solutions are evaluated by the MSE approaches.
The SSE approaches output the improved solutions rapidly [12,13], and the solution quality is
continuously improved. On the other hand, MSE approaches require more computation time to
finish an iteration, but MSE approaches have higher probability in obtaining better solutions than
SSE. Therefore, SSE approaches are more appropriate than MSE approaches based on the industrial
consideration, and we apply the SSE approach to design the AGO.

The local search approaches [24] and the simulated annealing (SA) [12,13] are popular SSE
approaches. The local search approaches consider problem properties to search the solutions with
higher quality. SA applies the annealing idea to approximate optimal solution iteratively for the

Sustainability 2020, 12, 4690 5o0f 14

discrete solution space. SA covers broader range applications than local search approaches. Therefore,
SA is more appropriate than local search approaches because the assemblers have to install various
products in the assembly lines.

3. Preliminaries

3.1. Problem Definition

Definition 1. Given a DCA problem D = (WP, EQ, SPEC) consisting of the workpiece information WP,
assembly equation EQ, and assembly specification SPEC. The goal of DCA problem is to find an assembly
guidance AG in the specific time consumption T.

Considering m parts and n workpieces for each part, we have mn workpieces in total in the DCA
problem. To install one product, the assembler picks up one workpiece per part and installs them
together, and the assembly line eventually generates n products. In this paper, the goal is to design a
selection algorithm to compute AG to help assemblers to install products.

The DCA problem D = (WP, EQ, SPEC) has following components:

e WP = {wp;},Vi < mandj < n, is the set of the size of all workpieces. For the workpiece j
of the part i, we use the term wp;; to represent the actual size of the workpiece. In the design
phase, the engineer computes the design sizes and the tolerances. However, the actual size may
be different with the design size because of the manufacturing process.

e EQ={eqi,eq,...,eqm}, Veq; € {1,—1} is the assembly equation. The workpiece with eq; = —1
should be installed in the workpiece with eg; = 1. The engineers prepare EQ in the design phase,
so EQ is ready for computing the AG in the Manufacturing Execution System (MES) after the
design phase.

e SPEC = (cu, pt,nt) is the product specification which includes a central value cv, a positive
tolerance pt, and the negative tolerance nt, where cv > 0, pt > 0, and nt < 0 to indicate the
feasible product size. Each product has a final size after the assembly process. The final size is
controlled within a range by pt and nt for the functionality consideration. Thus, the final size can
be used to measure the product quality. When the final size of k-th product gap* is satisfied with
(cv 4+ nt) < gap* < (cv + pt), the product is acceptable, and failed otherwise.

The solution of the DCA problem is AG that indicates the workpiece installation information of
each product. So, the assemblers follow the information listed in AG to pick up the corresponding
workpieces and install them together. The production quality can be evaluated in advanced. Here, we
list some solution definition:

o The assembly guidance AG = {Gl, G?, ..., G"}: Gk denotes the assembly indication of each
workpiece for k-th product, vk < n.

e The indicated variable xfj = {0,1}: the workpiece ij is selected in the product k when xf.‘j =1,and
not considered for xi-‘]- = 0. Thus, we have GF = {xf-‘]-}, Vi <mandVj<n.

e The product final size gap*: we measure gap* for the product k using the workpieces listed in G,
and we have:

k R k
gap* = Z 236]1‘ X wpij X Xjj. 1)
i=0j=0

e The product quality (gap* — cv): we use the largest gap between gap* and cv to be the solution

quality of AG, and we have:

argmax ‘gapk — cv’ .)

Sustainability 2020, 12, 4690 6 of 14

e The acceptable product quality (cv + nt) < gap* < (cv + pt): in other words, we have:

nt < (gap* — cv) < pt. 3)

Therefore, the objective function of the DCA is to minimize the value between gap* and cv for
each product k.

n&}(n ‘ (gap* — cv)‘ . 4)

For the convenience, we use the notation g(sol) to identify the solution quality of sol, i.e., g(sol) =
maXyyg ‘ (gap* — cv) ‘ So, we can use g(sol) to trace the improvement of the solution quality. Moreover,
some constraints of a feasible solution are listed as follows:

1. ;7:0 xf?j =1,V0 <i < m: the product k includes one workpiece per part.
k _
2. Yioo Xj; = 1,V0 <i <mand V0 < k < n: the workpiece ij appears in exactly one product.

3. "o Z?:o xf.‘]. = m: the number of workpieces in each product is m.

3.2. A Case Study

We use the example illustrated in Figure 1 to show the DCA problem. The assembler picks up
a workpiece from shell and another one from inner module, and then puts the inner module in the
shell. Considering m = 2 and n = 3, we have six workpieces. The size information is shown in Table 1,
and that is WP. Because the inner module is installed in the shell, we have EQ = {—1,1}. Supposing
SPEC = (0.2,0.2, —0.2), the final size of an acceptable product is between 0 and 0.4. Considering two
solutions listed in Table 2, solution 1 is an acceptable because the final product sizes are all within 0
and 0.4. However, solution 2 is unacceptable because the final size of the first product is 0.7 which is
out of the specified size range.

Table 2. Two solutions of the example shown in Table 1. For convenience, we use label A to identify the
shell while B for the inner module. For the first product in solution 1, 1A + 1B means that the product
number one is installed by first shell and first inner module, and the final size is 0.2.

Solution 1 Solution 2
Product Index
Assembly Final Size Assembly Final Size
1 1A +1B 357—-355=02 1A+3B 36.2—-355=107
2 2A +2B 36 —35.7 =03 2A +1B 35.7-357=0
3 3A +3B 36.3—-359=04 3A+2B 36—-359=0.1

3.3. Computational Complexity Analysis

Theorem 1. Given a DCA problem D = (WP, EQ, SPEC), the goal of D is to compute an assembly guidance
AG that each product fits the requirement specified in SPEC = (cv, pt, nt).

Proof. To prove that the DCA problem is NP-complete, we reduce the subset of the DCA from the
exact weight perfect matching problem [25]. Consider a DCA problem D, = (WP,, EQ,, SPEC,) that
each product consists of two workpieces, e.g., m = 2, as shown in Figure 1. We can illustrate D, as a
bipartite graph that the left vertices in the bipartite graph includes part one workpieces while part
two workpieces are listed in the right-hand side. Each edge ¢;; represents the connection from wp;; to
wp,j and the weight w is the size of the final product. Moreover, e; exists only if each value of w;;
is satisfied with the specification listed in SPEC. So, the goal is to calculate a perfect matching from

the bipartite graph.

Sustainability 2020, 12, 4690 7 of 14

According to the reduction of Zhu et al. [25], the exact weight perfect matching of bipartite graph
is NP-complete, and D; is also NP-complete. D considers the products with two workpieces, and we
have Dy C D. Therefore, D is NP-complete because of D, C D. O

4. Proposed Solution

According to the survey of feasible approaches listed in Section 2, we apply the SA algorithm
to design the AGO for computing the assembly guidance with miny ‘(gap* — cv) ‘ The algorithm
of AGO is shown in Algorithm 1. The AGO receives a DCA instance D, an initial temperature T, a
temperature descent rate r, and a maximum number of iterations iter. The AGO outputs an assembly
guidance sol. Firstly, the AGO generates an initial solution sol in line 1. Then, the AGO enters a solution
refinement loop for seeking better solutions from lines 2 to 8. When meeting the stop conditions,
the AGO exits the loop and return the refined solution sol. In the refinement loop, the AGO picks
up a neighbor solution sol,;; based on sol and then evaluates the acceptance of sol,; by the quality of
sol,, and the current temperature. In the last step of the solution refinement loop, the temperature is
reduced by r. Here, we show the details about the AGO algorithms.

Algorithm 1: The algorithm of the proposed assembly guidance optimizer (AGO) for DCA.

input :DCA instance D, initial temperature T, temperature descent rate r, maximum iteration
iter, variation degree v

output:The assembly guidance sol

1 generate an initial solution sol ;

2 while not meet the stop condition do

3 find a neighbor solution sol,;, <— nbFinder(sol,v);

4 if AE > 0 then

5 L sol < sol,p;

6 else if e*E/T > random(0,1) then
7 L sol < sol,y;

8 T+ Txr;

9 return sol ;

e The solution encoding: the solution structure is defined as AG in Section 3.1. However, AG is
sparse because only m elements are meaningful for each product. Therefore, we design another
data structure for reducing the memory usage and increasing the computation efficiency for the
implementation consideration. Two solutions listed in Table 2 are transformed to the format
as shown in Table 3. The column indicates the part information while each row represents the
selected workpieces in a product. Each element in the solution is the workpiece index. So, sol
provides higher readability for the assembler. In the solution 2, for example, the first product
considers workpiece 1 of part A and workpiece 3 of part B, the second product considers workpiece
2 of part A and workpiece 1 of part B, etc. Moreover, the format of sol is still satisfied with the
constraints listed in Section 3.1.

o Theinitial solution generation: the AGO apply the random process to construct the initial solution.
The AGO is designed for installing various products. Because the assembly processes and the
properties of various products are different, considering the random initial solution increases
the coverage of the search directions. For an initial solution sol, each workpiece is picked up
randomly without putting back and inserted into an arbitrary product.

Sustainability 2020, 12, 4690 8 of 14

e The neighbor solution generation: we refer to the “royal road” function [26] to design a
neighborhood search approach. The algorithm named by nbFinder() is illustrated in Algorithm 2.
nbFinder() receives two parameters: the base solution sol and the variation degree v. nbFinder/()
outputs a solution sol,;, based on sol, and v determines the difference between sol and sol,,;,.
Firstly, nbFinder() copies sol to sol,,. Then, nbFinder() picks up one part and two products as
shown in lines 3 to 5. Then, the workpieces of the selected products are swapped as illustrated in
Figure 3. Iteratively executing the exchange process for v times. Therefore, v controls the variation
degree of sol and sol,,,.

Part pr-1 Part pt Part pr+1
Product P, e WPpee1 1 WPpi 1 WPpi1 1
(Exchanga
Product P, e WPpi12 WDpi2 WDpi+12

Figure 3. An example of generating the neighbor solution. Given a solution sol, the process randomly
selects two products and a part, e.g., the products P; and P, and the part pt, and then exchanges the
workpieces wp,y and wpp to generate the neighbor solution solyy;,.

e The stop condition: the AGO considers the maximum iteration iter and the minimum temperature
as the stop condition. The value of iter given by the assembler manager controls the running
time of the AGO. According to the annealing concept, the temperature is continuously reduced to
the room temperature, so the room temperature is also another stop condition. By considering
the linear temperature reducing function, we assume the room temperature is 0 °C. Therefore,
the temperature could be very closed to zero but not smaller than zero. The maximum number of
iterations or the minimum temperature will not dominate the stop condition, and the temperature
reducing function can work together with the maximum number of iterations.

e The acceptance criterions of the neighbor solutions: the AGO computes the AE by the difference
between the solution quality between sol,;;, and sol, i.e., AE = g(sol,;) — q(sol). For AE < 0, i.e.,
qg(sol,p) < q(sol), the quality of sol,,, is better than that of sol, and the AGO accepts sol,;. On the
other hand, the AGO simulates the Boltzmann distribution [27] to determine the probability of
accepting sol,;. According to the property of the Boltzmann distribution, sol,,;, with lower quality
is accepted easily in the early stage. The AGO is designed to discover as wide as possible, so the
probability of accepting the solution with worse quality in the early stage is higher than that in
the late stage. The neighbor solution acceptance concept is listed in lines 4 to 7 in Algorithm 1.

Table 3. The solution example of Table 2 considered in the AGO.

Solution 1 Solution 2
Product Index
Part A PartB PartA PartB
1 1 1 1 3
2 2 2 2 1

3 3 3 3 2

Sustainability 2020, 12, 4690 9of 14

Algorithm 2: (nbFinder(sol, v)) The algorithm of the neighbor solution generation.

input :a solution sol, variation degree v
output:a neighbor solution sol,,,

1 copy(sol, solyy);

2 fory <~ 1tovdo

3 compute pt randomly from 1 to m;

14 | compute p; randomly from 1 to #;

5 compute pp randomly from 1 to n s.t. po # p1;

6 | swap(solyy, pt, p1,p2);

7 return sol,, ;

5. Simulation

The AGO provides high flexibility for the assembly processes of various products. The assembly
manager has to determine the AGO configurations to compute the assembly guidance. Therefore, we
first compute the optimal configuration before evaluating the performance of the AGO. Next, we apply
the derived configuration to evaluate the AGO performance including the computation efficiency and
the solution quality.

We consider the countershaft module as shown in Figure 4 to be the simulated target [28]. In this
case, each product consists of 11 parts, i.e.,, m = 11. The letter from A to L in Figure 4 represents a
cutting plane, e.g., AB, BC, CD, DE, EF, FG, GH, HI, IJ, JK, and KL. All workpieces are installed in
the central columella, so all cutting planes are in the same dimensional chain. Therefore, we have
EQ={-1,-1,-1,-1,-1,-1,1,-1,-1,—1, —1} for the sequence of AB, BC, CD, DE, EF, FG, GH,
HI, IJ, JK, and KL. We consider cv = 0.3, pt = 0.15, and nt = —0.15. Given n workpieces for each part,
the assemblers receive 11n workpieces in total, and output n countershaft modules.

H 1
Podlg
voYy

GFED CB AL K JIH

HE
P
1221

Figure 4. An example of the assembly guide of the countershaft module.

We consider the personal computer as the simulation platform with Windows 10. The platform
equips Intel i7 CPU, 16 GB memory, and 512 GB SSD while the AGO is implemented by C# in Visual
Studio 2015.

5.1. Configuration Evaluation

We consider 1500 workpieces for each part, e.g., n = 1500. The AGO configuration includes
T, r, iter, and v. We focus on evaluating the settings of T, r, and iter, and v = 1 is applied to the
configuration evaluation. The considered configurations are: T from 5000 to 50,000 with gap 5000, r
from 0.9 to 0.99 with gap 0.01, and iter from 1000 to 5000 with gap 1000. For each configuration, we
run 10 times and use the average values to be the evaluation results. We consider the average CPU
time and the average solution quality as defined in Equation (2) to measure the configuration quality.

Sustainability 2020, 12, 4690 10 of 14

5.1.1. Solution Quality Evaluation

The final size of each product is the major concern for the assembly manager. We first investigate
the solution quality for all parameter combinations to find out the appropriate configurations that will
be applied to the next-step simulations. Figure 5 lists the solution quality results defined in Equation (2)
for all combinations with iter and T under v = 0.98. We have following observations:

1. The distribution of the solution is similar for various settings of r. The results in Figure 5 is
captured in the configurations with r = 0.98, and the distribution is similar to that captured in
other settings of . So, we just illustrated the results with r = 0.98.

2. The difference of the solution quality between various settings of T is small from Figure 5b, and
the solution quality is not improved dramatically by increasing the initial temperature.

3. Higher settings of iter lead to better solution quality in Figure 5a because the solutions can be
refined for longer search time.

From the above observations, the settings of T and iter are not the critical parameter, so we
evaluate the setting of r. We capture the best solution from all settings of r, and the results are listed in
Figure 6 and Table 4. The result shows that the setting ¥ = 0.98 provides minimum final size. Therefore,
we will consider r = 0.98 in the following simulations.

Solution Quality Solution Quality
0.14 0.14
0.12 0.12
° 01 0.1
5 0.08 @
2 - 5 008
£ 006 | =
004 2006
0.02 0.04
0 0.02
5000 4000 3000 2000 1000 0
T 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
iter
5000 10000 15000 20000 s 25000
e 300 00 emmm—3 50 () es—2 00 00 s— 50 () sm— 50000 5000 4000 3000 2000 ===—=1000
(a) The solution quality comparison in T. (b) The solution quality comparison in iter.

Figure 5. The solution quality results defined by Equation (2) for all combinations with iter and T
where the setting of v is 0.98.

Solution Quality Comparison
0.04905
0.049
0.04895
0.0489

0.04885

Final size

0.0488
0.04875
0.0487

0.04865

Figure 6. The evaluation results captured from various r.

Table 4. The best solution quality is captured in all combinations of iter and T for the settings of r.

r 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9

Final size 0.04885 0.04879 0.0488 0.04879 0.04896 0.04899 0.04888 0.04881 0.04886 0.04891

Sustainability 2020, 12, 4690 11 of 14

5.1.2. Marginal Improvement Evaluation

From the results listed in Figure 5, the solution quality is improved by increasing the number
of iterations. Therefore, we compare the marginal improvement for the settings of iter and T.
The marginal improvement is defined as:

i AfinalGap
mi(iter, T) = ArunnignTime’)

Given the settings of iter and T with r = 0.98, Afinal Gap stands for the difference of the final gap
between iter and (iter +5000) while ArunningTime represents the gap of the running time. Equation (5)
shows the improvement ratio of the solution quality to the running time. Therefore, maximizing the
values of mi(iter, T) is the objective in this simulation.

We have the results illustrated in Figure 7. The mi(iter, T) curves are descending for all
configurations as increasing the settings of iter. However, the maximum mi(iter, T) takes place
from the configurations with iter = 10,000 and T = 5000. The result is reasonable, so we will use this
configuration to evaluate the performance of the proposed AGO.

Marginal Improvement

0.000007
0.0000065
0.000006
0.0000055
0.000005
0.0000045
0.000004
0.0000035
0.000003
0.0000025
0.000002

Marginal Improvement

10000 15000 20000 25000 30000 35000 40000 45000 50000
T

—5000 4000 3000 2000 e=——1000

Figure 7. The marginal improvement evaluation of the AGO.
5.2. Performance Evaluation

We consider T = 5000, r = 0.98, and iter = 10,000 in the following experiments for measuring the
AGO performance. We generate 10 instances for n = 1000, 1250, 1500, 1750, and 2000. We run the AGO
10 times for each instance and use the averaged value for each configuration. The results in terms of
the running time and the solution quality are illustrated in Figure 8.

The curve of running time is linearly raised by the number of products. The AGO requires more
computation time in each iteration of larger scale instances. So, this is the major reason for the raised
computation time even if the AGO parameters are the same. The AGO uses 25 seconds approximately
to compute the assembly guidance in the instances with 2000 x 11 workpieces. The running time is
acceptable for the implementation consideration.

The gap between the product size and the ideal size is getting bigger for large scale instances.
The AGO requires more computation time to maintain the same solution quality in the large-scale
instances. The size of the search space is increased exponentially by the instance scale, e.g., the number
of workpieces, so the solution quality is decreased by the number of the products in the same AGO
configuration. The averaged gap between final size and cv is slightly increased from 0.0589 to 0.0816
without providing more computation resource.

Sustainability 2020, 12, 4690 12 of 14

Running Time Solution Quality

30,000 0.16

o4 T TETEESEESEESSsESS

0.12
0.1

0.08

0.06 ————

0.04

0.02

25,000

20,000

15,000

10,000

5,000

CPU time (unit: millisecond)

1000 1250 1500 1750 2000
Number of products

The worst product size (unit cm)

1000 1250 1500 1750 2000

Number of products e so|ution quality == == boundary

@) (b)
Figure 8. The simulation results for the performance of the AGO. (a) The running time captured from
the instances with various number of products. (b) The solution quality captured from the instances
with various number of products, where the dot line indicates the upper bound of the acceptable
product size, i.e., cv.

The running time is increased and the solution quality is decreased by scaling up the problem
size, but the variance amount is linear. It means that the assembly manager can estimate the running
time and the solution quality from the problem scale, and the configuration is unnecessary to be
re-evaluated. The configuration of AGO should be re-evaluated only when the solution quality is very
close to the target cv or over cv, where the products are near unacceptable.

5.3. Search Breadth Evaluation

Single solution refinement is the major property of the SA, and the neighbor solutions can be
carefully evaluated rather than the wide search. However, the solution quality is difficult to be
improved dramatically in the SA. We are interested in the effect of the search breadth, so we estimate
the performance of the AGO with different degrees of the search breadth. There are two ways to
increase the search breadth: increasing the number of the population size, and increasing the degree of
the local search. Since the SA is an SSE approach, we do not increase the number of the population size.
Thus, we evaluate some neighbors in the local search approach to increase search breadth. We consider
1, 5, and 10 neighbors in each experiment and evaluate the running time, the solution quality, and the
computation efficiency for the configuration with » = 0.98, T = 5000, and iter = 10,000. The solution
results are illustrated in Figure 9.

Solution Quality Comparison Running Time Coomparison

0.16
140,000

)

120,000

m
=

100,000
013

012
011

80,000

60,000

Running Time (ms)

40,000
01

0.09 s 20,000

Product final size (mm!

008 0 . . 5 o
e 1250 1500 70 2000 1000 1250 1500 1750 2000

Number of workpieces
Number of workpieces P

——1_neighbor 5_neighbor 10_neighbor
=1_neighbor 5_neighbor 10_neighbor boundary

@) (b)
Figure 9. The experiment results about the running time and the solution quality. (a) The solution
quality captured from the instances with various number of products, where the dot line indicates the
upper bound of the acceptable product size. (b) The running time captured from the instances with
various number of products.

From the results in Figure 9a, the solution quality is not improved by increasing the number of
evaluated neighbors. On the other hand, it is rational to receive that the running time is increased
in high number of neighbors as shown in Figure 9b. Increasing the search breadth is profitless in
improving the solution quality. Therefore, the AGO with the single neighbor evaluation process is
efficient and outputs high-quality solution.

Sustainability 2020, 12, 4690 13 of 14

6. Conclusions

In this paper, we define the DCA problem and prove the problem is NP-complete by the reduction
from the exact weight perfect matching problem. We propose a SA-based approach that is named
as AGO to resolve the DCA problem. The AGO considers 5V properties of the assembly process.
The simulation results show that the problem scale leads to the linear effect on the solution quality
and the running time. Therefore, the assembly manager can easily estimate the running time and the
solution quality. Moreover, the AGO provides appropriate search strategy, and it is unnecessary to
search multiple solutions simultaneously. So, the near optimal solution can be calculated efficiently.

There are some variance models of the DCA problem. For example, a target product may have
several dimensional chains. The dimensional chains may cross on a special part, so the AGO has to
make sure that the requirements of all dimensional chains can be satisfied in a target product. Based
on the current progress, we have begun modeling the multi-dimensional chain problem, and we will
apply the AGO to resolve the multi-dimensional chain problem where that is close to the real-world
assembly goal.

Author Contributions: Data curation: H-Y.H., S.-H.Y,, P-N.T.,, M.-C.T. and Y.-P.H.; Methodology: C.-K.T., T-EH.,
H.-YH, S-H.Y,, P-N.T.,, M.-C.T. and Y.-P.H. Project administration: C.-K.T.; Software: C.-K.T., T.-EH., H.-Y.H.,
S.-H.Y, P-N.T.,, M.-C.T. and Y.-PH.; Writing—original draft preparation: C.-K.T., T-EH., H.-Y.H., S.-H.Y,, P-N.T.,
M.-C.T. and Y.-PH.; Writing—review and editing: C.-K.T., H-Y.H., S.-H.Y., P-N.T.,, M.-C.T. and Y.-P.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported in part by grants from the Ministry of Economic Affairs of the Republic of
China (Grant No. J353CH1320) and the Ministry of Science and Technology of the Republic of China (Grant No.
MOST 108-2218-E-167-003-MY2).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DCA Dimensional Chain Assembly
SA Simulated Annealing

AG Assembly Guidance

AGO Assembly Guidance Optimizer
MES Manufacturing Execution System

References

1. Tseng, C.H.; Chen, Y.H, Jiang, Y.R. The implementation of an automatic web-driven data analysis framework.
Int. J. Soc. Humanist. Comput. 2017, 2, 150-165. [CrossRef]

2. Pallasena, R K.; Sharma, M.; Krishnaswamy, V. Context-sensitive smart devices-definition and a functional
taxonomy. Int. J. Soc. Humanist. Comput. 2019, 3, 108-134. [CrossRef]

3. Xu, X. The analytics and applications on supporting big data framework in wireless surveillance networks.
Int. J. Soc. Humanist. Comput. 2017, 2, 141-149. [CrossRef]

4. Cao, Y; Liu, T,; Yang, J. A comprehensive review of tolerance analysis models. Int. . Adv. Manuf. Technol.
2018, 97, 3055-3085. [CrossRef]

5. Tsai,].C.;; Chen, F.C.; Dai,].H. Reduction of tolerance stack-up by grouped random assembly for components
with uniform distributions. Procedia CIRP 2015, 27, 260-263. [CrossRef]

6. Lin, C.Y;; Huang, W.H,; Jeng, M.C.; Doong,].L. Study of an assembly tolerance allocation model based on
Monte Carlo simulation. J. Mater. Process. Technol. 1997, 70, 9-16. [CrossRef]

7. Li, J.; Marier, D.; Tufte, K,; Papadimos, V.; Tucker, PA. No pane, no gain: Efficient evaluation of
sliding-window aggregates over data streams. SIGMOD Recore 2005, 34, 39-44. [CrossRef]

8. Bentley,].L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18,
509-517. [CrossRef]

http://dx.doi.org/10.1504/IJSHC.2017.084733
http://dx.doi.org/10.1504/IJSHC.2019.101593
http://dx.doi.org/10.1504/IJSHC.2017.084732
http://dx.doi.org/10.1007/s00170-018-1920-2
http://dx.doi.org/10.1016/j.procir.2015.04.075
http://dx.doi.org/10.1016/S0924-0136(97)00034-4
http://dx.doi.org/10.1145/1058150.1058158
http://dx.doi.org/10.1145/361002.361007

Sustainability 2020, 12, 4690 14 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey.
Appl. Soft Comput. 2011, 11, 4135-4151. [CrossRef]

Bang-Jensen, J.; Gutin, G.; Yeo, A. When the greedy algorithm fails. Discret. Optim. 2004, 1, 121-127.
[CrossRef]

Goyal, A.; Lu, W.; Lakshmanan, L.V. Celf++ optimizing the greedy algorithm for influence maximization
in social networks. In Proceedings of the 20th International Conference Companion on World Wide Web,
Hyderabad, India, 28 March-1 April 2011; pp. 47-48.

Wang, Y.; Bu, G.; Wang, Y.; Zhao, T.; Zhang, Z.; Zhu, Z. Application of a simulated annealing algorithm to
design and optimize a pressure-swing distillation process. Comput. Chem. Eng. 2016, 95, 97-107. [CrossRef]
Zhan, S.H.; Lin, J.; Zhang, Z.].; Zhong, Y.W. List-based simulated annealing algorithm for traveling salesman
problem. Comput. Intell. Neurosci. 2016, 2016, 1712630. [CrossRef] [PubMed]

Metawa, N.; Hassan, M.K.; Elhoseny, M. Genetic algorithm based model for optimizing bank lending
decisions. Expert Syst. Appl. 2017, 80, 75-82. [CrossRef]

Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; Song, L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Systems; NIPS: Long Beach, CA, USA, 2017; pp.
6348-6358.

Soui, M.; Gasmi, I.; Smiti, S.; Ghédira, K. Rule-based credit risk assessment model using multi-objective
evolutionary algorithms. Expert Syst. Appl. 2019, 126, 144-157. [CrossRef]

Caprara, A.; Monaci, M.; Toth, P.; Guida, PL. Lagrangian heuristic algorithm for a real-world train timetabling
problem. Discret. Appl. Math. 2006, 154, 738-753. [CrossRef]

Liu, L.; Dessouky, M. A decomposition based hybrid heuristic algorithm for the joint passenger and freight
train scheduling problem. Comput. Oper. Res. 2017, 87, 165-182. [CrossRef]

Sitek, P.; Wikarek, J. Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD):
Model and implementation using hybrid approach. Ann. Oper. Res. 2019, 273, 257-277. [CrossRef]

Chagas,].B.; Silveira, U.E.; Santos, A.G.; Souza, M.]. A variable neighborhood search heuristic algorithm for
the double vehicle routing problem with multiple stacks. Int. Trans. Oper. Res. 2020, 27, 112-137. [CrossRef]
Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T A.M.T. A fast and elitist multiobjective genetic algorithm:
NSGA-IL. IEEE Trans. Evol. Comput. 2002, 6, 182-197. [CrossRef]

Kennedy,]J.; Eberhart, R. Particle swarm optimization (PSO). In Proceedings of the IEEE International
Conference on Neural Networks, Perth, Australia, 27 November—1 December 1995; pp. 1942-1948.

Dorigo, M.; Caro, G.D. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress
on IEEE Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6-9 July 1999;
Volume 2, pp. 1470-1477.

Lourenco, H.R.; Martin, O.C; Stiitzle, T. Iterated local search: Framework and applications. In Handbook of
Metaheuristics; Springer: Boston, MA, USA, 2019; pp. 129-168.

Zhu, G; Luo, X,; Miao, Y. Exact weight perfect matching of bipartite graph is NP-complete. In Proceedings
of the World Congress on Engineering, London, UK, 2—4 July 2008; Volume 2, pp. 1-7.

Mitchell, M.; Holland, J.H.; Forrest, S. When will a genetic algorithm outperform hill climbing. In Advances
in Neural Information Processing Systems; Morgan Kaufmann: San Mateo, CA, USA, 1994; pp. 51-58.

Dubhr, S.; Braun, D. Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 2006,
96, 168301. [CrossRef] [PubMed]

Creveling, C.M. Tolerance Design: A Handbook for Developing Optimal Specifications; Prentice Hall: Upper
Saddle River, NJ, USA, 1997.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.disopt.2004.03.007
http://dx.doi.org/10.1016/j.compchemeng.2016.09.014
http://dx.doi.org/10.1155/2016/1712630
http://www.ncbi.nlm.nih.gov/pubmed/27034650
http://dx.doi.org/10.1016/j.eswa.2017.03.021
http://dx.doi.org/10.1016/j.eswa.2019.01.078
http://dx.doi.org/10.1016/j.dam.2005.05.026
http://dx.doi.org/10.1016/j.cor.2017.06.009
http://dx.doi.org/10.1007/s10479-017-2722-x
http://dx.doi.org/10.1111/itor.12623
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1103/PhysRevLett.96.168301
http://www.ncbi.nlm.nih.gov/pubmed/16712279
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Problem Definition
	A Case Study
	Computational Complexity Analysis

	Proposed Solution
	Simulation
	Configuration Evaluation
	Solution Quality Evaluation
	Marginal Improvement Evaluation

	Performance Evaluation
	Search Breadth Evaluation

	Conclusions
	References

