
sustainability

Article

Power Grid Simulation Testbed for Transactive
Energy Management Systems

Ozgur Ozmen 1,* , James Nutaro 1, Michael Starke 2, Jeffrey Munk 3, Larry Roberts 1,
Xiao Kou 4 , Piljae Im 3, Jin Dong 3, Fangxing Li 4, Teja Kuruganti 1 and Helia Zandi 1

1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
nutarojj@ornl.gov (J.N.); lar@cynandlar.com (L.R.); kurugantipv@ornl.gov (T.K.); zandih@ornl.gov (H.Z.)

2 Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
starkemr@ornl.gov

3 Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
munkjd@ornl.gov (J.M.); imp1@ornl.gov (P.I.); dongj@ornl.gov (J.D.)

4 Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA;
xkou1@vols.utk.edu (X.K.); fli6@utk.edu (F.L.)

* Correspondence: ozmeno@ornl.gov

Received: 10 April 2020; Accepted: 21 May 2020; Published: 28 May 2020
����������
�������

Abstract: To effectively engage demand-side and distributed energy resources (DERs) for dynamically
maintaining the electric power balance, the challenges of controlling and coordinating building
equipment and DERs on a large scale must be overcome. Although several control techniques have
been proposed in the literature, a significant obstacle to applying these techniques in practice is
having access to an effective testing platform. Performing tests at scale using real equipment is
impractical, so simulation offers the only viable route to developmental testing at scales of practical
interest. Existing power-grid testbeds are unable to model individual residential end-use devices for
developing detailed control formulations for responsive loads and DERs. Furthermore, they cannot
simulate the control and communications at subminute timescales. To address these issues, this paper
presents a novel power-grid simulation testbed for transactive energy management systems. Detailed
models of primary home appliances (e.g., heating and cooling systems, water heaters, photovoltaic
panels, energy storage systems) are provided to simulate realistic load behaviors in response to
environmental parameters and control commands. The proposed testbed incorporates software as
it will be deployed, and enables deployable software to interact with various building equipment
models for end-to-end performance evaluation at scale.

Keywords: demand response; distributed energy resources; simulation-based software testbed;
transactive control; transactive energy

1. Introduction

The development of embedded software has long benefitted from extensive support by simulation.
The central feature of simulation technology in that domain is the ability to simulate the computer
hardware on which the software runs, and to position the computer hardware model within a
simulated world; see, e.g., [1–4] and the industry oriented overview by Zeeshan Anwar [5]. However,
the commercial offerings and literature are extensive. Indeed, crucial stages in the development and
testing of a software system may be completed before hardware is available. Testing is greatly facilitated
by being able to execute the operational software stack—including device drivers, operating system,
and application—on computer hardware models that run faster than real-time. In other environments,
where detailed physical processes must be simulated to stimulate the software system, the ability to

Sustainability 2020, 12, 4402; doi:10.3390/su12114402 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-5806-0116
https://orcid.org/0000-0002-9163-8805
https://orcid.org/0000-0003-3966-7454
http://dx.doi.org/10.3390/su12114402
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/12/11/4402?type=check_update&version=2


Sustainability 2020, 12, 4402 2 of 19

run fielded software stacks in a slower than real-time test is indispensable for ensuring high quality
software. More important still, simulated hardware can be made available to every software developer
that needs it; hardware in the loop rigs and detailed, expensive real-time simulators—though still
essential for final checkout—cannot be economically supplied to every software developer for day to
day needs.

A distinguishing feature of most embedded computer systems is that they involve computing
hardware which is much less powerful than the engineering workstations on which simulations are
run. Consequently, detailed models of the target hardware in the target environment can be executed
on a real-world timescale that is commensurate with development and testing. This is often not true
of modern, transactive energy management systems. These complex software systems can involve
modern workstations interacting with a variety of web-based services executing on modern hardware.

Nonetheless, we contend that the cost-effective creation of very large scale transactive energy
management systems will involve the development of large, complex software systems that must be
subjected to testing at scale. This can be done cost-effectively if simulation tools, like those available
to embedded systems developers, are made available for the creators of transactive energy systems.
Here, we demonstrate this possibility by modifying the well-known QEMU virtualization tool so that
its simulated computing hardware is governed by a simulation clock rather than real-time. Our new
simulation capability is integrated with a large-scale model of the energy infrastructure to be controlled,
and this simulation is used to exercise the software under test as if it had been fielded.

In the past decade, significant research effort has been invested into demand response (DR) and
distributed energy resource DER projects and deployments. Early on, a substantial focus was placed
on the quantity and capability of DR and DER assets needed to provide ancillary services [6]. In 2014,
an extensive study was completed that evaluated the potential quantity and quality of DR and DERs,
their potential market value, and barriers to technology maturation [7–9]. Although the study noted
that the residential sector appeared to have significant resource potential, these resources were often
deemed cost-prohibitive to implement compared with larger providers, such as commercial buildings
and industrial loads. Specifically, the available equipment and communication infrastructure was
not sufficient to realize the DR potential in a cost-effective way. Hence, an approach for integrating
residential energy systems into broader system services at a sufficiently low cost is crucial to wide
scale implementation (Abrishambaf et al. [10] provides a detailed review of transactive energy (TE)
system architectures).

The changing landscape of computer technology and the development of the internet have led
to the interconnection of devices, typically called through the Internet of Things (IoT). Today, many
household devices such as heating, ventilation, and air conditioning (HVAC) [11–14] and electric
water heaters can interconnect to cloud-based services through residential Wi-Fi [15,16]. This has
provided a wealth of opportunities to observe, control, and optimize energy use in ways that were
previously impossible.

For example, IoT and new smart grid technologies now offer the ability to incorporate residential
loads into real-time energy markets operated via transactive energy (TE). As defined by the GridWise
Architecture Council, TE is “a system of economic and control mechanisms that allows the dynamic
balance of supply and demand across the entire electrical infrastructure using value as a key operational
parameter” [17]. Hence, a main component for performing TE is ensuring that a value term is shared
between parties for operation.

Liu et al. [18] discusses the challenges and opportunities of transitioning from wholesale electricity
markets to a TE system framework and explores the new responsibilities of various parties within
the electricity market. Hammerstrom et al. [19] presents state-of-art TE techniques and several
pilot projects with transactive control, including Pacific Northwest Gridwise Testbed [20], AEP Ohio
gridSmart project [21], and Pacific Northwest Smart Grid Demonstration [22]. In Hu et al. [23],
the effects of advanced home energy management systems (HEMS) on distribution networks are
studied. In Stecklein et al. [24], the architecture of a smart HEMS is presented with case studies that



Sustainability 2020, 12, 4402 3 of 19

show the benefits of HEMS. In Gkatzikis et al. [25], a system-level hierarchical structure for wide-area
energy management systems is proposed, and the benefits for introducing load aggregators to the
electricity market are discussed.

This previous research has led to implementations of TE management systems. However,
distribution systems and residential buildings vary by climate region and utility. Barring a full-scale
implementation of a proposed system, it is impossible to fully understand and anticipate the impact of
communication, control, and optimization schemes operating at a large scale in real-time. This makes
simulation an indispensable tool for creating practical TE systems.

The challenges for creating a scalable simulation testbed for TE systems include: (1) allowing users
to flexibly customize the system scale, architecture, and control mechanism for various distribution
networks; (2) establishing the detailed and realistic home appliance and electric devices models
to accurately simulate the behaviors of residential loads towards different scenarios and controls;
(3) enabling two-way communication among different agents to study multi-agent interactions;
and (4) hosting operational software in a non-real-time simulation environment. To address these
issues, a simulation platform was developed and is presented in this paper to compare the performances
of various designs and control schemes for TE systems. The main contribution of this paper is a
testbed that:

(1) supports the modeling of multiple houses by interacting with their individual HVAC, electric
water heater, energy storage, and photovoltaic (PV) systems and simulating various control
mechanisms for residential energy management systems;

(2) supports detailed models of responsive home appliances and DERs, such as HVAC, electric
water heaters, energy storage, PV, and electric vehicle (EV) stations, which provide increased
fidelity for comparing different environmental parameter and control command impacts;

(3) contains the complete, deployable software agents that constitute the TE system;
(4) evaluates the communication among interacting agents at subsecond timescales, thereby allowing

detailed assessments of the communication infrastructure that will be needed in the actual
deployment; and

(5) hosts operational software in a simulated computer system whose progress through time is not
linked to the progress of the wall clock allowing faster than real-time testing.

The latter testbed feature ensures that the computational complexity of models of buildings,
building equipment, communication systems, and other environmental aspects are not restricted by
a need to execute in real-time. A testbed without a real-time requirement also permits the use of
computational resources, particularly very large high-performance computing (HPC) systems, using
task schedulers that might be incompatible with the execution of a real-time simulation. This capability
for fielding the non-real-time execution of software distinguishes the proposed testbed from related
work, such as the Building Controls Virtual Testbed [26], the agent-based control in the loop simulator
described by Huang et al. [27], and similar systems to integrate building control software into a virtual
building (as seen in Huang et al. [27]). The proposed testbed can be conceived of as a controller in the
loop technology, similar in most respects to those cited but without the associated requirement for the
real-time execution of the simulation models.

The rest of this paper is organized as follows. Section 2 introduces existing work in platforms of
this nature. Section 3 discusses the methods and materials of the platform, including the quick emulator
(QEMU) computer system emulator, agent-based architecture for the testbed, and mathematical models
for responsive devices in each house. Section 4 presents the results on how this infrastructure has been
tested, and Section 5 concludes the paper with discussions.

2. Background

A primary goal of the proposed testbed is to allow software as it will be deployed to interact in
simulated time with simulated equipment. This capability is essential for assessing the performance,



Sustainability 2020, 12, 4402 4 of 19

robustness, and reliability of the actual software system when it is put into the field. Over the past
decade, considerable progress has been made toward simulating computer systems with sufficient
speed and fidelity to execute complete software stacks—comprising an operating system, device
drivers, and applications—within a larger, simulated environment.

Recent approaches to building these types of simulations have taken two approaches. One is to
modify a hypervisor, turning it into a simulation engine [1,28,29]. The other is to use a computer system
emulator with its simulated hardware advancing in step together with an overarching simulation
clock [2,3,30–32], which needs QEMU modification to achieve that [33]. The chief goal of these prior
efforts has been to avoid modeling the elements of a software system. For instance, the ability to use
real software in a simulation is essential for simulating attacks on computer systems or for building
software that will use hardware that is not yet available.

Prior work was followed using QEMU as the computer system emulator, extending it to interact
with time-managed simulations. The QEMU computer system simulator modifications can be used as
a component in a large, discrete event simulation. Within the overarching simulation, communication
networks can be simulated at various levels of fidelity and physics-based models of electrical networks,
building equipment, energy storage devices, and other relevant subsystems [34–37]. A central feature
of the proposed simulation is its use of the split-system method to combine models of discrete events
and physical processes. This technique preserves the desirable properties of numerical integrators
used to solve differential equations that describe physical equipment while retaining the temporal
precision and speed of the event-scheduling simulation [38]. The numerical technique employed in
this simulation tool has been discussed extensively in the aforementioned references. Hence, this work
focused on an approach for integrating the computer system into the discrete event simulation. This is
followed by a case study that demonstrates its application to testing, and an analysis of deployable,
large-scale, TE systems.

3. Materials and Methods

3.1. The QEMU Computer System Emulator

QEMU is a computer system emulator for executing real software on simulated hardware.
The simulated hardware includes memory, system buses, timers and clocks, and peripheral equipment [39,40],
such as disks, network cards, video cards, mice, keyboards, and serial ports. The simulation time for
these subsystems is managed with an event list called the virtual timer. This timer allows events to be
scheduled that will occur at some future value of the simulation clock. When the event time is reached,
QEMU stops executing the emulated computer and invokes an event handler. The execution of the
emulated computer resumes when the event handler returns. For this work, it is crucial that: (1) event
handlers manage the states of simulated timing hardware and (2) the emulated microprocessor can
be halted while an event handler is running. The virtual timer makes it possible to use QEMU as a
component in an overarching, constructive, discrete event simulation by leveraging a discrete event
simulation (ADEVS) [39,40].

The emulated microprocessor can execute instructions in one of two ways. In the first, sequences
of software instructions are broken into chunks called translation code blocks. These are passed to
a just-in-time compiler that translates the code blocks into instruction sequences for the computer
on which QEMU is executing. In the second, QEMU passes instructions to the Linux kernel virtual
machine (KVM) to directly execute on the available hardware.

The just-in-time compiler is enabled when QEMU operates in its icount mode. In this mode, time
within the emulator is advanced by a fixed (usually single) number of nanoseconds for every emulated
instruction that is executed. When an event handler is invoked, the emulated microprocessor stops
immediately, and because time is advanced by the execution of instructions, the actual instruction
execute rate does not deviate from the desired instruction execution rate. The icount mode can be
configured so that the simulation proceeds forward in time to the next event in the virtual timer’s



Sustainability 2020, 12, 4402 5 of 19

event list when the emulated computer has no work to do. Hence, when the emulated hardware is
idle, QEMU proceeds as ADEVS by making instantaneous jumps through virtual time (applications
can be found in Nutaro and Ozmen [39,40]). On the other hand, executing each instruction with the
emulated microprocessor requires numerous instructions on the physical processor on which the
just-in-time compiler executes. Hence, computationally active instruction sequences will tend to force
any simulation to run much slower than real-time.

KVM overcomes this problem using the physical microprocessor as the emulated microprocessor,
thereby skipping the translation step and enabling near real-time execution speeds. In this mode,
time advances at the wall-clock rate while the emulated microprocessor is processing instructions.
To synchronize time with an external model, the emulated microprocessor is halted while the
synchronization protocol is executing. A request to suspend the threads executing the guest instructions
is issued to the operating system. The delay between issuing this request and the operating system
acting upon it can cause the emulated microprocessor to overrun the intended synchronization time.
Thus, although this execution mode offers near real-time performance, it gives rise to the possibility of
intermittent synchronization errors.

The coordinated advancement of time within QEMU and the overarching simulator are illustrated
in the sequence diagram of Figure 1. Upon startup, the modified QEMU software attaches to a UNIX
domain socket, called the synchronization socket, that is created by the overarching simulator. QEMU
waits for the external model to write a time advance value to this socket. Upon receiving this time
advance, QEMU schedules a virtual timer event for that interval into the future. The emulator executes
instructions until that virtual timer event occurs. When the event occurs, QEMU halts the emulated
microprocessor, records the simulation time that has actually elapsed when execution halts, and writes
that time to the socket. In the icount mode, this time will match the scheduled event time; with KVM,
the elapsed time could exceed the scheduled event time. If this occurs, then the error is corrected by
scheduling a catch-up event in the overarching simulator for the reported overrun, and then allowing
QEMU to execute again after the catch-up event has occurred. This process repeats until the simulation
is terminated.

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 20 

processor on which the just-in-time compiler executes. Hence, computationally active instruction 
sequences will tend to force any simulation to run much slower than real-time. 

KVM overcomes this problem using the physical microprocessor as the emulated 
microprocessor, thereby skipping the translation step and enabling near real-time execution speeds. 
In this mode, time advances at the wall-clock rate while the emulated microprocessor is processing 
instructions. To synchronize time with an external model, the emulated microprocessor is halted while 
the synchronization protocol is executing. A request to suspend the threads executing the guest 
instructions is issued to the operating system. The delay between issuing this request and the 
operating system acting upon it can cause the emulated microprocessor to overrun the intended 
synchronization time. Thus, although this execution mode offers near real-time performance, it gives 
rise to the possibility of intermittent synchronization errors. 

The coordinated advancement of time within QEMU and the overarching simulator are 
illustrated in the sequence diagram of Figure 1. Upon startup, the modified QEMU software attaches 
to a UNIX domain socket, called the synchronization socket, that is created by the overarching 
simulator. QEMU waits for the external model to write a time advance value to this socket. Upon 
receiving this time advance, QEMU schedules a virtual timer event for that interval into the future. 
The emulator executes instructions until that virtual timer event occurs. When the event occurs, 
QEMU halts the emulated microprocessor, records the simulation time that has actually elapsed 
when execution halts, and writes that time to the socket. In the icount mode, this time will match the 
scheduled event time; with KVM, the elapsed time could exceed the scheduled event time. If this 
occurs, then the error is corrected by scheduling a catch-up event in the overarching simulator for the 
reported overrun, and then allowing QEMU to execute again after the catch-up event has occurred. 
This process repeats until the simulation is terminated. 

 
Figure 1. Time Synchronization between QEMU and the overarching simulator. 

The software executing on the emulated computer can interact with other models via an 
emulated serial port and network interface card. Communication between these QEMU device 
models and the discrete event simulator also occurs through a UNIX domain socket. During the 
execution of a time advance by QEMU, the simulated devices may write data to this socket. For 
network cards, these data are ethernet frames sent by the software executing on the emulated 
computer. For serial ports, these data are sequences of characters written to the serial device by the 
software running on the emulated computer. When QEMU completes its time advance, the 

Figure 1. Time Synchronization between QEMU and the overarching simulator.

The software executing on the emulated computer can interact with other models via an emulated
serial port and network interface card. Communication between these QEMU device models and the
discrete event simulator also occurs through a UNIX domain socket. During the execution of a time



Sustainability 2020, 12, 4402 6 of 19

advance by QEMU, the simulated devices may write data to this socket. For network cards, these data
are ethernet frames sent by the software executing on the emulated computer. For serial ports, these
data are sequences of characters written to the serial device by the software running on the emulated
computer. When QEMU completes its time advance, the overarching simulator reads these data from
the appropriate UNIX domain sockets, and it writes to these sockets any frames or characters that have
been transmitted to the emulated computer.

If large amounts of data are to be exchanged between QEMU and the overarching simulator,
then the buffers backing the UNIX domain sockets could become full and cause the sender to block
data. This will cause the simulation time to stop advancing if the intended recipient is waiting for a
time advance to complete before reading from the socket. This problem is eliminated by having the
overarching simulator dedicate a thread for reading and writing to each socket. The reading thread
loops on a blocking read of the socket. As messages become available, they are placed into a queue
from which the overarching simulator will extract them at the next synchronization point. The writing
thread accepts data to be sent to the QEMU device and queues this for transmission. It writes queued
messages to the socket using a blocking write. Thus, a thread is always available to extract data from
the buffer and to write data to the buffer while the simulator advances.

Timing errors in this synchronization protocol can result from two sources. One source is the timer
overrun that can occur when using KVM. The other source is the artificial delay of messages exchanged
with the emulated computer. With the proposed scheme, data are exchanged at the synchronization
points between QEMU and the overarching simulation. A necessary consequence of this approach
is that messages will experience a delay between zero- and single-time advance plus the overrun.
This error could be further exacerbated by real delays imposed by the UNIX domain sockets and the
scheduling of threads that monitor those sockets. If these real delays are longer than the real-time
required to execute a time advance, then the difference will cause an undesired delay in the simulation
equal to the number of time advances that elapse while I/O operations are completed. Practical
experience with the simulation tool suggests that these errors are negligible in the context of the control
applications of interest. This is partially because the simulations will run slower than real-time, which
causes the simulation models to perceive real-time activity, such as activity within the host operating
system kernel, as occurring at a highly accelerated rate. A detailed analysis of these errors is deferred
to future work.

3.2. Agent-Based Architecture

The proposed testbed was used to evaluate the robustness of a hierarchical, distributed, agent-based
control system that coordinates the interactions between appliances in several houses to create a
desired load shape. The proposed scalable TE simulation testbed is based on an agent-based execution
in an IoT architecture. The agent-based approach has been widely applied in applications that require
interactions and coordination among individuals within a community. The biggest advantage of an
agent-based control is that relatively simple behavioral rules for each agent can emerge from complex
system-level behaviors.

In the proposed architecture, the concept is to incorporate multiple decision-making entities
into a common framework. These entities include the residential building, aggregators, distribution
utility, and independent system operator (ISO), as shown in Figure 2. Today, in the existing utility
framework, the data pass through many layers of prediction and arbitration, with the physical flow of
information being bottom-up or top-down. The agent-based control follows this model while allowing
decision-making and evaluation to occur at each level. Figure 3 gives a high-level overview of how the
agents are organized in a hierarchical fashion.

The software that implements individual agents executes on top of the Ubuntu Linux operating
system. The agent software and its operating system are installed in the modified QEMU, which
allows the agents to interact in a simulated operational environment. A representational state transfer
(RESTful) application program interface (API) is used to exchange data between components. The API



Sustainability 2020, 12, 4402 7 of 19

is written in Python and uses the Flask web application framework. HTTP requests GET and POST are
used to transfer data in a JavaScript Object Notation format.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 20 

overarching simulator reads these data from the appropriate UNIX domain sockets, and it writes to 
these sockets any frames or characters that have been transmitted to the emulated computer. 

If large amounts of data are to be exchanged between QEMU and the overarching simulator, 
then the buffers backing the UNIX domain sockets could become full and cause the sender to block 
data. This will cause the simulation time to stop advancing if the intended recipient is waiting for a 
time advance to complete before reading from the socket. This problem is eliminated by having the 
overarching simulator dedicate a thread for reading and writing to each socket. The reading thread 
loops on a blocking read of the socket. As messages become available, they are placed into a queue 
from which the overarching simulator will extract them at the next synchronization point. The 
writing thread accepts data to be sent to the QEMU device and queues this for transmission. It writes 
queued messages to the socket using a blocking write. Thus, a thread is always available to extract 
data from the buffer and to write data to the buffer while the simulator advances. 

Timing errors in this synchronization protocol can result from two sources. One source is the 
timer overrun that can occur when using KVM. The other source is the artificial delay of messages 
exchanged with the emulated computer. With the proposed scheme, data are exchanged at the 
synchronization points between QEMU and the overarching simulation. A necessary consequence of 
this approach is that messages will experience a delay between zero- and single-time advance plus 
the overrun. This error could be further exacerbated by real delays imposed by the UNIX domain 
sockets and the scheduling of threads that monitor those sockets. If these real delays are longer than 
the real-time required to execute a time advance, then the difference will cause an undesired delay in 
the simulation equal to the number of time advances that elapse while I/O operations are completed. 
Practical experience with the simulation tool suggests that these errors are negligible in the context 
of the control applications of interest. This is partially because the simulations will run slower than 
real-time, which causes the simulation models to perceive real-time activity, such as activity within 
the host operating system kernel, as occurring at a highly accelerated rate. A detailed analysis of these 
errors is deferred to future work. 

3.2. Agent-Based Architecture 

The proposed testbed was used to evaluate the robustness of a hierarchical, distributed, agent-
based control system that coordinates the interactions between appliances in several houses to create 
a desired load shape. The proposed scalable TE simulation testbed is based on an agent-based 
execution in an IoT architecture. The agent-based approach has been widely applied in applications 
that require interactions and coordination among individuals within a community. The biggest 
advantage of an agent-based control is that relatively simple behavioral rules for each agent can 
emerge from complex system-level behaviors. 

In the proposed architecture, the concept is to incorporate multiple decision-making entities into 
a common framework. These entities include the residential building, aggregators, distribution 
utility, and independent system operator (ISO), as shown in Figure 2. Today, in the existing utility 
framework, the data pass through many layers of prediction and arbitration, with the physical flow 
of information being bottom-up or top-down. The agent-based control follows this model while 
allowing decision-making and evaluation to occur at each level. Figure 3 gives a high-level overview 
of how the agents are organized in a hierarchical fashion. 

 

Figure 2. System hierarchy.

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 20 

Figure 2. System hierarchy. 

 

Figure 3. Implementation of agents and RESTful API. 

The software that implements individual agents executes on top of the Ubuntu Linux operating 
system. The agent software and its operating system are installed in the modified QEMU, which 
allows the agents to interact in a simulated operational environment. A representational state transfer 
(RESTful) application program interface (API) is used to exchange data between components. The 
API is written in Python and uses the Flask web application framework. HTTP requests GET and 
POST are used to transfer data in a JavaScript Object Notation format. 

Each API has a historian provided by the PostgreSQL object-relational database system using 
the standard querying language (SQL). This provides a record of web-service activity that hosts API, 
and the logs are used for posttest review and analysis. Agents are also coded in Python, and they 
exchange information indirectly by writing to and reading from the APIs hosted by the various web 
services. 

The simulated environment assigns a unique IP addresses to each host. A simple model of a 
communications network is used to exchange ethernet frames generated by the simulated network 
cards using transmission control protocol/internet protocol within the QEMU computer system 
models. This arrangement allows the agents being tested to interact in simulated time with network 
services that are identical to those appearing in the anticipated operational environment. Crucially, 
this allows developers to evaluate the agent software via simulation in the exact form in which it will 
be deployed for operation. 

Table 1 lists the agents and their basic functionality. At each level, separate electrical models can 
be incorporated to link the electrical consumption of the residential buildings to the grid consumption 
(modeled as constant real and reactive power loads). Any number of utility and aggregator agents 
can exist to distribute building management as their numbers grow. 

Table 1. Stakeholder agents. 

Agent Purpose 

Figure 3. Implementation of agents and RESTful API.

Each API has a historian provided by the PostgreSQL object-relational database system using
the standard querying language (SQL). This provides a record of web-service activity that hosts
API, and the logs are used for posttest review and analysis. Agents are also coded in Python, and
they exchange information indirectly by writing to and reading from the APIs hosted by the various
web services.

The simulated environment assigns a unique IP addresses to each host. A simple model of a
communications network is used to exchange ethernet frames generated by the simulated network
cards using transmission control protocol/internet protocol within the QEMU computer system models.
This arrangement allows the agents being tested to interact in simulated time with network services
that are identical to those appearing in the anticipated operational environment. Crucially, this allows
developers to evaluate the agent software via simulation in the exact form in which it will be deployed
for operation.

Table 1 lists the agents and their basic functionality. At each level, separate electrical models can
be incorporated to link the electrical consumption of the residential buildings to the grid consumption
(modeled as constant real and reactive power loads). Any number of utility and aggregator agents can
exist to distribute building management as their numbers grow.



Sustainability 2020, 12, 4402 8 of 19

Table 1. Stakeholder agents.

Agent Purpose

ISO GETs data from ISO API, evaluates and POSTs a corresponding value signal to the ISO API
for the utility.

Utility GETs data from utility API evaluates and POSTs data to ISO API. Also, GETs data from the
ISO API, evaluates and POSTS corresponding value signal to utility API for the aggregator.

Aggregator
GETs data from aggregator API evaluates and POSTs data to utility API. Also, GETs data
from the utility API, evaluates and POSTs corresponding value signal to aggregator API for
the residential building.

At the residential level (or at each home), an additional framework of agents and APIs was created
to establish flexibility and fidelity of the residential models and controls, as presented in Figure 4.
At the building level, agents are present that extract data (value signal) from the aggregator, perform
optimization and decision-making, and distribute the resulting control commands to other agents who
interface with a set of APIs that control building equipment. Details of the agents are provided in
Table 2.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 

ISO 
GETs data from ISO API, evaluates and POSTs a 
corresponding value signal to the ISO API for the 
utility. 

Utility 

GETs data from utility API evaluates and POSTs data 
to ISO API. Also, GETs data from the ISO API, 
evaluates and POSTS corresponding value signal to 
utility API for the aggregator. 

Aggregator 

GETs data from aggregator API evaluates and POSTs 
data to utility API. Also, GETs data from the utility 
API, evaluates and POSTs corresponding value signal 
to aggregator API for the residential building. 

At the residential level (or at each home), an additional framework of agents and APIs was 
created to establish flexibility and fidelity of the residential models and controls, as presented in 
Figure 4. At the building level, agents are present that extract data (value signal) from the aggregator, 
perform optimization and decision-making, and distribute the resulting control commands to other 
agents who interface with a set of APIs that control building equipment. Details of the agents are 
provided in Table 2. 

 
Figure 4. Residential building level of APIs and AGENTS and links to models. 

Table 2. Residential building agents. 

Agent Purpose 

Interface 

Aggregator—GET value signal information from the aggregator (AGG) 
API and POSTs to the message bus. Extracts data from the message bus 
and POSTs to the AGG. 
HVAC, water heater, PV, energy storage (ES)—Extract control commands 
from the message bus and POST these to the load API and GET 
measurement and performance data from the APIs and send these to 
the message bus. 

MODELICA

HVAC
API

ES
API

PV
API

W ater Heater
API

AGENTAGENTAGENTAGENT

AGENT

AGENT

MO DEL 
OF 

DEVICEs

INTERFACE INTERFACE INTERFACE INTERFACE

INTERFACE

OPTIMIZATION

AGGREGATOR
API

AGENT
INTERFACE

W EATHER
API

Figure 4. Residential building level of APIs and AGENTS and links to models.

Table 2. Residential building agents.

Agent Purpose

Interface

Aggregator—GET value signal information from the aggregator (AGG) API and POSTs
to the message bus. Extracts data from the message bus and POSTs to the AGG.
HVAC, water heater, PV, energy storage (ES)—Extract control commands from the
message bus and POST these to the load API and GET measurement and performance
data from the APIs and send these to the message bus.
Weather—GET forecasted weather data (e.g., solar irradiance and temperature) and
send this information to the message bus.

Optimization
Extract data from a local message bus regarding the current states of the HVAC, electric
water heater, PV, and energy storage and weather forecast data; perform optimization
based on value signal from aggregator; and POST control decisions.



Sustainability 2020, 12, 4402 9 of 19

3.3. Models Utilized for Each Residential Home

Resources such as energy storage, PV, HVAC, and electric water heaters are modelled using the
MODELICA language and are incorporated into the discrete event simulation using the functional
mockup interface (FMI) standard [41]. The web servers that manage these modeled resources
communicate with them via a serial protocol. Data are exchanged between these models and the web
server software via a simulated serial port that is part of the modified QEMU.

3.4. Building Model

A simplified building model and HVAC performance curves are used to simulate the thermal
response of the building. The approach used to develop the simplified model is to (1) create a
representative EnergyPlus single house building model; (2) simulate the building thermal response
under constant and varying heating and cooling setpoint conditions; (3) use a portion of the EnergyPlus
simulation results to train the parameters of the simplified model; and (4) use the remaining simulation
results to validate the trained parameters. The original EnergyPlus model was developed to represent
a prototypical code-compliant house in Nashville, Tennessee [42]. The house is a two-story, 229 m2

home with three bedrooms and two bathrooms based on data collected by the US Census Bureau [43].
The model determined the average air temperature inside the home based on the resistor capacitor (RC)
model used by Cui et al. [44]. The simplified building model consists of a set of four ordinary differential
equations used to represent the average temperatures of the indoor air, internal mass (e.g., furniture
and internal walls), exterior walls, and attic temperatures (Equations (1)–(4)). The heat transfer through
the exterior walls and roof is driven by the sol-air temperature, which is a representative temperature
used in simple models to account for convective and radiative heat exchange in a single term [45].
To capture the effect of varying levels of solar radiation throughout the day, the incident solar radiation
is calculated for each face of the building, and an area-weighted average is used to calculate a single
sol-air temperature for a group of surfaces. Similarly, the area-weighted average of the solar radiation
on window surfaces is calculated as Qsolar and represents the solar gains through windows. Infiltration
into the homes is simulated using a linear model based on the outdoor wind speed [46].

cin
dTin

dt =
Twall−Tin
Rwall/2 + Tmass−Tin

Rmass
+ Tattic−Tin

Rattic
+ QIHL + AHVACQHVAC

+Ain f ilvwind(Tout − Tin),
(1)

Cwall
dTwall

dt
=

Tin − Twall
Rwall/2

+
Tsol,wall − Twall

Rwall/2
, (2)

Cwall
dTattic

dt
=

Tin − Tattic
Ratric

+
Tsol,roo f − Tattic

Rroo f
, (3)

Cmass
dTmass

dt
=

Tin − Tmass

Rmass
+ Qsolar, (4)

3.4.1. HVAC Model

The HVAC capacity and power consumption are modeled using bi-quadratic performance curves
that are a function of outdoor air temperature and indoor dry bulb temperature for heating and
indoor wet bulb temperature for cooling (Equations (5) and (6) with subscript x indicating dry bulb or
wet bulb temperature depending on the mode). These curves are the same format as those used in
EnergyPlus [47], and the coefficients used are from BEopt [48] for a single-stage, 14 SEER (seasonal
energy efficiency ratio), and 8.2 HSPF (heating seasonal performance factor) heat pump. The curves
return a capacity or energy input ratio (EIR) modifier that is multiplied with the rated capacity or
EIR to determine the capacity or EIR at the specified conditions. The rated values are based on the
Air-Conditioning, Heating, and Refrigeration Institute 210/240 test conditions for cooling [49]. The EIR



Sustainability 2020, 12, 4402 10 of 19

is defined as the ratio of energy consumed to the heating or cooling energy delivered, and is the inverse
of the coefficient of performance.

QMod = A1 + A2(Tout) + A3(Tout)
2 + A4(Tin,x) + A5(Tin,x)

2 + A6(Tout)(Tin,x), (5)

EIRMod = A7 + A8(Tout) + A9(Tout)
2 + A10(Tin,x) + A11(Tin,x)

2 + A12(Tout)(Tin,x), (6)

To create an arbitrary number of distinct building models, the first step taken was to create a
simplified model of a house calibrated to the results of EnergyPlus simulations. The model was run
for the first week in January and the first week in July with varied heating and cooling setpoints to
generate data suitable for training the unknown variables in the simplified building model. Particle
swarm optimization was used to minimize the sum of the root mean squared error of the indoor
temperature, the error fraction of the total heating/cooling, and the error fraction of the number of
heating/cooling cycles. The calibrated model parameters are revised randomly in Table 3 to generate
the desired number of realistic houses with different configurations.

Table 3. Range of values for generating 100 building models.

Parameter Lower Range Upper Range

Building R values −15% +15%
Building C values −15% +15%

Qrated −10% +40%
EIR −30% +10%

Hourly internal heat loads (IHLs) were generated with the generation of an indoor heat and
moisture tool [50], which provides stochastic loads based on underlying statistical distributions of
occupant behavior.

3.4.2. Water Heater Model and Hot Water Use

The water heater is modeled as a standard storage tank model with an electric resistance heating
element using a simple single-node model (Equation (7)). Stratification within the tank is not modeled.
The water heater is modeled with a single heating element of 4500 W. The R and C values for the tank
can be calculated based on the volume of the tank and measured insulation thickness. As with the
building models, the water heater models are varied to create new instances for each home. Since
there is not much variation in residential water heaters, the R and C values are calculated for the most
common sizes and efficiencies of water heaters, and these values are selected randomly for each home
(see Supplementary Material Table S1 for the overview of notations).

Ctank
dTtank

dt
=

(Tamb − Ttank)

Rtank
+ QWH +

(
ρ

.
Vcp
)
water

(Tcold − Ttank), (7)

Hot water consumption varies significantly between homes. To provide varied hot water draws
for the multiple homes, the Building America Domestic Hot Water Event Schedule Generator [51] was
used to generate randomized hot water use profiles based on statistical data.

3.4.3. Energy Storage Model

In developing the ES model, the primary concern is the energy entering and leaving the energy
storage system during the time interval. This is captured in the element state of charge (SOC),
which represents the percentage of energy within the energy storage system in relation to the capacity
of the energy storage medium. The battery model includes losses for charging and discharging and
steady-state losses for powering the required electronics when the battery storage controls are on.
The storage model also limits the maximum charging/discharging rate of the battery to the specified



Sustainability 2020, 12, 4402 11 of 19

limit, and maintains the SOC within prescribed limits to ensure battery functionality and reliability.
The charge and discharge effects on the energy storage system are given by Liu et al. [52]. Figure 5
shows the ES model diagram.

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 20 

represents the percentage of energy within the energy storage system in relation to the capacity of 
the energy storage medium. The battery model includes losses for charging and discharging and 
steady-state losses for powering the required electronics when the battery storage controls are on. 
The storage model also limits the maximum charging/discharging rate of the battery to the specified 
limit, and maintains the SOC within prescribed limits to ensure battery functionality and reliability. 
The charge and discharge effects on the energy storage system are given by Liu et al. [52]. Figure 5 
shows the ES model diagram. 

 
Figure 5. Energy storage system diagram. 

3.4.4. Photovoltaic Generation Model 

The produced PV generation for the model considers a simplified model that is directly 
correlated with the solar irradiance. In this case, the output is assumed to be driven by a maximum 
power point-tracking inverter [53]. The received solar irradiance is a function of the PV array angle 
and is reflected directly in the calculation. Figure 6 illustrates the PV model. 

 
Figure 6. PV model diagram. 

3.4.5. Coupled Building Model 

A building model represents the residential home dynamics that receive IHLs (QIHL in Equation 
(1)) and the weather file (weaDat) as inputs. The HVAC model also receives weather data as an input. 
The PV model is incorporated in the storage model representing the energy storage system. Its inputs 
are solar calculations and energy demands from the other devices. The solar model is implemented 
separately as a direct solar irradiation based on the tilted surface model (as seen in the directed tilted 
surface model in Wetter et al. [54]). The home model uses solar irradiance in solar heat gain through 
the windows and the average sol-air temperatures of the roof and wall surfaces. The solar-air 
temperature is the effective outdoor temperature that, in the absence of radiation heat transfer, 
provides the same heat transfer through a surface as the outdoor temperature alone and all radiation 
heat transfer sources. The sol-air temperature allows radiation exchange to be omitted from the 

Figure 5. Energy storage system diagram.

3.4.4. Photovoltaic Generation Model

The produced PV generation for the model considers a simplified model that is directly correlated
with the solar irradiance. In this case, the output is assumed to be driven by a maximum power
point-tracking inverter [53]. The received solar irradiance is a function of the PV array angle and is
reflected directly in the calculation. Figure 6 illustrates the PV model.

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 20 

represents the percentage of energy within the energy storage system in relation to the capacity of 
the energy storage medium. The battery model includes losses for charging and discharging and 
steady-state losses for powering the required electronics when the battery storage controls are on. 
The storage model also limits the maximum charging/discharging rate of the battery to the specified 
limit, and maintains the SOC within prescribed limits to ensure battery functionality and reliability. 
The charge and discharge effects on the energy storage system are given by Liu et al. [52]. Figure 5 
shows the ES model diagram. 

 
Figure 5. Energy storage system diagram. 

3.4.4. Photovoltaic Generation Model 

The produced PV generation for the model considers a simplified model that is directly 
correlated with the solar irradiance. In this case, the output is assumed to be driven by a maximum 
power point-tracking inverter [53]. The received solar irradiance is a function of the PV array angle 
and is reflected directly in the calculation. Figure 6 illustrates the PV model. 

 
Figure 6. PV model diagram. 

3.4.5. Coupled Building Model 

A building model represents the residential home dynamics that receive IHLs (QIHL in Equation 
(1)) and the weather file (weaDat) as inputs. The HVAC model also receives weather data as an input. 
The PV model is incorporated in the storage model representing the energy storage system. Its inputs 
are solar calculations and energy demands from the other devices. The solar model is implemented 
separately as a direct solar irradiation based on the tilted surface model (as seen in the directed tilted 
surface model in Wetter et al. [54]). The home model uses solar irradiance in solar heat gain through 
the windows and the average sol-air temperatures of the roof and wall surfaces. The solar-air 
temperature is the effective outdoor temperature that, in the absence of radiation heat transfer, 
provides the same heat transfer through a surface as the outdoor temperature alone and all radiation 
heat transfer sources. The sol-air temperature allows radiation exchange to be omitted from the 

Figure 6. PV model diagram.

3.4.5. Coupled Building Model

A building model represents the residential home dynamics that receive IHLs (QIHL in Equation (1))
and the weather file (weaDat) as inputs. The HVAC model also receives weather data as an input.
The PV model is incorporated in the storage model representing the energy storage system. Its inputs
are solar calculations and energy demands from the other devices. The solar model is implemented
separately as a direct solar irradiation based on the tilted surface model (as seen in the directed
tilted surface model in Wetter et al. [54]). The home model uses solar irradiance in solar heat gain
through the windows and the average sol-air temperatures of the roof and wall surfaces. The solar-air
temperature is the effective outdoor temperature that, in the absence of radiation heat transfer, provides



Sustainability 2020, 12, 4402 12 of 19

the same heat transfer through a surface as the outdoor temperature alone and all radiation heat
transfer sources. The sol-air temperature allows radiation exchange to be omitted from the building
model equations since the effects are captured in the solar-air temperature. The solar-air temperature
and solar irradiance are calculated for each surface, and an area-weighted average is used to calculate
the average solar-temperature and solar irradiance on a group of surfaces (i.e., roof and wall surfaces).
The water heater model represents the standard storage tank model with an on/off controller and
inputs hot water consumption (HotWater). The HVAC schedules and home features (Table 3) are also
inputted to the coupled model at initialization. Figure 7 represents the coupled model of all device
and physical submodels in the Dymola [55] User Interface. This model is exported as a functional
mockup unit and coupled with computer system emulators that run the whole TE management system
software using the overarching simulator.

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 20 

building model equations since the effects are captured in the solar-air temperature. The solar-air 
temperature and solar irradiance are calculated for each surface, and an area-weighted average is 
used to calculate the average solar-temperature and solar irradiance on a group of surfaces (i.e., roof 
and wall surfaces). The water heater model represents the standard storage tank model with an on/off 
controller and inputs hot water consumption (HotWater). The HVAC schedules and home features 
(Table 3) are also inputted to the coupled model at initialization. Figure 7 represents the coupled 
model of all device and physical submodels in the Dymola [55] User Interface. This model is exported 
as a functional mockup unit and coupled with computer system emulators that run the whole TE 
management system software using the overarching simulator. 

 

Figure 7. Simulation models of building dynamics and the devices on Dymola User Interface. 

3.5. Distributed Architecture 

The configuration of an example distributed control topology used on the testbed is illustrated 
in Figure 8. In decentralized structure, all the subsystems conduct local optimizations based on the 
information (e.g., price single or some value signal) published by the control center, regardless of the 
actions of other subsystems. Unlike the centralized control system, consumers in the decentralized 
control system do not have to release their cost function/constraint, which considerably protects 
consumer privacy and reduces the communication burden. Another advantage of the distributed 
structure is that the computational burden of the control center is significantly relieved. 

Figure 7. Simulation models of building dynamics and the devices on Dymola User Interface.

3.5. Distributed Architecture

The configuration of an example distributed control topology used on the testbed is illustrated
in Figure 8. In decentralized structure, all the subsystems conduct local optimizations based on the
information (e.g., price single or some value signal) published by the control center, regardless of the
actions of other subsystems. Unlike the centralized control system, consumers in the decentralized
control system do not have to release their cost function/constraint, which considerably protects
consumer privacy and reduces the communication burden. Another advantage of the distributed
structure is that the computational burden of the control center is significantly relieved.



Sustainability 2020, 12, 4402 13 of 19Sustainability 2020, 12, x FOR PEER REVIEW 13 of 20 

 

Figure 8. Configuration of distributed control topology. 

4. Results 

The testbed was deployed on a server with 128 physical cores and 256 GB of memory. The initial 
test setup included 100 homes that were orchestrated by four aggregators; the homes were equally 
distributed to aggregators. Aggregators were associated with two utilities, and there was one ISO. A 
virtual machine (VM) was associated with each component running its corresponding control 
software agents. Also, four VMs were associated with load, aggregator, utility, and ISO APIs. All the 
communication channels were replicated within the testbed based on Figures 3 and 4 using simulated 
network cards. During the test, a price signal and desired load shape were passed down from ISO to 
utility, then to aggregator, and then to homes. After the homes received the signal, each house 
optimized its resources and sent a load forecast for the next 24 h back to the aggregator and all the 
way up to the ISO. 

Verification and validation runs were conducted to assert that all components and APIs were 
communicating necessary information between the components. The verification and validation 
experiments also served as a testing practice that cleaned bugs from the code. Another benefit of the 
testbed was that it also served as a developer environment in which developers continued to revise 
the software agents for which the immediate outcomes could be observed and tested on all 
components with full functionality. This is important because, as mentioned, testing the whole 
software stack and their inter-functionality together requires physical computers with network 
connections. Even then, the scalable software performance test was impossible, since the software 
had to interact with real devices and the environmental conditions. The software system was 
seamlessly deployed, and the testbed could scale the number of buildings up at will, being only 
limited by the computational resources. 

The testbed was run for 24 h starting at midnight on 15 July 2013, inputting the real weather 
conditions from the Nashville, Tennessee area. A 24-h testing time was accomplished in about ~25 h 
of real-time. The testbed results were presented after a 1000-s warm-up period. The warm-up period 
was conducted to ensure that all initial authentication and network handshakes of the software 
agents and web APIs, as well as the simulation models, had been accomplished. These handshakes 
and the exchange of authentication steps were implemented to address the privacy and security of 
the TE system under test (see Zia et al. [56] and Hassan et al. [57] for more sophisticated security and 
privacy of TE systems). Figure 9a presents the setpoints decided by the optimizer and the evolution 
of room temperature over time for a single home. Tmin and Tmax values were acquired from the 
HVAC schedule that would be entered by users in real equipment, but were inputted to the 

Figure 8. Configuration of distributed control topology.

4. Results

The testbed was deployed on a server with 128 physical cores and 256 GB of memory. The initial
test setup included 100 homes that were orchestrated by four aggregators; the homes were equally
distributed to aggregators. Aggregators were associated with two utilities, and there was one ISO.
A virtual machine (VM) was associated with each component running its corresponding control
software agents. Also, four VMs were associated with load, aggregator, utility, and ISO APIs. All the
communication channels were replicated within the testbed based on Figures 3 and 4 using simulated
network cards. During the test, a price signal and desired load shape were passed down from ISO
to utility, then to aggregator, and then to homes. After the homes received the signal, each house
optimized its resources and sent a load forecast for the next 24 h back to the aggregator and all the way
up to the ISO.

Verification and validation runs were conducted to assert that all components and APIs were
communicating necessary information between the components. The verification and validation
experiments also served as a testing practice that cleaned bugs from the code. Another benefit
of the testbed was that it also served as a developer environment in which developers continued
to revise the software agents for which the immediate outcomes could be observed and tested
on all components with full functionality. This is important because, as mentioned, testing the
whole software stack and their inter-functionality together requires physical computers with network
connections. Even then, the scalable software performance test was impossible, since the software had
to interact with real devices and the environmental conditions. The software system was seamlessly
deployed, and the testbed could scale the number of buildings up at will, being only limited by the
computational resources.

The testbed was run for 24 h starting at midnight on 15 July 2013, inputting the real weather
conditions from the Nashville, Tennessee area. A 24-h testing time was accomplished in about ~25 h of
real-time. The testbed results were presented after a 1000-s warm-up period. The warm-up period
was conducted to ensure that all initial authentication and network handshakes of the software agents
and web APIs, as well as the simulation models, had been accomplished. These handshakes and
the exchange of authentication steps were implemented to address the privacy and security of the
TE system under test (see Zia et al. [56] and Hassan et al. [57] for more sophisticated security and
privacy of TE systems). Figure 9a presents the setpoints decided by the optimizer and the evolution of
room temperature over time for a single home. Tmin and Tmax values were acquired from the HVAC



Sustainability 2020, 12, 4402 14 of 19

schedule that would be entered by users in real equipment, but were inputted to the simulation in this
case. They serve as the upper and lower bounds of the comfort settings for cooling. Figure 9b also
shows the room temperatures for all homes representing various behavioral patterns.

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 20 

simulation in this case. They serve as the upper and lower bounds of the comfort settings for cooling. 
Figure 9b also shows the room temperatures for all homes representing various behavioral patterns. 

 
(a) 

 
(b) 

Figure 9. (a) Room temperature, setpoint, Tmin and variable Tmax for a single home over time; (b) 
Room Temperature over time for all 100 homes. 

As observed in Figure 9, the setpoint is orchestrated based on the HVAC schedules and the 
current room temperature over time. Similarly, Figure 10a,b present the hot water temperature in the 
water heater tank for a single home and the water temperatures in all homes, respectively. The hot 
water temperatures varied between 48 °C and 60 °C degrees, as decided by the water heater agent 
and the optimizer. 

(a) (b) 

Figure 10. (a) Hot water temperature and water heater setpoint over time for a single home; (b) Hot 
water temperatures over time for all 100 homes. 

Figure 11a presents the on/off decisions for the water heater relative to the hot water 
consumption for a single home. Regarding the energy storage, Figure 11b shows how the charge 
requests received from the optimizer interact with the SOC of the energy storage system for a 
home with positive charge and negative charge requests. 

Figure 9. (a) Room temperature, setpoint, Tmin and variable Tmax for a single home over time;
(b) Room Temperature over time for all 100 homes.

As observed in Figure 9, the setpoint is orchestrated based on the HVAC schedules and the current
room temperature over time. Similarly, Figure 10a,b present the hot water temperature in the water
heater tank for a single home and the water temperatures in all homes, respectively. The hot water
temperatures varied between 48 ◦C and 60 ◦C degrees, as decided by the water heater agent and
the optimizer.

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 20 

simulation in this case. They serve as the upper and lower bounds of the comfort settings for cooling. 
Figure 9b also shows the room temperatures for all homes representing various behavioral patterns. 

 
(a) 

 
(b) 

Figure 9. (a) Room temperature, setpoint, Tmin and variable Tmax for a single home over time; (b) 
Room Temperature over time for all 100 homes. 

As observed in Figure 9, the setpoint is orchestrated based on the HVAC schedules and the 
current room temperature over time. Similarly, Figure 10a,b present the hot water temperature in the 
water heater tank for a single home and the water temperatures in all homes, respectively. The hot 
water temperatures varied between 48 °C and 60 °C degrees, as decided by the water heater agent 
and the optimizer. 

(a) (b) 

Figure 10. (a) Hot water temperature and water heater setpoint over time for a single home; (b) Hot 
water temperatures over time for all 100 homes. 

Figure 11a presents the on/off decisions for the water heater relative to the hot water 
consumption for a single home. Regarding the energy storage, Figure 11b shows how the charge 
requests received from the optimizer interact with the SOC of the energy storage system for a 
home with positive charge and negative charge requests. 

Figure 10. (a) Hot water temperature and water heater setpoint over time for a single home; (b) Hot
water temperatures over time for all 100 homes.

Figure 11a presents the on/off decisions for the water heater relative to the hot water consumption
for a single home. Regarding the energy storage, Figure 11b shows how the charge requests received
from the optimizer interact with the SOC of the energy storage system for a home with positive charge
and negative charge requests.

PV models receive a capacity-reduce decision from the optimizer that coordinates the percentage
of the potential solar power that should be generated and used/sent to the grid. Figure 12a shows the
generated PV power and the capacity-reduce decisions for a single home.

Optimizers impose a predicted load shape to the homes based on the total demand, comfort
settings of the HVACs, and the price signal. Figure 12b shows the total load of 100 homes over time
against the price signal that was realized. The spikes in the load shape were caused by the hot water
consumption patterns that occurred during roughly the same timeframe for each home. When the
price signal was higher, the PV generation was prioritized for some homes and the total load was
decreased. Figure 10b also shows that hot water was preheated before the price signal went up, and
during midday, when the prices were up, so it was unlikely to turn the water heaters on.



Sustainability 2020, 12, 4402 15 of 19
Sustainability 2020, 12, x FOR PEER REVIEW 15 of 20 

 
(a) 

 
(b) 

Figure 11. (a) Hot water consumption over time in red (left y-axis) and water heater relay over time 
in blue (right y-axis); (b) Charge request over time in red (left y-axis) and SOC for the energy storage 
system in blue (right y-axis). 

PV models receive a capacity-reduce decision from the optimizer that coordinates the percentage 
of the potential solar power that should be generated and used/sent to the grid. Figure 12a shows the 
generated PV power and the capacity-reduce decisions for a single home. 

(a) (b) 
Figure 12. (a) Solar power generated by the PV in red (left y-axis) and capacity reduce decision that is 
received from the optimizer in blue (right y-axis) for a single home; (b) Total load over time in red 
(left y-axis) and the price signal over time in blue (right y-axis). 

Optimizers impose a predicted load shape to the homes based on the total demand, comfort 
settings of the HVACs, and the price signal. Figure 12b shows the total load of 100 homes over time 
against the price signal that was realized. The spikes in the load shape were caused by the hot 
water consumption patterns that occurred during roughly the same timeframe for each home. 
When the price signal was higher, the PV generation was prioritized for some homes and the total 
load was decreased. Figure 10b also shows that hot water was preheated before the price signal 
went up, and during midday, when the prices were up, so it was unlikely to turn the water heaters 
on. 

5. Discussion 

This paper presents the implementation and evaluation of a simulation testbed for supporting 
the design and development of TE management systems. The proposed testbed allows users to 
flexibly reconfigure the system network and model the behaviors of houses and appliances. 
Moreover, the proposed testbed improves previous studies by using the detailed models of 
responsive domestic appliances and DERs, which yields a more accurate response toward different 
environmental parameters and control commands. Furthermore, bidirectional communication 

Figure 11. (a) Hot water consumption over time in red (left y-axis) and water heater relay over time
in blue (right y-axis); (b) Charge request over time in red (left y-axis) and SOC for the energy storage
system in blue (right y-axis).

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 20 

 
(a) 

 
(b) 

Figure 11. (a) Hot water consumption over time in red (left y-axis) and water heater relay over time 
in blue (right y-axis); (b) Charge request over time in red (left y-axis) and SOC for the energy storage 
system in blue (right y-axis). 

PV models receive a capacity-reduce decision from the optimizer that coordinates the percentage 
of the potential solar power that should be generated and used/sent to the grid. Figure 12a shows the 
generated PV power and the capacity-reduce decisions for a single home. 

(a) (b) 
Figure 12. (a) Solar power generated by the PV in red (left y-axis) and capacity reduce decision that is 
received from the optimizer in blue (right y-axis) for a single home; (b) Total load over time in red 
(left y-axis) and the price signal over time in blue (right y-axis). 

Optimizers impose a predicted load shape to the homes based on the total demand, comfort 
settings of the HVACs, and the price signal. Figure 12b shows the total load of 100 homes over time 
against the price signal that was realized. The spikes in the load shape were caused by the hot 
water consumption patterns that occurred during roughly the same timeframe for each home. 
When the price signal was higher, the PV generation was prioritized for some homes and the total 
load was decreased. Figure 10b also shows that hot water was preheated before the price signal 
went up, and during midday, when the prices were up, so it was unlikely to turn the water heaters 
on. 

5. Discussion 

This paper presents the implementation and evaluation of a simulation testbed for supporting 
the design and development of TE management systems. The proposed testbed allows users to 
flexibly reconfigure the system network and model the behaviors of houses and appliances. 
Moreover, the proposed testbed improves previous studies by using the detailed models of 
responsive domestic appliances and DERs, which yields a more accurate response toward different 
environmental parameters and control commands. Furthermore, bidirectional communication 

Figure 12. (a) Solar power generated by the PV in red (left y-axis) and capacity reduce decision that is
received from the optimizer in blue (right y-axis) for a single home; (b) Total load over time in red (left
y-axis) and the price signal over time in blue (right y-axis).

5. Discussion

This paper presents the implementation and evaluation of a simulation testbed for supporting the
design and development of TE management systems. The proposed testbed allows users to flexibly
reconfigure the system network and model the behaviors of houses and appliances. Moreover, the
proposed testbed improves previous studies by using the detailed models of responsive domestic
appliances and DERs, which yields a more accurate response toward different environmental parameters
and control commands. Furthermore, bidirectional communication among agents are enabled so that
the information exchange behaviors and delays in TE management systems are also tested.

The demonstration and results presented herein show how the transactive software system as it
will be deployed interacts with coupled mathematical models of the physical environment and the
devices that are solved dynamically. This capability allows for the evaluation of communication among
interacting agents at subminute (and even subsecond) timescales using simulated network cards and
operating system network protocols, thereby allowing detailed assessments of the communication
infrastructure to be made that will be necessary for real-world deployment. Aside from communication
and control mechanism testing, the testbed also served as a verification tool that helped developers
remove bugs and perform unit tests on the functionality of the overall TE management system
after the individual software agents were revised. Considering the number of components in the
TE management system software developed in this work, this capability decreased the software
development cost significantly by providing a testbed that also serves as a development environment.



Sustainability 2020, 12, 4402 16 of 19

The proposed technology allowed high numbers of testing hours to be accumulated, which had an
additional positive effect on reliability (Nutaro and Ozmen [39] provides further discussions).

In conclusion, with the support of the proposed simulation testbed, researchers can not only test
the performance of various existing control mechanisms, but can also validate the assumptions for
future TE management system designs for scales of large neighborhoods and cities. The proposed
approach is being parallelized using HPC platforms. When the scalability of the testbed is achieved on
modern HPC systems, the number of compute cores available for the testbed will be on the order of
104. This will allow more sophisticated control mechanisms and optimization algorithms to be tested
at a larger scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/11/4402/s1,
(1). The nomenclature of the equations. (2). The information to gain access to the code repositories.

Author Contributions: O.O. and J.N. developed the testbed and conducted the analysis. J.M. and O.O. developed
the device and building models. M.S., H.Z., and L.R. developed the software agents and the cloud APIs. X.K.
and M.S. developed the optimization algorithms. P.I., J.D., F.L., and T.K. contributed to the model development.
All authors contributed significantly to the manuscript and the technical merits of this work. All authors have
read and agree to the published version of the manuscript.

Funding: Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

Acknowledgments: This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chiang, M.-C.; Yeh, T.-C.; Tseng, G.-F. A QEMU and SystemC-based cycle-accurate ISS for performance
estimation on SoC development. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2011, 30, 593–606.
[CrossRef]

2. Monton, M.; Portero, A.; Moreno, M.; Martinez, B.; Carrabina, J. Mixed SW/SystemC SoC Emulation
Framework. In 2007 IEEE International Symposium on Industrial Electronics; IEEE: Vigo, Spain, 2007.

3. Kurimoto, Y.; Fukutsuka, Y.; Taniguchi, I.; Tomiyama, H. A hardware/software cosimulator for
Network-on-Chip. In 2013 International SoC Design Conference (ISOCC); IEEE: Busan, South Korea, 2013.

4. Shankar, S.S.; Desai, K.; Dutta, S.; Chetwani, R.R.; Ravindra, M.; Bharadwaj, K.M. Mission critical software test
philosophy a SILS based approach in Indian Mars Orbiter Mission. In International Conference on Contemporary
Computing and Informatics; IEEE: Mysore, India, 2014; pp. 414–419.

5. Anwar, Z. Reusable Device Simulation Models for Embedded System Virtual Platforms. Available online:
https://www.design-reuse.com/articles/24201/embedded-system-virtual-platforms.html (accessed on 25 May
2020).

6. Ma, O.; Alkadi, N.; Cappers, P.; Denholm, P.; Dudley, J.; Goli, S.; Hummon, M.; Kiliccote, S.; MacDonald, J.;
Matson, N.; et al. Demand Response for Ancillary Services. IEEE Trans. Smart Grid 2013, 4, 1988–1995.
[CrossRef]

7. Olsen, D.J.; Matson, N.; Sohn, M.D.; Rose, C.; Dudley, J.; Goli, S.; Kiliccote, S.; Hummon, M.; Palchak, D.;
Denholm, P.; et al. Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and
Constraints for the Western Interconnection; Office of Scientific and Technical Information (OSTI): Oak Ridge,
TN, USA; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA; National Renewable Energy Lab
(NREL): Golden, CO, USA, 2013.

8. Ma, O.; Cheung, K. Demand Response and Energy Storage Integration Study; Office of Scientific and Technical
Information (OSTI): Oak Ridge, TN, USA; National Renewable Energy Lab (NREL): Golden, CO, USA, 2016.

http://www.mdpi.com/2071-1050/12/11/4402/s1
http://energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/10.1109/TCAD.2010.2095631
https://www.design-reuse.com/articles/24201/embedded-system-virtual-platforms.html
http://dx.doi.org/10.1109/TSG.2013.2258049


Sustainability 2020, 12, 4402 17 of 19

9. Alkadi, N.E.; Starke, M.R.; Ma, O. Assessment of Industrial Load for Demand Response across Western Interconnect;
Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA; Oak Ridge National Lab (ORNL):
Oak Ridge, TN, USA, 2013.

10. Abrishambaf, O.; Lezama, F.; Faria, P.; Vale, Z. Towards transactive energy systems: An analysis on current
trends. Energy Strategy Rev. 2019, 26, 100418. [CrossRef]

11. Nizami, M.S.H.; Haque, A.; Nguyen, P.H.; Hossain, M.J. On the application of Home Energy Management
Systems for power grid support. Energy 2019, 188, 116104. [CrossRef]

12. Kassai, M. Prediction of the HVAC energy demand and consumption of a single family house with different
calculation methods. Energy Procedia 2017, 112, 585–594. [CrossRef]

13. Silva, M.; Morais, H.; Vale, Z. An integrated approach for distributed energy resource short-term scheduling
in smart grids considering realistic power system simulation. Energy Convers. Manag. 2012, 64, 273–288.
[CrossRef]

14. Kassai, M.; Poleczky, L.; Al-Hyari, L.; Kajtar, L.; Nyers, J. Investigation of the energy recovery potentials in
ventilation systems in different climates. Facta Univ. Ser. Mech. Eng. 2018, 16, 203–217. [CrossRef]

15. Javed, A.; Larijani, H.; Ahmadinia, A.; Emmanuel, R.; Mannion, M.; Gibson, D. Design and Implementation
of a Cloud Enabled Random Neural Network-Based Decentralized Smart Controller With Intelligent Sensor
Nodes for HVAC. IEEE Internet Things J. 2017, 4, 393–403. [CrossRef]

16. Namdeo, D.S.; Pawar, V.R. IoT based smart home for power & security management. In 2017 International
Conference on Intelligent Computing and Control Systems (ICICCS); IEEE: Madurai, India, 2017.

17. Melton, R.B. Gridwise Transactive Energy Framework; Office of Scientific and Technical Information (OSTI):
Oak Ridge, TN, USA; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2013.

18. Liu, Z.; Wu, Q.; Huang, S.; Zhao, H. Transactive energy: A review of state of the art and implementation.
In 2017 IEEE Manchester PowerTech; IEEE: Madurai, India, 2017.

19. Hammerstrom, D.J.; Ambrosio, R.; Carlon, T.A.; DeSteese, J.G.; Horst, G.R.; Kajfasz, R.; Kiesling, L.L.;
Michie, P.; Pratt, R.G.; Yao, M.; et al. Pacific Northwest GridWise? Testbed Demonstration Projects; Part I.
Olympic Peninsula Project; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA; Pacific
Northwest National Lab (PNNL): Richland, WA, USA, 2008.

20. Thomas, P.R.; Walker, T.J. Demonstration of Community Energy Storage fleet for load leveling, reactive
power compensation, and reliability improvement. In 2012 IEEE Power and Energy Society General Meeting;
IEEE: San Diego, CA, USA, 2012.

21. Agalgaonkar, Y.P.; Hammerstrom, D.J. Evaluation of Smart Grid Technologies Employed for System Reliability
Improvement: Pacific Northwest Smart Grid Demonstration Experience. IEEE Power Energy Technol. Syst. J.
2017, 4, 24–31. [CrossRef]

22. Pratt, A.; Krishnamurthy, D.; Ruth, M.; Wu, H.; Lunacek, M.; Vaynshenk, P. Transactive Home Energy
Management Systems: The Impact of Their Proliferation on the Electric Grid. IEEE Electrif. Mag. 2016, 4,
8–14. [CrossRef]

23. Hu, Q.; Li, F. Hardware Design of Smart Home Energy Management System With Dynamic Price Response.
IEEE Trans. Smart Grid 2013, 4, 1878–1887. [CrossRef]

24. Stecklein, J.M.; Dabney, J.; Dick, B.; Haskins, B.; Lovell, R.; Moroney, G. Error cost escalation through the
project life cycle. In Proceedings of the 14th Annual International Symposium, Toulouse, France, 19–24 June
2004.

25. Gkatzikis, L.; Koutsopoulos, I.; Salonidis, T. The role of aggregators in smart grid demand response markets.
IEEE J. Sel. Areas Commun. 2013, 31, 1247–1257. [CrossRef]

26. Wen, Y.-J. Rapid-Prototyping Control Implementation Using the Building Controls Virtual Test Bed; Philips Res.
North Amer.: Briarcliff Manor, NY, USA, 2011.

27. Huang, S.; Wang, W.; Brambley, M.R.; Goyal, S.; Zuo, W. An agent-based hardware-in-the-loop simulation
framework for building controls. Energy Build. 2018, 181, 26–37. [CrossRef]

28. Gupta, D.; Vishwanath, K.V.; McNett, M.; Vahdat, A.; Yocum, K.; Snoeren, A.; Voelker, G.M. DieCast.
ACM Trans. Comput. Syst. 2011, 29, 1–48. [CrossRef]

29. Yoginath, S.B.; Perumalla, K.S.; Henz, B.J. Virtual machine-based simulation platform for mobile ad-hoc
network-based cyber infrastructure. J. Def. Model. Simul. Appl. Methodol. Technol. 2015, 12, 439–456.
[CrossRef]

30. Qemu, The Fast Processor Emulator. Available online: http://www.qemu.org (accessed on 25 May 2020).

http://dx.doi.org/10.1016/j.esr.2019.100418
http://dx.doi.org/10.1016/j.energy.2019.116104
http://dx.doi.org/10.1016/j.egypro.2017.03.1121
http://dx.doi.org/10.1016/j.enconman.2012.04.021
http://dx.doi.org/10.22190/FUME180403017K
http://dx.doi.org/10.1109/JIOT.2016.2627403
http://dx.doi.org/10.1109/JPETS.2017.2683502
http://dx.doi.org/10.1109/MELE.2016.2614188
http://dx.doi.org/10.1109/TSG.2013.2258181
http://dx.doi.org/10.1109/JSAC.2013.130708
http://dx.doi.org/10.1016/j.enbuild.2018.09.038
http://dx.doi.org/10.1145/1963559.1963560
http://dx.doi.org/10.1177/1548512915591050
http://www.qemu.org


Sustainability 2020, 12, 4402 18 of 19

31. Mueller, W. 1st International QEMU Users’ Forum; Citeseer: Grenoble, France, 2011.
32. Weingärtner, E.; Schmidt, F.; Heer, T.; Wehrle, K. Synchronized network emulation. ACM SIGMETRICS

Perform. Eval. Rev. 2008, 36, 58.
33. Nutaro, J.J. Building Software for Simulation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
34. Nutaro, J. An extension of the OpenModelica compiler for using Modelica models in a discrete event

simulation. Simulation 2014, 90, 1328–1345. [CrossRef]
35. Nutaro, J.; Kuruganti, P.T.; Miller, L.; Mullen, S.; Shankar, M. Integrated Hybrid-Simulation of Electric Power

and Communications Systems. In 2007 IEEE Power Engineering Society General Meeting; IEEE: Tampa, FL, USA,
2007.

36. Nutaro, J.; Kuruganti, P.T.; Protopopescu, V.; Shankar, M. The split system approach to managing time
in simulations of hybrid systems having continuous and discrete event components. Simulation 2011, 88,
281–298. [CrossRef]

37. Sydney, A.; Nutaro, J.; Scoglio, C.; Gruenbacher, D.; Schulz, N. Simulative Comparison of Multiprotocol
Label Switching and OpenFlow Network Technologies for Transmission Operations. IEEE Trans. Smart Grid
2013, 4, 763–770. [CrossRef]

38. Nutaro, J.A. Available online: https://web.ornl.gov/~{}nutarojj/adevs/ (accessed on 25 May 2020).
39. Nutaro, J.; Ozmen, O. Using Simulation to Quantify the Reliability of Control Software. In Proceedings of the

2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; pp. 3267–3276.
40. Ozmen, O.; Nutaro, J.J.; Sanyal, J.; Olama, M.M. Simulation-based Testing of Control Software; Oak Ridge

National Laboratory: Oak Ridge, TN, USA, 2017.
41. FMI, Functional Mock-up Interface. Available online: https://www.fmi-standard.org (accessed on

25 May 2020).
42. Winkler, J.; Munk, J.; Woods, J. Effect of occupant behavior and air-conditioner controls on humidity in

typical and high-efficiency homes. Energy Build. 2018, 165, 364–378. [CrossRef]
43. New Census Bureau Data Highlight Changes in Housing Values Through 2005. In PsycEXTRA Dataset;

American Psychological Association (APA): Worcester, MA, USA, 2006.
44. Cui, B.; Dong, J.; Munk, J.D.; Mao, N.; Kuruganti, T. A Simplified Regression Building Thermal Modelling Method

for Detached Two-Floor House in US; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2018.
45. ASHRAE Handbook—1981 Fundamentals. In Building Services Engineering Research and Technology;

SAGE Publications: Atlanta, GA, USA, 1981; p. 193.
46. EnergyPlus Engineering Reference: The Reference to Energyplus Calculations; US Department of Energy:

Washington, DC, USA, 2010.
47. EnergyPlus+ Version 8.7.0. Available online: https://energyplus.net (accessed on 25 May 2020).
48. BeOpt, Version 2.7. Available online: https://beopt.nrel.gov/home (accessed on 25 May 2020).
49. Standard, A. Performance rating of unitary air-conditioning & air-source heat pump equipment. AHRI Stand.

2008, 210, 240.
50. Pallin, S.; Boudreaux, P.; Jo, S.J.; Perez, M.; Albaugh, A. Simulations of Indoor Moisture Generation in U.S.

Homes. In Advances in Hygrothermal Performance of Building Envelopes: Materials, Systems and Simulations;
ASTM International: West Conshohocken, PA, USA, 2017; pp. 261–290.

51. Hendron, R.; Burch, J. Development of Standardized Domestic Hot Water Event Schedules for Residential
Buildings. In ASME 2007 Energy Sustainability Conference; ASMEDC: Long Beach, CA, USA, 2007.

52. Liu, G.; Starke, M.; Xiaohu, Z.; Tomsovic, K. A MILP-based distribution optimal power flow model for
microgrid operation. In 2016 IEEE Power and Energy Society General Meeting (PESGM); IEEE: Boston, MA,
USA, 2016.

53. Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in
Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [CrossRef]

54. Wetter, M.; Zuo, W.; Nouidui, T.S.; Pang, X. Modelica buildings library. J. Build. Perform. Simul. 2014, 7,
253–270. [CrossRef]

55. Brück, D.; Elmqvist, H.; Mattsson, S.E.; Olsson, H. Dymola for multi-engineering modeling and simulation.
In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany, 18–19 March 2002.

http://dx.doi.org/10.1177/0037549714554480
http://dx.doi.org/10.1177/0037549711401000
http://dx.doi.org/10.1109/TSG.2012.2227516
https://web.ornl.gov/~{}nutarojj/adevs/
https://www.fmi-standard.org
http://dx.doi.org/10.1016/j.enbuild.2018.01.032
https://energyplus.net
https://beopt.nrel.gov/home
http://dx.doi.org/10.1016/j.solener.2012.03.006
http://dx.doi.org/10.1080/19401493.2013.765506


Sustainability 2020, 12, 4402 19 of 19

56. Zia, M.F.; Benbouzid, M.; Elbouchikhi, E.; Muyeen, S.M.; Techato, K.; Guerrero, J.M. Microgrid Transactive
Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access 2020, 8,
19410–19432. [CrossRef]

57. Hassan, N.U.; Yuen, C.; Niyato, D. Blockchain Technologies for Smart Energy Systems: Fundamentals,
Challenges, and Solutions. IEEE Ind. Electron. Mag. 2019, 13, 106–118. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2020.2968402
http://dx.doi.org/10.1109/MIE.2019.2940335
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Materials and Methods 
	The QEMU Computer System Emulator 
	Agent-Based Architecture 
	Models Utilized for Each Residential Home 
	Building Model 
	HVAC Model 
	Water Heater Model and Hot Water Use 
	Energy Storage Model 
	Photovoltaic Generation Model 
	Coupled Building Model 

	Distributed Architecture 

	Results 
	Discussion 
	References

