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Abstract: Software engineering is a competitive field in education and practice. Software projects
are key elements of software engineering courses. Software projects feature a fusion of process
and product. The process reflects the methodology of performing the overall software engineering
practice. The software product is the final product produced by applying the process. Like any
other academic domain, an early evaluation of the software product being developed is vital to
identify the at-risk teams for sustainable education in software engineering. Guidance and instructor
attention can help overcome the confusion and difficulties of low performing teams. This study
proposed a hybrid approach of information gain feature selection with a J48 decision tree to predict
the earliest possible phase for final performance prediction. The proposed technique was compared
with the state-of-the-art machine learning (ML) classifiers, naïve Bayes (NB), artificial neural network
(ANN), logistic regression (LR), simple logistic regression (SLR), repeated incremental pruning
to produce error reduction (RIPPER), and sequential minimal optimization (SMO). The goal of
this process is to predict the teams expected to obtain a below-average grade in software product
development. The proposed technique outperforms others in the prediction of low performing teams
at an early assessment stage. The proposed J48-based technique outperforms others by making 89%
correct predictions.

Keywords: sustainable education; educational data mining; software engineering; machine learning;
predictive modeling

1. Introduction

Quality education is one of the foremost goals of sustainable development, as approved by
the United Nations Forum (2015) [1]. It is believed that quality education will lead to a more
sustainable world [2]. Providing an environment that helps students complete their academics with
better opportunities for resolving difficulties is the primary parameter for Education for Sustainable
Development (ESD) [3]. The performance prediction of students is one of the most challenging domains.
Significant feedback is associated with the early prediction of student performance, such as modeling
the learning behavior of students, adjusting and improving the academic environment, catering to
students’ issues, and engaging in decision-making practices based on data analysis [4]. The predictive
analysis based on AI is a significant trait for the development of the sustainable conceptual framework
for engineering projects. It requires data that model future behavior by analyzing the trends [5].
E-learning practices provide a helpful environment for data collection for learning analytics [6],
allowing one to conveniently predict the performance of students in the e-learning environment by
identifying their interactions with the learning management system and by observing their browsing
patterns [7]. Similarly, in the classroom-based academic system, multiple practices can detect the
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performance and learning potential of students when they have direct interactions with the tutor [8].
However, it is challenging and more difficult to predict the performance of students in the project-based
learning of engineering fields. In these fields, students work as teams in projects located locally
or globally. These credentials increase the difficulties in assessing teams, eventually making early
predictions more thought-provoking [9].

The learning environment in engineering education entails evolution. Increased interdisciplinary
alliance in disciplines is required. The characteristics of data analytics, robotics, automation, and
management are required to be the composite of each engineering domain [10]. Software engineering
is an educational domain that requires hands-on practice to master its concepts [11]. Software
projects carry prime importance in such courses. A software project is an amalgam of process and
product. The process focuses on the efficient implementation of the software engineering methodology.
The product is the actual product developed by following the software process. Success in a software
project is one of the goals of a software engineering course. Students work hard to achieve good grades
in their projects. However, there are various misunderstandings and problems associated with the
development of such products. Handling these issues at earlier stages and properly guiding students
can greatly facilitate a successful software engineering project and provide a sustainable environment
for software engineering.

Advanced data analysis and machine learning (ML) have been used in several studies to achieve
the goals of ESD [12,13]. ML has its roots in multiple domains of educational practices and is a
major dimension in educational data mining (EDM), as well [14,15]. Methods from EDM are used
to better understand students. ML algorithms have become popular in the educational domain.
Thus, integrating EDM and ESD with ML is a leading concept to achieve quality education. Predictions
of performance, early dropout detection, student engagement in academics, performance in massive
open online courses (MOOCs) and the learning management system (LMS) help to determine difficulties
in educational practices to succesfully improve the educational domain with artificial intelligence.
The prediction and personalization of academic practices are urgently needed [16]. Education plays an
important role in society, being a driver for sustainable development [17].

The major goal associated with EDM and ESD collectively is to improve the learning process.
Models that predict student performance and behaviors are an aid in this regard. It is important
to predict students who are at-risk of low performance or dropping out. Traditional database
queries cannot help decision-making, but ML can solve the concerns of EDM [18]. EDM helps to
improve learning performance and teaching performance. These approaches can be used to evaluate
learning efficiency. Personalized recommendations are also a great way to achieve educational
goals [19]. EDM is utilized for making required predictions from the data set, and decisions based
upon predictions eventually lead towards sustainable development. Therefore, assimilating EDM and
ESD is a foundation for progressive ESD practices.

This study focuses on the development of a successful J48 decision tree-based technique
for predicting student grades for software product development in software engineering courses.
The software engineering teamwork assessment and prediction (SETAP) dataset is used for model
training and assessment [20–22]. SETAP is available from the UCI machine learning library [23] and
consists of evaluations of software product data and software process data collected during student
team project development. Team activity measures (TAMs) are defined for each team by measuring
and monitoring the student teams during project practice. The data comprise 74 teams with a total of
380 students. Teams are evaluated at 11 different intervals during the software project work. In each
evaluation, teams are given a grade of A or F depending on the performance during that phase and
after the 11th evaluation. However, the prediction of the final grade at an earlier phase may result in
supporting low performing teams by detecting their problems and resolving any misunderstandings
or confusion. Sustainable software engineering education is associated with the visualization of future
scenarios about students and making a decision accordingly. To provide an environment for sustainable
software engineering education, this study evaluates each assessment phase to predict the teams at-risk
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for software product development. To apply ML, we used WEKA 3.8. The following are the research
questions of this study:

1. Can we predict the final grade of the software product development part of a software project
during the initial phases of assessment to achieve sustainable software engineering education?

2. How efficient is the proposed technique in the context of ESD for the identification of at-risk
teams in the development of software products?

The structure of the paper is as follows: Section 2 presents an overview of related works and
research on the specific subject. Section 3 defines and describes the proposed predictive method.
Section 4 provides the results and presents the prediction performance of the proposed model.
Section 5 presents a thorough discussion, and Section 6 leaves the reader with concluding opinions
and future recommendations.

2. Related Work

Predictions are a vital context of EDM and ESD. Different studies present methodologies for
making predictions and recommendations about students and educational contexts. The work in [24]
presented three types of approaches for making predictions about students, including similarity-based
approaches, model-based approaches, and probabilistic approaches. Similarity-based approaches work
by identifying similar patterns in the analyzed dataset. Model-based approaches work by computing
the correlation between data samples. Probabilistic approaches work by calculating the probability
distribution between data samples. All of these approaches have associated pros and cons and all were
used in multiple studies in the past to make predictions and present convincing results.

The work in [25] presented the efficacy of deep learning models for predicting student academic
performance. This study predicted at-risk students to provide early interventions. A set of features
was then extracted from the e-learning system. The deep artificial neural network, logistic regression,
and support vector machine algorithms were next deployed to predict student performance. The deep
artificial neural network provided an accuracy of 84–93%. The feature evaluation showed that students
who have access to previous lectures perform better.

The authors in [26] proposed a two-layered architecture for predicting the final cumulative grade
point average (CGPA) of students. In the first layer, courses were clustered to identify the related
courses. This clustering helps identify the courses relevant to the target course for the evaluation of
performance. In the second layer, predictors were used in the form of an ensemble to accumulate
new student data over time. This helps in the continuous improvement of the model over time.
This approach outperformed others compared with the classic machine learning models of logistic
regression, linear regression, random forest, and k-nearest neighbor (KNN).

The research in [27] predicted the performance of students using the submission behavior of
students’ assignments. This study predicted student learning difficulties using procrastination behavior
called prediction of students’ performance through procrastination behavior (PPP). PPP produced a
feature vector for the submission behavior of assignments. Clustering was applied to the feature vectors
to cluster students into procrastination-related clusters. This support vector machine outperformed
others with 96% accuracy.

The work in [28] utilized the e-book reading data of students for the development of an early
warning system for student performance. Thirteen different prediction algorithms were used to
determine the optimum algorithm. All the models were compared by their accuracy and kappa values.
The weekly aptitude of the algorithms was observed, showing that after the 15th week, the models
yielded the highest performance. Random forest proved to be the best performing algorithm. Data
transformation was also applied to determine the differences between the results. J48 offered the best
accuracy for the transformed data.

The authors in [29] raised an important issue about the dropout rate from MOOCs. This problem
was discussed as a key issue in past research. In this study, self-regulated learning (SRL) strategies
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were an important element of the predictive model. The impact of SRL strategies was studied based
on the dropout fraction of MOOCs. Two types of SRL strategies, self-reported and event-based SRL,
were evaluated for dropout predictions, and event-based SRL strategies were found to be effective for
making predictions. Thus, this study used many elements to produce early dropout prediction for
students from MOOCs.

The work in [30] also identified the factors that contribute to the dropout rates of students at
different levels of education—primary, secondary, or post-secondary. This study is useful to help
school management take the necessary action for improvements.

The study in [31] predicted student performance during the final examination. The authors
developed software that integrates the classification of students. The software identifies low performing
students, declaring them as students at-risk. It also predicts student grades and classifies them
accordingly. In this way, this software helps improve the performance of at-risk students through early
identification. The software can be customized according to the user’s requirements.

The authors in [32] used multiple ML algorithms with SETAP data. The study applied and
compared decision tree (DT), random forest, naïve Bayes, neural network, k-nearest neighbor (kNN),
logistic regression, support vector machine, and AdaBoost. Two data sets were used for the evaluation.
The neural network worked best for the firts data group, and random forest worked well for the second
data group. The study concluded that the performance of ML algorithms is related to dataset and
learning circumstances.

The authors in [33] revealed that there are multiple factors (such as academic, demographic,
social, and behavioral factors) associated with the early prediction of student performance. This study
presented the role of these factors in the early prediction of students by applying several ML
algorithms. DT, Iterative Dichotomiser 3 (ID3), chi-squared automatic interaction detector (CHAID),
NB classifier (NBC), rule induction, random forest, and ensemble (EN) learning models were applied
to identify at-risk students. The authors concluded that student performance depends on current
and previous academic performance. Demographic factors also proved to be key contributors to
predicting performance.

The authors in [34] compared the classification performance of naïve Bayes and the ID3 algorithm
in analyzing the academic excellence of college professionals. The predictions demonstrated that a
student can be promoted (or not) to the next academic year.

The authors in [35] determined student performance using multiple ML algorithms.
The multi-layer perceptron (MLP) performed best compared with other methods for a dataset of high
school students. The authors in [36] proposed using automated methods for whole information mining.

The authors in [37] used data encompassing marks of courses in academic years and pre-admission
marks to predict the graduation performance of a student. Naïve Bayes attained the greatest accuracy
for the prediction among the multiple ML algorithms used in this study.

Thus, predicting student performance, dropout ratios, grades, and other related aspects are
the main goals of EDM. Accomplishing these goals provides opportunities to achieve sustainable
education. ML is thus helping researchers achieve their goals. However, the complexity of the relevant
data, learning algorithms, and learning circumstances plays an important role in the performance of
ML algorithms for different types of situations. Thus, selecting a proper algorithm is a challenging task
for different educational settings [38].

3. Materials and Methods

This section describes the materials and methods used to attain the desired objectives of this study.
Figure 1 depicts the flow of events utilized for the prediction of team performance during the initial
assessment phase of the software engineering project.
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3.1. Data Acquisition

The data set utilized in the study includes SETAP product data. SETAP is available from the
UCI library. These data consist of two types of data related to a software project: one is product
data, and the other is process data. Both of these types of data are considered individual elements of
software project evaluation. Software development teams are assessed at eleven different levels of
project development based on TAMs. Product and process parts are individually assigned final grades
of A or F, with A being above average and F being below average. In this study, software product data
are used to predict performance in product development.

3.2. Data Preprocessing

Raw data are transformed into useful data using data preprocessing approaches. Incomplete,
inconsistent, and ambiguous information is removed in the data preprocessing phase. The outcome of
data preprocessing is clean data. NULL values are observed in the different fields of the raw data set.
An important aspect of data preprocessing involves dealing with missing/null values. Null values in
SETAP data are catered by filling the average values of the attributes. However, if the values of local
teams are declared as NULL for their global variables, they are replaced by 0.

3.3. Feature Selection

Feature selection is imperative when there are a large number of features in the training data. This
faciltiates the fast learning of the ML model and decreases the intricacy of the model. The information
gain assists in determining the dependence between the feature variable and the target variable [39].
The information gain calculates the significance of attribute A in class C. The higher the value of the
shared information between class C and attribute A is, the higher the relevance between class C and
attribute A.
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Equation (1) shows the computational method for information gain for feature selection.

I(C, A) = G(C) −G(C|A) (1)

where the gain of the class can be computed using Equation (2):

G(C) = −
∑
cEC

p(C) log p(C) (2)

The conditional information gain for a class’s given attribute is computed using Equation (3):

G(C|A) = −
∑
cEC

p(C|A) log p(C|A) (3)

Thus, the features with higher dependence are used for model training. Attributes with greater
information gain are more important for the training of models and impact the overall predictions.
The target variables are the grades, and the rest of the TAM attributes are features. Attributes that
have information gain values equal to or less than zero are not considered for making predictions. The
information gain computed for the attributes used for training models is shown in Table 1.

Table 1. Information gain of attributes.

Attribute Info Gain

TeamMember 0.173488
SemesterId 0.141086

FemaleTeamMembersPercent 0.120633
Year 0.070259

averageInPersonMeetingHoursTotalbyWeek 0.057544
averageMeetingHoursTotalbyWeek 0.042741

averageResponsesByWeek 0.038216
averageUniqueCommitMessageCountByStudent 0.034066

uniqueCommitMessageCount 0.033243
averageLeadAdminHoursResponseCountByWeek 0.031597

standardDeviationUniqueCommitMessageCountBystudent 0.029411
averageResponsesBystudent 0.02892
TeamMemberResponseCount 0.027098

averageGlobalLeadAdminHoursResponseCountByWeek 0.025511
globalLeadAdminHoursResponseCount 0.025511

onTimeIssueCount 0.01566
teamLeadGender 0.013135

Semester 0.002812
teamDistribution 0.000872

3.4. Training and Test Data

Each team is assigned the same task in development. All the teams are assessed after a fixed time
interval. There are 11 phases of assessments. Teams are assessed according to the TAMs defined as
features. TAMs incorporate the records of teams according to their working behavior and co-operation.
In each assessment phase (T1–T11), a grade is assigned to each team according to its performance.
Performance is assessed according to the values of the TAMs. T1 to T5 are sequentially used as
training data, and T11 is utilized as test data. J48 is trained to estimate the earliest possible phase for
the prediction of the final grades for software development. Predictions are focused on an accurate
assessment of the teams that are expected to achieve below-average grades.
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3.5. Predictions Using ML

J48 is a decision tree-based algorithm [40]. In binary class predictions, J48 has been used efficiently
in the past to make predictions in related problems. This study utilized a hybrid approach of J48 with
information gain in sequential phases of assessments from T1 to T5. The major goal of the study is to
predict the low performing teams. During each phase, the predicted results are monitored to find the
earliest possible phase from all 11 phases to predict the final grade.

3.6. Model Evaluation

The best algorithms from the literature to predict a student’s grades were selected for comparison
with the proposed approach. Multi-layer perceptron (MLP) [41] is illustrative of the artificial neural
networks that are commonly used as learning algorithms for neural networks [42]. Simple logistic
regression and logistic regression are used based on the probabilistic classifier’s category [43]. From the
support vector machines, the sequential minimal optimization (SMO) algorithm is used, since SMO is
one of the fastest training methods [44]. The NB algorithm is illustrative of Bayesian networks [45],
and the repeated incremental pruning to produce error reduction (RIPPER) [46] algorithm is selected
as a rule-based learning technique. The selected ML classifiers are trained in the initial phases of the
software product evaluation. The test data were assessed to predict the final grades in the software
product. The performance of each algorithm was comparable in identifying at-risk teams at an
earlier stage.

The proposed technique’s results were compared with the selected classifiers using numerous
constraints, such as receiver operating characteristic (ROC), accuracy, precision, recall, F-measure,
sensitivity, and specificity. The accuracy of each ML algorithm determines the correctly made
predictions. However, this study is focused on the early prediction of low performing teams. At-risk
teams are the teams that are expected to perform below average in the product development section of
the software project. Therefore, this prediction is specifically taken into account to achieve the desired
goals of the study.

3.7. Statistical Analysis

The kappa values are next determined to calculate the reliability of the model [47]. The kappa
values are computed for the proposed approach and the comparison algorithms in the initial assessment
phases of evaluation to determine their performance. The kappa values can be interpreted as follows:

values ≤ 0, indicating no agreement;
0.01–0.20, no to slight agreement;
0.21–0.40, fair agreement;
0.41–0.60, moderate agreement;
0.61–0.80, substantial agreement;
0.81–1.00, almost perfect agreement.

The kappa statistic indicates how closely the instances classified by the ML model are harmonized
with the actual data labels.

4. Results

The ROC curve depicts the relationship between the true-positive and false-positive rates.
Sensitivity and specificity are also demonstrated by the ROC and are contrary to each other.
The proximity of the ROC curve to the top left corner of the graph determines the best accuracy. If the
curve leans more towards a diagonal, the results are less accurate. Relating to the ROC curve, the area
under the curve (AUC) represents the area under the ROC curve [48]. The value of the AUC indicates
the model performance as represented below:

AUC > 0.9 => Excellent results;
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0.9 > AUC > 0.8 => Good;
0.8 > AUC > 0.7 => Fair;
AUC < 0.6 => Poor.

The J48-based information gain hybrid approach is used for making predictions, and evaluation
measures are used to observe the results at each phase. There are 11 phases of assessment in which
the students are assessed after a specific time interval based on the ongoing progress of their project.
We aimed to determine the earliest possible phase for prediction. The prediction outcomes of the initial
phases, starting from the first phase of the assessment of the teams, are described below.

4.1. First Assessment Phase

To predict the grades as early as possible, the classifiers are trained by using the first phase of
assessment as the training data. To determine the at-risk teams, the performance of the models is
focused on predicting a grade of F (a below-average grade). This depicts how accurately the models
can predict performance that is expected to be below average.

Table 2 provides a comparison of the performance of each model with the proposed approach
during the first assessment phase, where the TP rate represents the true positive rate and FP rate
represents the false positive rate for predicting class F.

Table 2. Comparison of performance for predicting class F in the first assessment phase.

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC

SMO 0 0 0 0.5
SLR 0.094 0.024 0.75 0.094 0.167 0.644
NB 0.094 0.167 0.3 0.094 0.143 0.469
LR 0 0 0 0.5

Ripper 0.406 0.167 0.65 0.406 0.5 0.62
ANN 0 0 0 0.704

Proposed Approach 0.031 0 1 0.031 0.061 0.474

The graphical representation of the results can be observed in Figure 2 for each evaluation category.
The accuracy determines the overall accuracy of the classifiers for all instances.
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Figure 2. Performance of machine learning (ML) algorithms in the first assessment phase.

There are no clear predictions at this stage of assessment. Thus, the second phase of the assessment
was evaluated to obtain greater prediction clarity.
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4.2. Second Assessment Phase

Collectively training the models with T1 and T2 results in varying performance among the models.
This step trains the models by taking into account the team performance in phase 1 and phase 2 of the
software product development. Table 3 depicts the results.

Table 3. Comparison of performance for predicting class F in the second assessment phase.

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC

SMO 0.75 0.19 0.75 0.75 0.75 0.78
SLR 0.438 0.095 0.778 0.438 0.56 0.808
NB 0.125 0.048 0.667 0.125 0.211 0.646

Ripper 0.594 0.405 0.528 0.594 0.559 0.577
ANN 0 0 0 0 0 0.648

Logistic 0.063 0.095 0.333 0.063 0.105 0.475
Proposed Approach 0.156 0.024 0.833 0.156 0.263 0.44

A graphical representation for visual interpretation is depicted in Figure 3. The accuracy illustrates
the model’s overall accuracy of correct predictions.
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Figure 3. Performance of the models in the second assessment phase.

The results provide better predictions than those of the first phase but still, they are not satisfactory
at this stage. Thus, the third phase of the assessment was observed to mark further differences.

4.3. Third Assessment Phase

The results obtained after the second phase of assessment were not satisfactory. Thus, the models
were trained during the third phase of assessment to predict the final grades. Table 4 illustrates the
performance of the models and the proposed approach after the third assessment to predict the teams
at risk.

Table 4. Comparison of performance for predicting in the third assessment phase.

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC

SMO 0.875 0.405 0.622 0.875 0.727 0.735
SLR 0.563 0 1 0.563 0.72 0.892
LR 0.938 0.548 0.566 0.938 0.706 0.729
NB 0.563 0.119 0.783 0.563 0.655 0.795

Ripper 0.531 0.214 0.654 0.531 0.586 0.666
ANN 0.969 0.667 0.525 0.969 0.681 0.862

Proposed Approach 0.531 0.095 0.81 0.531 0.642 0.707
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Figure 4 provides a better interpretation of performance for each model through a visual illustration,
depicting the accuracy of the classifiers for all instances, as well as the recall, precision, and F-measure
for the prediction of at-risk teams.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 18 

NB 0.563 0.119 0.783 0.563 0.655 0.795 

Ripper 0.531 0.214 0.654 0.531 0.586 0.666 

ANN 0.969 0.667 0.525 0.969 0.681 0.862 

Proposed Approach 0.531 0.095 0.81 0.531 0.642 0.707 

Figure 4 provides a better interpretation of performance for each model through a visual 

illustration, depicting the accuracy of the classifiers for all instances, as well as the recall, precision, 

and F-measure for the prediction of at-risk teams. 

 

Figure 4. Performance of the models in the third assessment phase. 

The predictions of low performing teams improved with each subsequent phase. At this stage, 

logistic regression offers a 76.6% F-measure to predict low performing teams, while the proposed 

approach provides a 64.20% F-measure. The accuracy of the proposed approach is 74.32%. The fourth 

phase is then assessed to determine the impact. 

4.4. Fourth Assessment Phase 

We next tested the fourth assessment level to obtain better predictions for low performing teams. 

Comparing the algorithms with the proposed approach resulted in the performance prediction 

results shown in Table 5. 

Table 5. Comparison of the performance for predicting the F class in the fourth assessment phase. 

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC 

SMO 0.875 0.19 0.778 0.875 0.824 0.842 

SLR 0.719 0.143 0.793 0.719 0.754 0.903 

LR 0.875 0.19 0.778 0.875 0.824 0.878 

NB 0.438 0.095 0.778 0.438 0.56 0.81 

Ripper 0.438 0.167 0.667 0.438 0.528 0.641 

ANN 0.938 0.452 0.612 0.938 0.741 0.868 

Proposed Approach 0.781 0 1 0.781 0.877 0.87 

A graphical depiction of the obtained results is shown in Figure 5. The accuracy of the classifiers 

is depicted in the accuracy section. 

 

72.70%
72.00%

65.50%
70.60%

58.60%

68.10%
64.20%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F-Measure

72.6216
81.08

74.3243
66.2162

67.567
60.8108

74.3243

0

20

40

60

80

100

Accuracy

Figure 4. Performance of the models in the third assessment phase.

The predictions of low performing teams improved with each subsequent phase. At this stage,
logistic regression offers a 76.6% F-measure to predict low performing teams, while the proposed
approach provides a 64.20% F-measure. The accuracy of the proposed approach is 74.32%. The fourth
phase is then assessed to determine the impact.

4.4. Fourth Assessment Phase

We next tested the fourth assessment level to obtain better predictions for low performing teams.
Comparing the algorithms with the proposed approach resulted in the performance prediction results
shown in Table 5.

Table 5. Comparison of the performance for predicting the F class in the fourth assessment phase.

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC

SMO 0.875 0.19 0.778 0.875 0.824 0.842
SLR 0.719 0.143 0.793 0.719 0.754 0.903
LR 0.875 0.19 0.778 0.875 0.824 0.878
NB 0.438 0.095 0.778 0.438 0.56 0.81

Ripper 0.438 0.167 0.667 0.438 0.528 0.641
ANN 0.938 0.452 0.612 0.938 0.741 0.868

Proposed Approach 0.781 0 1 0.781 0.877 0.87

A graphical depiction of the obtained results is shown in Figure 5. The accuracy of the classifiers
is depicted in the accuracy section.
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The results after this phase were convincing. The proposed approach achieved an 87.7%
F-measure and a 90.54% overall accuracy. Thus, the fourth phase is the earliest phase that can predict
low performing teams, which would otherwise be observed after the 11th assessment. To check any
further improvement, a fifth assessment phase was also employed.

4.5. Fifth Assessment Phase

The results obtained by the performance of models in the fifth level of the assessment revealed
better predictions, as depicted in Table 6.

Table 6. Comparison of performance for predicting the F class in the fifth assessment phase.

Algorithm TP Rate FP Rate Precision Recall F-Measure AUC

SMO 0.594 0 1 0.594 0.745 0.797

SLR 0.719 0.095 0.852 0.719 0.78 0.936

LR 0.656 0.119 0.808 0.656 0.724 0.831

NB 0.281 0.048 0.818 0.281 0.419 0.77

Ripper 0.438 0 1 0.438 0.609 0.719

ANN 0.688 0.048 0.917 0.688 0.786 0.929

Proposed Approach 0.75 0 1 0.75 0.857 0.854

The graphical representation offers a better interpretation for each classifier, as shown in Figure 6.
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The proposed approach consistently performs efficiently in this phase, as well. The 85.7%
F-measure and 89.18% accuracy show that the proposed approach offers better performance than other
state-of-the-art methodologies.

5. Discussion

Performance prediction carries prime importance in ESD and will pave the way towards better
academic facilitation services for students and teachers. ESD demands an educational system should
be such that even the low performing students be educated in a way that their activities, or life,
carries no threat to humanity or even to themselves [49]. Therefore, understanding students’ problems
and motives for misinterpretations and low performance carries significant importance. Studies
collecting online data from e-learning systems demonstrated the effectiveness of early predictions
in previous studies. Many studies generate outcomes using ML for better academic practices in
technology-based learning environments. However, this task becomes difficult when data are not
automatically generated. The same occurs in a project-oriented educational environment. Software
engineering is a project-based learning field. Students must work in teams and produce projects
with above-average scores to eventually pass the course. Earlier predictions focused primarily on
the working behaviors of teams. Therefore, multiple phases of assessments help keep track of the
performance of each team. However, the early prediction of at-risk teams and low performers involves
the application of ML practices. The SETAP dataset is itself comprehensive, allowing one to track the
performance of software teams through 11 phases of assessments. A hybrid approach of information
gain and a J48 decision tree was applied in the assessment phases to assess if performance can be
predicted. The results revealed that it is possible to predict the performance of teams at earlier stages
of evaluation to achieve sustainable software engineering education with the help of the proposed
approach by keeping the prediction of low performing classes significant with an overall accuracy
of the approach. The regular registration of TAMs is important to achieve efficient results. TAMs
are measures that outline the level of performance of each team in different areas. Predicting final
performance with the proposed approach resulted in determing the low performers. The identification
of low performing teams will result in recognizing their problems, misunderstandings, and confusion.

Thus, to appraise the optimum prediction, the proposed approach was applied at the first level of
assessment and sequentially onwards until achieving satisfactory results. The first three assessment
levels did not produce suitable predictions. The results revealed acceptable predictions at the fourth
assessment level and much better predictions at the fifth assessment level. At level five of the
assessment, the on-risks teams could be identified. The ROC curves depict the performance of the
proposed model and the comparative models at the fourth and fifth levels, as shown in Figures 7 and 8.

In both cases, the ROC curve of the proposed approach extends along the vertical axis, producing
the best performance with the highest AUC. The kappa values of the proposed approach are the
highest, thereby highlighting the efficiency of the model. Table 7 provides the performance of each
algorithm at assessment levels four and five.
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Table 7. Kappa statistics for the models at assessment levels four and five.

Algorithm Kappa at Level 4 Kappa at Level 5

SMO 0.6745 0.6239
SLR 0.5824 0.6353
LR 0.6745 0.5495
NB 0.3611 0.2534

Ripper 0.2824 0.4689
ANN 0.4563 0.6595

Proposed Approach 0.8021 0.773

The contributions of this study can be summarized by answering the research questions raised in
Section 1 (Introduction).

1. Can we predict the final grade of the software product development part of a software project in
the initial phases of assessment to achieve sustainable software engineering education?

Yes, we can predict the final grades for software products at earlier stages of evaluation using the
proposed hybrid approach of information gain with the J48 decision tree. Assessment level five makes
predictions by showing the practical values of the precision, recall, and F-measure. Early predictions
are associated with achieving sustainable software engineering education. Decision-making can thus
be performed to provide quality education based on predictions.

2. How efficient is the proposed technique in the context of ESD for the identification of at-risk
teams in the development of software products?

Multiple classifiers are used to compare the proposed approach to check its efficiency for the
prediction of team performance, specifically considering the prediction of low performing teams.
The proposed approach outperformed other methods at assessment levels four and five. At level five,
the proposed approach achieved a convincing true positive rate of 0.75 in predicting the below-average
grades of teams. An efficient technique for making predictions leads to the development of a competent
method for ESD. ESD is associated with looking into the future and making decisions and strategies
accordingly. Hence, in this scenario, the identification of at-risk teams proved to be an important
concern for ESD. This resulted in the development of a more synchronized approach to follow for a
successful software engineering project. The approach helps to accomplish sustainable education goals
by providing maximum opportunities for success for all teams.

Earlier predictions for software product development can help instructors identify low performing
teams. This approach can bridge the gaps associated with providing sustainable software engineering
education. Looking into the future and making policies accordingly are major aspects of ESD. Early
predictions can help instructors and students understand the final grades they should expect. These data
can help elucidate the weaknesses associated with the students’ current performance and help them
improve their performance. Helping the maximum number of students be successful in their projects
and reducing their frustration and stress related to poor performance can be achieved if proper practices
are followed. Extra sessions can be conducted to resolve any problems and help students overcome
the hurdles of their work. Teams can also resolve any co-ordination issues related to low performance.

The objective of sustainable development is to alleviate our ecological, financial, and social
requirements [50]. Industries across the world are changing due to amplified digitization. Industrial
expansions are arising the need for improvements in the education sector as well [51]. Coaching and
learning practices are also obligatory to encourage learners to progress and educationally move toward
sustainable development. Critical thinking, envisioning the future, and engaging in decision-making
are the skills that ESD promotes [52]. Hence, this approach has great prospects for improving
software project evaluations and improving the success rate of software engineering courses to provide
sustainable software engineering education.
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6. Conclusions and Future Work

Sustainable development has been recognized as the integration of ecological, fiscal, communal,
and educational structures. Therefore, it realizes the definition from the multidisciplinary perspective.
ESD becomes further promising in this regard by incorporating technological innovations, ML, and AI.
This paper proposed a hybrid approach of information gain and J48 decision-tree for early predictions
of low performing teams in the software engineering product development portion of a software
project. TAMs play an important role in the development of a comprehensive data set for performance
prediction. For software product development, the teams were assessed using 11 different phases
with the SETAP data. The proposed approach, when compared with other state-of-the-art classifiers,
provided superior results when predicting the final performance at the fifth level of assessment.
The performance predictions were proven to be an important aspect of ESD. This study technically
proved that, like technology-oriented learning, a project-oriented educational environment can also
benefit from ML classifiers for the early prediction of low performers. This will eventually help develop
a successful academic system that fulfills the goals of sustainable education by providing quality
education. This will lead to better team–instructor synchronization. However, the proper tracking
of teamwork is compulsory for the execution of this whole scenario. In the future, we aim to rank
the TAMs to determine which one contributes most to the low performance of teams. Deep learning
can be applied to this system if more teams are required to be assessed. Hence, artificial intelligence
should be further explored to resolve academic issues that hinder ESD.
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