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Abstract: The performance of machine learning (ML) algorithms depends on the nature of the
problem at hand. ML-based modeling, therefore, should employ suitable algorithms where optimum
results are desired. The purpose of the current study was to explore the potential applications of ML
algorithms in modeling daylight in indoor spaces and ultimately identify the optimum algorithm.
We thus developed and compared the performance of four common ML algorithms: generalized
linear models, deep neural networks, random forest, and gradient boosting models in predicting the
distribution of indoor daylight illuminances. We found that deep neural networks, which showed
a determination of coefficient (R2) of 0.99, outperformed the other algorithms. Additionally, we
explored the use of long short-term memory to forecast the distribution of daylight at a particular
future time. Our results show that long short-term memory is accurate and reliable (R2 = 0.92).
Our findings provide a basis for discussions on ML algorithms’ use in modeling daylight in indoor
spaces, which may ultimately result in efficient tools for estimating daylight performance in the
primary stages of building design and daylight control schemes for energy efficiency.

Keywords: machine learning; daylighting performance; daylighting control; deep learning; decision
trees; daylight forecasting; predictive modeling; time-series

1. Introduction

Daylighting is an essential part of modern architecture. It allows for a reduction in the use of
artificial lighting and thus, indirectly, contributes to reduced anthropogenic carbon dioxide emissions [1].
In addition, daylighting has been reported to enhance productivity in workplaces [2] and to boost
overall mood in indoor spaces [3]. Moreover, we now understand the potential associations between
daylight and human circadian rhythms, as well as the importance of properly maintained body clocks
on the general well-being of building occupants [4]. As such, it is important that built environments are
designed to provide sufficient levels of daylight for purposes of energy saving, occupant well-being,
and visual comfort.

Traditionally, in the design stage of a building project, there are several methods that can be used
to estimate the daylighting levels that are likely to be present in a space. These methods can be broadly
categorized into three groups: physical modeling, computer simulations, and mathematical formulae
for analytical calculations [5].

Physical modeling involves creating a replica of the space intended to be built, usually on scales
ranging from 1:8 to 1:32 [6], and using it to estimate the potential levels of daylight in the real space
intended to be built. There are a variety of materials (e.g., with differing reflectance) used in developing
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the physical models to ensure that real-life building scenarios are properly replicated. While this
approach is effective, it is also time-consuming and can often be expensive depending on the chosen
scales and the need to replicate real-life scenarios, including shading and expected outdoor obstructions,
in fine detail.

The use of computer simulations to estimate daylight levels during the building design stage has
been applied extensively over the last few years. There is a variety of commercially available daylight
simulation software on the market today [7]. These tools may vary in complexity, modeling capability,
rendering, accuracy, etc., but the fundamental concepts on which they are based are primarily the same
(i.e., ray tracing, radiosity, photon mapping) [8]. While simulation tools offer flexibility and speed in
the evaluation of building daylighting performance [7], they often have steep learning curves, which
may be disadvantageous to building designers with busy schedules. Moreover, the accuracy of the
results obtained from computer software is largely dependent on the skill set of the user and is thus
prone to errors, mainly due to lack of experience by the modeler.

There are also conventional, simplified, manual calculation formulae that are still commonly used
to evaluate daylighting performance in the building industry. A good example is the split flux daylight
factor (DF) method, which considers the ratio of outdoor horizontal illuminance to indoor horizontal
illuminance on the work plane. DF is still the basis of many building standards and daylighting design
guidelines [9] (e.g., BS206-2 and BS 209-2011). However, while this method is simple and easily applied,
it does not consider various important factors that affect the availability of daylight within a space
(e.g., climate, shading) [10]. There are other improved daylight metrics available, such as the useful
daylight illuminance (UDI) and daylight autonomy (DA) [10]. However, the feasibility of applying
manual calculations for long-term daylight performance evaluations is rather minimal. In addition,
such analytical methods are often unable to provide detailed assessments of the available illuminance
levels (e.g., how well the illuminance is distributed within the space).

To overcome some of the challenges experienced in the evaluation of daylighting performance
using the three traditional techniques discussed above, recent studies have explored the potential use
of machine learning (ML) techniques to assess daylighting performance in buildings. Machine learning
techniques make use of existing data to learn patterns and relationships between the response and
causal variables, and upon learning such patterns, they can be used in the estimation or forecasting of
the response variable at a particular time in the future or under particular conditions [11]. However,
despite the potential usefulness of machine learning in daylighting studies, the application of machine
learning in daylight-related studies is rather new and the performances of only a few algorithms
have previously been explored [9,12–15]. In this study, we demonstrated the performance of five
machine learning algorithms in the prediction and forecasting of the distribution of indoor daylight
illuminance. We considered both deep-learning-based and decision tree-based algorithms and discuss
the optimum algorithm. Our study contributes to the small but increasing number of research
studies attempting to employ artificial intelligence (AI) concepts in daylight design evaluations.
For instance, by demonstrating the potential of machine learning algorithms to accurately learn the
interactions between sunlight and buildings, we provide the basis for using simple data-driven models
to replace complex, time-consuming simulation tools in daylight performance analysis. Furthermore,
we demonstrate the development of machine learning models that can be used in the dynamic
predictive control of indoor daylight illuminance to reduce the unnecessary usage of artificial lighting
in buildings and subsequently contribute to reduced building energy consumption. These models
can also be employed in the automatic control of solar shading devices to enhance visual comfort in
indoor spaces.

2. Related Works and the Considered Machine Learning Algorithms

As briefly discussed in the previous section, only a small number of studies have attempted to employ
ML algorithms in the estimation of indoor daylight performance. For example, Kazanasmaz et al. [12]
developed an artificial neural network (ANN) model to predict daylight illuminance levels of an office
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building based on field data representing climatic and building design factors. The developed model
was reported to predict indoor illuminance levels with an accuracy of 98%. Similarly, Ahmed et al. [13]
compared the performance of random forest (RF) and ANN algorithms in the prediction of daylight
illuminance in a classroom. They reported better predictions by RF models (R2 = 0.98) than ANN
models (R2 = 0.97). Furthermore, Lorenz et al. [9] demonstrated the potential of ANN-based models
to predict DA with changing window designs while considering the effects of shading from external
obstructions. Their models were able to predict DA with an average error of 3 DA values between the
predicted and actual DA. Further, Zhou and Liu [14] compared the performance of ANN and support
vector machine (SVM) algorithms, with principal component analysis (PCA) as a feature selection
tool, in the prediction of UDI. They reported better performance with ANN than SVM. A couple
of previous studies have also employed machine-learning-based time series modeling to forecast
indoor illuminance at a particular future time. Kurian et al. [16] demonstrated the potential usage of
adaptive neural fuzzy inference systems (ANFISs) to forecast indoor daylight illuminance. Recently,
Waheeb et al. [15] compared the performance of four time-series modeling techniques (seasonal naïve,
seasonal ARIMA, STL, and TBATS) in the forecasting of indoor daylight illuminances provided by
a light pipe daylight delivery system. They reported that seasonal and trend decomposition using
loss (STL) techniques outperformed the other techniques in forecasting indoor daylight illuminances.
In the following subsections, we explain briefly the mechanisms of each of the five ML algorithms
explored in the current study.

2.1. Generalized Linear Models (GLMs)

GLMs are conventional statistical techniques that interpret the possible linear relationships
between the response variable and one or a set of explanatory variables [17]. A typical GLM consists of
a set of input variables (x1, x2, x3 . . . xn) and an output variable Y. The input variables are assigned
weights that represent the overall effect of each input variable on the output variable (β). GLMs thus
typically take the form shown in Equation (1) below:

Y = β1x1 + β2x2 + β3x3 . . . βnxn (1)

where Y represents the output variable, x1, x2, x3 . . . xn represent the input variables, β1, β2, β3 . . . βn

represent the regression weights, and ε represents the error between the predicted and actual value.

2.2. Random Forest (RF)

RFs are decision tree algorithms based on ensemble methods techniques. RFs were developed
to overcome the shortcomings of conventional decision trees methods (e.g., lack of robustness) [18].
They generally employ two statistical approaches: bootstrapping and bagging. Bagging is a technique
used to split a given training dataset into smaller data sets, each of which can be used to learn
patterns among variables in supervised learning. For example, assuming a training dataset X of size
n, the bagging technique randomly generates m new smaller datasets, Xi, from the original dataset,
each with size ni. The generation of these sample sub-datasets can either be done “with replacement”
or “without replacement”. Bootstrapping is a sampling technique used in the bagging process and
involves sampling with replacement [19]. The general goal of the bagging technique in RF algorithms is
thus to produce subsets of random samples from the original dataset. The analysis is then conducted on
each subset and the outcomes are averaged to reduce errors and variance in the response variable [20].
RF can be employed in both regression and classification tasks. In our case, we used RF to predict
daylight illuminances based on building design, weather, and time factors. As such, assuming a vector,
x1,x2,x3, . . . xn, that consists of all our input variables (i.e., building design, weather, time factors)
and the corresponding labels (i.e., indoor daylight illuminances), RF randomly split our vector into
m subsets, which are often referred to as decision trees. Since our goal was to learn relationships in
our input vector that correspond to certain labels (i.e., expected output), the output was predicted for
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each tree. The final output was the average value of all the outputs from all the random trees created.
The general process of training a randomly generated forest is discussed by Svetnik et al. [21] and
summarized as follows. First, a bootstrap sample is extracted from the training dataset. Then, a tree is
developed for each bootstrap sample and the best split is selected from the subset of the bootstrap
sample. The first and second steps are then repeated until a certain number of trees are grown. Finally,
the average values from each tree are aggregated to obtain a final output.

2.3. Gradient Boosting Model (GBM)

GBMs are another ensemble method based on decision trees. GBMs create several additive models
and present the optimum model that minimizes the loss function. They do this by first creating several
simple models, referred to as weak learners, and then combining them in a sequential additive manner
to obtain models with better performance, referred to as strong learners. The training process of GBMs
is similar to that of RF models, with the primary difference being that the RF trains each decision
tree independently, using random parameters, and combines the output from each independent tree,
whereas GBMs train decision trees one at a time, with the new trees attempting to minimize errors
made by previous trees, a technique known as boosting [22].

2.4. Deep Neural Networks (DNNs)

ANNs and DNNs are ML algorithms that are designed to replicate the way humans learn [23].
ANNs are capable of learning highly complex patterns between variables and have recently been
applied extensively in computational modeling [24]. The primary difference between an ANN and a
DNN is the number of hidden layers in the developed model. A model developed using a few hidden
layers (typically less than three) is considered a shallow ANN model, whereas a model with many
hidden layers is considered a deep ANN or just a DNN. A typical ANN model is made up of neurons
and three layers: an input layer, a hidden layer, and an output layer. Neurons are the primary units of
the model, and they are interconnected throughout the layers. When a set of features is fed into the
model, the weighted combination of the input signals is aggregated and an input signal is transmitted
by the interconnected neurons to the output layer. Developed models may have any number of neurons
in the hidden layer, depending on the complexity of the problem being solved. However, the numbers
of neurons in the input and output layers are typically equal to the number of predictor variables and
response variables, respectively. Additionally, there are many ANN architectures (e.g., feed-forward,
Hopfield, Elman, radial basis networks) [25], and developed models may have different transformation
functions, which are functions responsible for learning non-linear patterns within the data. In the
present study, we used a feed-forward network architecture trained with a back-propagation algorithm.
A detailed account of how to train a neural network using a back-propagation algorithm is given by
Ermis et al. [26].

2.5. Long Short-Term Memory (LSTM)

LSTMs are a special type of recurrent neural networks (RNNs). RNNs are neural networks with
loops such that, after proper training, information learned from previous loops (past values) is used
to predict desired values at a future time. For example, in a typical RNN model f(x1 . . . xt), x1 . . . xt

indicate historical measurements at the particular time 1 . . . t and the final output relates to a particular
time in the future, e.g., t + 1. A typical RNN model, therefore, is different from the conventional
feed-forward network in that the loops in RNNs allow the model to operate a dynamically changing
contextual window, making it possible for the model to feed the network activations from a previous
time step as inputs into the network; this, in turn, allows the previously learned patterns to influence
the prediction at a particular time in the future, whereas a conventional ANN operates on a fixed-size
sliding window [27]. Similarly, LSTM models have been reported to outperform standard RNNs
because they contain special units called memory blocks that allow LSTM models to store much more
past information than standard RNNs. LSTMs also consist of multiplicative units called gates that
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control the flow of information from one memory block to another and into the rest of the network.
A single memory block, therefore, contains an input gate and an output gate. Additionally, LSTMs
contain other special units called peephole connections that connect internal cells to the gates within the
same cell. This helps the model learn the exact times of the outputs [28]. LSTMs have been successfully
applied in many fields, especially in speech recognition [29]. Sak et al. [27] give a detailed discussion
on typical LSTM computation.

3. Methodology

3.1. Model Parameters

We considered three building factors, seven climatic factors, and time as input variables.
For building factors, we considered the window to wall ratio (WWR), wall reflectance (WR), and distance
from the window (DFW). As climatic factors, we considered global horizontal irradiance (GHI), direct
normal irradiance (DNI), diffuse horizontal irradiance (DHI) global horizontal illuminance (GHIL),
direct normal illuminance (DNIL), relative humidity (RH), and sky cover (SC). These same variables
have been employed in a previous study that deals with ML-based predictive modeling of indoor
illuminances [12]. Table 1 below shows the variables used as features to develop the GLM, RF model,
GBM, and DNN model. The LSTM models were developed using only the time-dependent variables
shown in Table 1, i.e., all the features except for the building design factors (WWR, WR, DFW).

Table 1. Input variables for model development.

Parameter Min Max

WWR [%] 20 60
WR [%] 20 60

DFW [m] 0 9
GHI [w/m2] 0 992
DNI [w/m2] 0 970
DHI [w/m2] 0 970
GHIL [Lux] 0 121,265
DNIL [Lux] 0 97,695

RH [%] 10 98
SC [%] 0 100
Month 1 12
Day 1 365

Time [hours] 6 20
Illuminance [Lux] 0 27,580

WWR—window to wall ratio, WR—wall reflectance, DFW—distance from the window, GHI—global horizontal
irradiance, DNI—direct normal irradiance, DHI—diffuse horizontal irradiance, GHIL—global horizontal illuminance,
DNIL—direct normal illuminance, RH—relative humidity, SC—sky cover.

3.2. Data Acquisition (Simulation Design)

The data used in the training and validation of the developed models were acquired through
a daylight computer simulation tool. We designed a 10 m × 10 m generic model with a height of
2.7 m (see Figure 1) based on Lorenz et al. [9]. The daylight simulations were conducted using the
Radiance engine in EnergyPlus [30]. Radiance has been employed extensively in daylight simulation
tools and has been validated through extensive experimental studies [31–33]. We developed several
generic models to match all our intended scenarios. We thus designed nine generic models, a model
for each combination of WWR and WR. For example, a model with a 20% WWR was simulated under
three different values of WR (20%, 40%, and 60%), and this was repeated for the remaining two WWR
categories (40% and 60%). The simulations were conducted for indoor illuminance at hourly intervals
at a work plane height of 0.8 m. In addition, there were 10 sensors spaced in 1 m intervals from the
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window to the rear of the room and from the west-facing wall to the east-facing wall; this resulted in a
total of 100 sensor points.
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3.3. Model Development and Optimization Techniques

Most supervised machine learning algorithms require a minimum of two sets of data. One set of
data is used to train the model (i.e., learn the patterns between the explanatory and response variables)
and the second set is used to validate the developed model (i.e., assess how the model would perform
on a set of new data). In our case, for all four models (i.e., GLM, DNN, RF, and GBM), 80% of the data
were used to train the model and 20% were used in model validation.

Certain other model parameters are most likely to influence how the developed model performs.
For example, algorithms belonging to the decision tree family are largely influenced by the number
of trees within the model; this is typically referred to as “tree depth.” The number of trees required
for a good model performance is largely dependent on the complexity of the available data. In the
present study, to determine the optimum model performance, we assessed the relationship between
the performance of the developed RF model and GBM and the number of trees. We thus developed
initial models with 2 trees for the RF model and 10 trees for the GBM and gradually increased the
number of trees while observing the changes in the performance of the model. The optimum model
was then developed with the number of trees that minimized the error between the predicted and
simulated values.

As with the number of trees in decision tree-based algorithms, the number of hidden layers in a
DNN model relies on the complexity of the data. As such, to determine the number of hidden layers
that would result in the best model performance, the models were initially developed with two layers
and we then increased the number of layers, one by one, until we observed no further reductions
in the produced errors. For the number of neurons per layer, there is no agreed-upon methodology
for determining the suitable number of neurons per hidden layer. However, some researchers have
suggested simple arithmetic formulas to determine the optimum number of neurons in the hidden
layers. For example, Heaton [34] suggested that the optimum number of neurons can be obtained by
No. o f inputs+No. o f outputs

2 . Similarly, Hecht-Nielsen [35] stated that the optimum number of neurons in
hidden layers can be determined by 2n + 1, where n is the total number of input variables. In our
case, we followed the latter case to determine the initial number of neurons in the hidden layers and
gradually increased them until there were no further reductions in the produced errors. Following the
above criteria, therefore, our DNN model was made of five hidden layers, each with 29 neurons, as a
higher number of hidden layers of neurons did not result in any improvements in the performance of
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the model. For the activation function, we employed rectified linear units (ReLU). A typical ReLU
function has the format f (x) = max(0, x), where x represents the input into the neuron. The ReLU
function has been reported to enable better performance of DNN models than the Tanh or Maxout
functions [36].

For the developed LSTM models, factors related to building design (WWR, WR, DFW) were not
considered as input variables, as they are not time-dependent and hence using the term forecasting
model rather than the predictive models discussed above. The models were thus trained and validated
using weather data, time, and indoor illuminance as input variables; ReLU as an activation function;
and Adam as an optimizer. Additionally, the number of hidden layers was gradually increased from
one layer until there were no further significant changes in the root mean square error (RMSE) and the
coefficient of determination (R2). Furthermore, for the forecasting of indoor illuminances, we used
historical data recorded by the models in the last 1 h (i.e., t−1) to forecast the indoor illuminance at the
present time (e.g., t). Table 2 shows the optimization parameters used in developing the models and
Table 3 shows the descriptive statistics of the training and validation datasets.

Table 2. Optimization parameters for the developed models.

RF GBM DNN LSTM

Number of hidden layers n/a n/a 5 3
Number of neurons in

the hidden layer n/a n/a 29 25

Number of trees 10 12 n/a n/a
Epochs n/a n/a 1000 1000

Learning rate n/a 0.1 0.01 0.01
Loss function MSE LS RMSE RMSE

Optimizer n/a n/a Adam Adam
Maximum features Auto Auto n/a n/a
Activation function n/a n/a ReLU ReLU

Sample rate 0.8 0.8 n/a n/a

RF—random forest, GBM—gradient boosting model, DNN—deep neural network, LSTM—long short-term memory,
MSE—mean square error, LS—least squares regression, RMSE—root mean square error, ReLU—rectified linear units.

Table 3. Descriptive statistics of the datasets.

Dataset N Range Minimum Maximum Mean Std. Deviation

Training 337,256 27,492.60 0.00 27,492.60 794.88 2233.90
Validation 83,989 27,580.40 0.00 27,580.40 784.84 2214.13

3.4. Evaluation of Model Performance

The developed models were evaluated using the root mean square error (RMSE) and the mean
absolute error (MAE). RMSE and MAE are scale-dependent metrics used to calculate the overall
difference between the measured value and the value predicted by a given developed model [37,38].
We also used the coefficient of determination (R2) to quantify the total variance of indoor illuminance
explained by the developed models. Equations (2)–(4) show mathematical illustrations of the MAE,
RMSE, and R2, respectively.

MAE =
1
n

n∑
i = 1

|xi − x̂i| (2)

RMSE =

√√
1
n

n∑
i = 1

(xi − x̂i)
2 (3)

R2 =


∑n

i = 1 x̂ixi −
∑n

i = 1 x̂i
∑n

i = 1 xi/n

(
∑n

i = 1 x̂i2 − (
∑n

i = 1 x̂i)
2/n)(

∑n
i = 1 x̂i2 − (

∑n
i = 1 xi)

2/n)

2 (4)

where xi is the simulated data at the time i, and x̂i is the corresponding predicted value at (i = 1, 2, . . . n).
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3.5. Study Process

The general process of the study involved first designing our generic model space in OpenStudio
and using the Radiance engine in EnergyPlus to analyze daylight behavior (i.e., indoor daylight
illuminance) and subsequently gather weather data, building design data, and time factors.
The collected data were used to develop the machine learning models presented in the current
study. Figure 2 shows the study design adopted in the current manuscript.
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4. Results

4.1. Performance of the Developed Models

4.1.1. GLM

GLMs were able to explain 29% of the variations in indoor illuminance levels for the training
dataset. A similar performance was obtained for the validation dataset (R2 = 28.9%), indicating no
signs of overfitting or underfitting. Figure 3 shows the performance of the developed GLM.
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4.1.2. RF

The RF models indicated good model performance on both the training dataset (R2 = 0.998)
and the validation dataset (R2 = 0.995). The small difference between the results of the training
and validation datasets indicates no signs of overfitting or underfitting of the model. In addition,
our results showed that the number of trees has a significant impact on the performance of the RF
models. For example, a model with two trees indicated an R2 of 0.978, RMSE value of 255.5, and MAE
value of 56.714. However, doubling the number of trees to four trees increased the R2 value to 0.984,
and decreased the RMSE value to 184.811 and the MAE value to 47.802. The increase in the number of
trees increased the model performance and ultimately reduced the error in the model. The optimum
performance of the model (i.e., maximum R2 and minimum RMSE and MAE) was achieved when the
number of trees was 10. Figure 4 shows the performance of the developed RF models and Table 4
shows the changes in RF model performance as a result of increasing the number of trees.
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Table 4. Performance of RF models based on the number of trees.

Number of Trees
Training Dataset Validation Dataset

RMSE MAE R2 RMSE MAE R2

2 328.328 64.333 0.978 255.553 56.714 0.986
4 277.693 59.137 0.984 184.811 47.802 0.983
6 262.218 56.401 0.986 171.599 44.934 0.983
8 262.218 53.383 0.988 161.833 42.268 0.984

10 228.256 52.387 0.989 155.564 41.713 0.954

4.1.3. GBM

The developed GBMs also showed good predictive abilities. They indicated a high R2 value of
0.967 on both the training and validation datasets. However, compared to RF models, GBMs tended
to achieve acceptable model performance at a relatively higher number of trees. For example, when
10 trees were used, the developed GBM had a low R2 of 0.139, a relatively high RMSE of 2072.213,
and an MAE of 934.812. However, increasing the number of trees to 50 increased the R2 to 0.503 and
decreased both the RMSE and MAE to 1573.895 and 682.162 respectively. Similarly, doubling the
number of trees from 50 to 100 tended to increase the R2 value to 0.726 and lower the RMSE and MAE
values to 1168.233 and 487.698, respectively. The optimum performance of the models was achieved
with 1000 trees, which had an R2 value of 0.967, an RMSE value of 393.956, and an MAE value of
120.943. Figure 5 shows the performance of the developed GBMs, and Table 5 shows the changes in the
performance of GBMs with changes in the number of trees.
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Table 5. Performance of GBM models based on the number of trees.

Number of Trees
Training Dataset Validation Dataset

RMSE MAE R2 RMSE MAE R2

10 2072.213 934.812 0.139 2054.344 929.155 0.139
50 1573.895 682.162 0.503 1562.909 679.473 0.501
100 1168.233 487.698 0.503 1562.909 486.725 0.724
500 461.895 144.498 0.957 470.002 144.967 0.954

1000 393.956 120.943 0.969 403.989 122.190 0.967

4.1.4. Deep Neural Network (DNN)

DNN models also indicated a good ability to predict indoor daylight illuminances.
They demonstrated an R2 value of 0.991 on the training dataset and 0.990 on the validation dataset.
Similar to the GBM and RF model discussed above, the small difference between the training and
validation results indicates that the model was properly fitted (i.e., no overfitting or underfitting).
Additionally, we found that the number of hidden layers had a significant impact on the performance
of the model. For example, with a single hidden layer, the model showed an R2 value of 0.955, an RMSE
value of 471.389, and an MAE value of 222.267. However, with two hidden layers, the RMSE value
decreased by almost half to 241.282, the MAE value decreased to 86.860, and the R2 increased to
0.988. The optimum model performance was achieved with five hidden layers, which showed an R2

value of 0.992, and RMSE and MAE values of 199.274 and 69.136, respectively. Figure 6 shows the
overall performance of the DNN model and Table 6 shows the changes in model performance with an
increasing number of layers.
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Table 6. Performance of DNN models based on the number of hidden layers.

Number of Trees
Training Dataset Validation Dataset

RMSE MAE R2 RMSE MAE R2

1 471.389 222.267 0.955 477.517 224.106 0.953
2 241.282 86.860 0.988 252.232 88.079 0.987
3 207.614 79.638 0.991 228.320 81.580 0.989
4 195.301 67.558 0.992 211.443 69.166 0.990
5 199.274 69.136 0.991 222.791 71.893 0.990

4.2. Relative Importance of the Factors Affecting Daylight Indoor Illuminance

Using deep learning methods described by Garson [39], we identified which input variables were
most important in explaining the distribution of indoor daylight illuminance. This method determines
the strength of the association between each input variable and the output variable by identifying all
the weighted connections between the nodes that connect the input and output variables. This process
was repeated for all explanatory variables and the results were scaled to obtain a single value for each
variable that indicated the strength associated with each explanatory variable relative to the other
explanatory variables. Our results showed that DFW, time of day (TIME) (time of the day), and DNR
were the three most important factors explaining the distribution of indoor daylight illuminance.
Our results also showed that, in general, indoor daylight illuminance was affected more by weather
factors than by building design factors. Figure 7 shows the relative importance of the explanatory
variables for indoor daylight illuminance.
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4.3. Comparative Performance of the Developed Models

Using the deep learning-based relative importance of variables, discussed above, we divided our
explanatory variables into two categories: important variables and all variables. Important variables
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are the five variables that ranked highest on the relative importance scale (DFW, Time, DNI, DHI,
GHIL). The “all variables” category includes all the explanatory variables used in the study. We then
compared the performance of the four developed models, first using all variables and then using
only the important variables. Using only a few important variables in predictive analytics, especially
those dealing with ML, rather than several variables has the potential to reduce model dimensionality
and thus reducing overfitting chances. It also serves to reduce computational complexity and thus
improving model efficiency.

Our results showed that the models developed using all variables outperformed those developed
using only the five most important variables for all algorithms. For example, while the R2 value was
0.992 for the DNN model developed using all variables, the R2 value for the DNN model developed
using only the important variables was just 0.782. The same trend was observed across the other three
algorithms (i.e., GLM, RF, and GBM). However, the R2 values for all four models developed using
only the five most important variables were still quite high (above 0.65) for both the training and
validation datasets.

Furthermore, our results indicated that DNN was the best-performing model among the four
machine learning algorithms considered in this study. For example, while the R2 value of the DNN
model trained on all variables was 0.992, the corresponding R2 values for the GLM, RF, and GBM were
0.290, 0.989, and 0.968 respectively. For the models trained with only the five most important variables,
DNN still outperformed the rest of the models. For example, while the R2 value for the DNN model
was 0.782, the R2 values for the GLM, RF, and GBM were 0.264, 0.695, and 0.768, respectively. Table 7
shows the comparative performance of the models developed using all variables and Table 8 shows
the comparative performance of the models developed using only the five most important variables.
Table 9 shows the time taken to train each model. However, it should be noted that the time taken for
model training is primarily dependent on the capacity of the computers used and may thus vary from
computer to computer. In our case, we used workstations with NVIDIA GeForce GTX650 graphics
processing unit (GPU) and Intel® core™i5-7500 central processing unit (CPU) with a processor of
3.4 GHz and a memory of 8 GB.

Table 7. Comparative performance of the models developed using all variables.

Training Dataset Validation Dataset

RMSE MAE R2 RMSE MAE R2

GLM 1881.14 995.811 0.290 1868.031 992.051 0.288
RF 228.256 52.387 0.989 470.002 144.967 0.954

GBM 393.956 120.943 0.969 403.989 122.190 0.967
DNN 199.274 69.136 0.992 222.791 71.893 0.990

Table 8. Comparative performance of the models developed using only the five most important variables.

Training Dataset Validation Dataset

RMSE MAE R2 RMSE MAE R2

GLM 1915.851 987.344 0.264 1900.645 982.359 0.263
RF 1237.218 390.242 0.695 1061.408 340.497 0.774

GBM 1074.865 347.405 0.768 1081.591 346.671 0.761
DNN 1042.133 346.390 0.782 1043.933 344.732 0.777

Table 9. Time taken for model training (seconds).

Model All Variables Important Variables

GLM 0.64 0.15
RF 150 113

GBM 129 107
DNN 204 143
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4.4. Forecasting of Daylight Indoor Illuminance Using LSTM

The LSTM models were developed for each sensor line (i.e., at 1 m intervals from the window);
since our model space measured 10 m by 10 m (see Figure 1), we ended up with 10 LSTM models.
The features used to develop the LSTM models are only time-dependent factors and are discussed
in Section 3.1. Our results (See Figure 8) showed that LSTM algorithms could accurately mimic
distributions in indoor daylight illuminance.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 22 
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5. Discussion

5.1. Potential Applications of Data-Driven Models in the Daylight Design of Buildings

In the current study, we developed four machine learning algorithms that predicted the distribution
of indoor illuminance. While the use of data-driven methods in the estimation of daylighting
performance is a recent field of research, it is one that could have large implications on how daylighting
is estimated in the early stages of building design. This is because data-driven predictive models,
once trained, require less time and expertise to provide daylight estimations compared to simulation
programs, while at the same time providing accurate estimations. Similarly, using data-driven methods
to predict daylighting behavior in the early stage of building design is likely to become a preferred
alternative to scale modeling methodologies, which are often associated with high costs and difficulties
in replicating real-life daylighting scenarios. Additionally, predictive models are better alternatives
to the commonly used split flux daylight factor method, which has been reported to be too simple
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to capture the complex nature of daylighting behavior, and thus results in inaccurate estimations
of daylight levels [40]. Figure 9 shows a schematic diagram illustrating how an indoor illuminance
predictive model, such as the ones developed here, could be used to predict illuminance distribution in
the early stages of building design.
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5.2. Potential Applications of Data-Driven Models in Automated Daylight Control Systems

Properly trained indoor illuminance predictive models can be employed in daylighting control
systems. Current methods used in, for example, the control of motorized blinds and artificial lighting,
utilize open-loop methods and closed-loop methods [41]. An open-loop control system is designed
with a single sensor located on the outside or window area of an indoor space. The sensor sends
signals to the controller, prompting the controller to automatically adjust blinds or artificial lighting
depending on the levels of illumination available outside. This kind of control system, however, fails
to account for the levels of lighting already available in indoor spaces (i.e., from electric lighting)
and is thus likely to allow an influx of light, causing visual glare. To address the shortcomings of
open-loop systems, closed-loop systems are designed with two sensors: an indoor and an outdoor
sensor. The outdoor sensor sends signals to the controller regarding the amount of illumination
available outside. At the same time, the controller receives signals from the indoor sensor regarding the
desired amount of illumination indoors (e.g., based on the type of visual task at hand or the amount
of lighting available from artificial light sources). Upon receiving the signals from the outdoor and
indoor sensors, the controller compares the two signals and adjusts the blinds or artificial lighting
to provide the desired amount of illuminance levels indoors. While these two methods possess
individual advantages, as discussed by Mukherjee [41], the integration of well-trained predictive
models in daylighting control systems offers an alternative way to control daylighting systems using
few sensors. Figure 10 is a schematic diagram illustrating how a daylighting predictive model could
be integrated into a control system. In the theoretical system below, a single outdoor sensor sends
signals to the controller regarding outdoor conditions. The controller feeds the received information
into a pre-trained indoor illuminance predictive model, which subsequently determines or predicts the
amount of indoor illuminance likely to be available depending on the status of outdoor conditions
(i.e., inputs from the controller) at a given moment. The predicted indoor illuminance value is then
passed back to the controller, which goes through a series of decision loops and adjusts the blinds
system accordingly.
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5.3. Potential Applications in Data-Driven Models in the Preemptive Control of Daylighting

We also developed LSTM models that forecast indoor luminance levels at a particular future
time, t, using patterns learned from past data values (e.g., the previous 1 h) of indoor illuminance.
Currently, two studies have attempted to forecast indoor illuminance from a time-series modeling
approach. Kurian et al. [16], using simulated data, demonstrated how neural fuzzy inference systems
(NFISs) algorithms can be used to forecast indoor illuminance at a particular future time, allowing
easy integration of daylighting schemes into buildings. Similarly, Waballah et al. [15] compared four
time-series algorithms in the prediction of indoor illuminance levels at a particular future time using
field measurements from a light pipe system. However, ANFIS models are based on “IF-THEN” rules
usually dictated by experts based on a specific set of data, and are thus unable to learn continuously [40].
In addition, in conventional time-series models such as SARIMA and ARIMA, the gradient tends to
dominate future weight adaptation or get lost over time, which can affect the accuracy of the forecasted
values [42]. To address the shortcoming of traditional time-series modeling, LSTM algorithms were
developed. LSTM models have an extended memory and can remember past information for longer
periods than traditional time-series models [43]. As such, LSTM models are better suited in attempts
to forecast future indoor illuminance distribution levels.

5.4. Optimum Machine Learning Algorithms for the Prediction of Indoor Illuminance Levels

Another contribution of our study deals with optimum algorithms for predicting indoor
illuminances. There are many algorithms that can be used to predict daylighting behavior, and they
differ in their predictive capabilities. Decisions regarding which algorithms to use must consider
several factors such as ease of training the models, prediction time, and computational load. Previous
studies have mainly relied on artificial neural network (ANN) algorithms to predict indoor daylighting
illuminances [9,12,13]. Decision trees [13] and support vector machines [14] have also been used to
study daylight behavior. We compared four machine learning algorithms that are commonly used in
other areas of building design and identified the optimum algorithm for daylighting predictions. Our
results showed that the DNN model outperformed the other three models (see Section 4.3). Our results
differ from the results of Ahmed et al. [13], who reported better prediction performance of indoor
daylight illuminances by RF algorithms than ANN algorithms.
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5.5. Limitations and Future Research

The current study faced certain limitations. The main limitation was related to the nature of the
data used to train and validate the developed models. We used data simulated using a Radiance-based
daylight simulation engine. This is because designing for daylighting performance is a complicated
task. It requires a thorough consideration of multiple factors, including building factors such as
WWR and wall reflectance, weather factors such as solar irradiation, and time-related factors such as
time of the day and season. It is unlikely to obtain such diverse data using real data from existing
buildings. Using simulations, therefore, allows for the manipulation of different elements (e.g., WWR)
and enables the developed models to be trained on a wide range of influential factors. However,
despite the difficulties associated with obtaining daylighting data from real buildings, data from real
buildings (e.g., buildings with different configurations) are likely to provide more accurate models
than simulated data. Therefore, future studies should develop indoor illuminance-predictive models
trained using real field data from multiple buildings with different design configurations. Furthermore,
the current study considered daylight behavior in a square building of 10 m × 10 m × 2.7 m, which
is not necessarily a general representative of many built spaces despite being utilized in previous
daylight studies [9]. Future studies must attempt to establish a prototype model that can be used for
daylight studies.

Secondly, due to limited computational capacity, we used manual splitting techniques to obtain two
datasets: training and validation datasets. For similar reasons (i.e., limited computational capacities),
we also used manual tuning to identify the best parameter combinations that would result in optimum
models. Future studies, especially those attempting to develop virtual sensors for actual deployment in
daylighting control schemes, should employ advanced optimization techniques (e.g., cross-validation
method and Bayesian processes) to improve the accuracy and general performance of the ML-based
daylight models.

The third limitation deals with how most machine learning models work in general. For example,
unlike decision tree algorithms, which are transparent, deep learning models are opaque (i.e., black-box
models), and it is therefore nearly impossible to determine how they make certain decisions.
Consequently, it is difficult to determine cause–effect relationships among variables from such models.
However, current efforts in machine learning research have made significant strides in developing
methods for the extraction of causal relationships from machine learning models. For example, Athey
and Imbens [43] propose diverse tuning techniques that can be used in machine learning algorithms to
solve causal relationship tasks.

6. Conclusions

In this study, we developed five machine learning algorithms that predict the distribution of
indoor daylight illuminances. All developed models, except for the GLM, were capable of predicting
indoor illuminance levels with high accuracy (R2 value above 0.9). As such, we demonstrated that
machine learning algorithms could be used to accurately predict the distribution of indoor illuminance.
These kinds of models offer considerable benefits in terms of cost, time, and ease of application to
architects in the process of estimating daylight performance in the early stages of building design.
In addition, machine learning-based predictive models can be used in building control systems for
automated blinds and artificial lighting to improve energy efficiency and visual comfort in indoor
environments. However, the current study faced certain limitations particularly in terms of the daylight
data used in training and validating the developed models (obtained from simulated experiments).
Future studies should endeavor to assess the application of ML algorithms to model indoor daylight
illuminances using datasets from actual buildings rather than those obtained from simulation tools.
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