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Abstract: Under increasingly low urban land resources, carrying out roof greening to exploit new
green space is a good strategy for sustainable development. Therefore, it is necessary to evaluate
the suitability of roof greening for buildings in cities. However, most current evaluation methods
are based on qualitative and conceptual research. In this paper, a methodological framework for
roof greening suitability evaluation is proposed based on the basic units of building roofs extracted
via deep learning technologies. The building, environmental and social criteria related to roof
greening are extracted using technologies such as deep learning, machine learning, remote sensing
(RS) methods and geographic information system (GIS) methods. The technique for order preference
by similarity to an ideal solution (TOPSIS) method is applied to quantify the suitability of each roof,
and Sobol sensitivity analysis of the score results is conducted. The experiment on Xiamen Island
shows that the final evaluation results are highly sensitive to the changes in weight of the green space
distance, population density and the air pollution level. This framework is helpful for the quantitative
and objective development of roof greening suitability evaluation.

Keywords: roof greening; suitability evaluation; remote sensing; GIS; sensitivity analysis

1. Introduction

In many large cities, due to rapid economic growth and the accelerating urbanization process,
the imbalance between the supply and demand of urban land has become increasingly prominent.
Urban green space construction is an important means of regulating the lack of ecological space in
high-density urban areas. However, in high-density urban areas, not only the urban land that can be
developed into green space is limited, but also the existing urban green space is separated by reinforced
concrete urban buildings, which cannot give full play to the ecological and climate benefits of urban
green space. Roof greening has emerged to further improve the livable ecological environment and to
increase the urban green area.

The benefits of roof greening can be divided into the following: environmental benefits, economic
benefits, ecological benefits and aesthetic benefits. First, in terms of the environment, roof greening
can effectively reduce surface runoff during rainstorms and reduce urban waterlogging because
the vegetation and substrate layer can store water, serving as an increasingly important part of
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water-sensitive cities [1]. References [2,3] show that green roofs have a good ability to reduce runoff and
retain storm water. From the perspective of urban heat islands, green roofs have evapotranspiration
and shading effects, therefore roof greening is an effective way for urban cooling [4–7]. With the
acceleration of urbanization, many large cities look like “concrete jungles” with dense buildings,
intricate road network and overpopulation. These “concrete jungles” generally suffer the heat island
effect, due to the large amount of high heat storage materials (such as buildings and roads) and
anthropogenic heat. Literature [8] shows green roof generate moderate cooling effect on pedestrian
level. Wind, green layout, greening coverage ratio, vegetation height and building height affect the
cooling performance. Leaves reduce the direct radiation from the sun, and evapotranspiration converts
absorbed solar heat into latent heat, which can lower surface temperatures, reduce the emission of
longwave radiation, and lower air temperature [6,9]. Roof greening can also capture dust particles
in the air. The research in [10] finds that green roofs can effectively reduce dust drops. At the same
time, many studies also prove that roof greening can reduce noise [11,12] and improve the quality
of rainwater [13]. Second, regarding economic benefits, green roofs can protect the material of the
roof and extend its service life [14]. During the air-conditioning season, the thermal benefits of roof
greening mentioned above cause the cooling of buildings, which reduces the energy costs and saves
the money for cooling [15–18]. In some commercial areas, roof greening provides leisure places for
people to rest and consume. With the proper selection of vegetables and management, roof greening
has also been proven to be helpful in increasing food production [19]. Third, regarding ecological
benefits, green roofs can be used as temporary dwelling places for birds or insects, providing a safe
place for some urban creatures to live. The study in [20] shows that green roofs can effectively reduce
the loss of habitat in urban areas. Finally, there are aesthetic benefits from roof greening. Looking
down on a greened roof from other surrounding buildings is evidently more relaxing than looking at a
concrete or asphalt roof, as green roofs offer a positive aesthetic response [21]. The above studies verify
many different benefits of roof greening.

Although there are many advantages of roof greening, comprehensive roof greening is difficult
because it needs to be adapted to local conditions for suitability evaluation. The core reason is local
government finance. If there is no difference in green roof retrofitting, some unsuitable roof greening
will result in financial waste. From the perspective of implementation, different roof conditions,
different roof materials, and even different locations of buildings in a city will cause differences in the
suitability of roof greening.

In some related studies on roof greening suitability evaluation, the study in [22] discusses the
green roof retrofit potential in Mongkok, Hong Kong, which is densely populated and has obvious heat
island effects. Conducting focus group discussions and developing simulation models, the research
focused on two variables (exposure to sunlight and roof space) to identify roofs with green retrofit
potential. However, due to the existence of subjective qualitative analysis, this method lacked a
quantitative description of the suitability of roof greening. Reference [23] proposes a method of
building a 3D model with light detection and ranging (LiDAR) data and very high-resolution (VHR)
remote sensing (RS) data in Lisbon, Portugal, to extract roofs with greening potential. While this
method only identifies the roofs that meet the requirements of roof greening, and does not distinguish
the suitability priority of these roofs. In addition, the data used in this literature includes buildings’
footprints obtained in 2006 and a remote sensing image acquired in 2010. There is a problem that the
buildings’ footprints are outdated and cannot match with the remote sensing image. A geographic
information system (GIS)-based method in [24] uses buildings’ footprints and a digital elevation
model (DEM) to calculate the slope of roofs to distinguish buildings that are suitable for roof greening.
The method considered four factors, including air quality, biodiversity, the urban thermal climate and
storm water retention, to measure the spatial difference in the ecological service of urban roof greening
and the priority level of roof greening. However, the resolution of the final overall evaluation unit
was 500 m, which is a relatively rough evaluation scale. Furthermore, in both [23] and [24], different
criteria are simply spatially overlaid by the GIS method with equal weights, which ignores the different
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weight values between different criteria. In the studies above, subjective evaluation is hidden behind
the simple spatial overlay analysis of green roof suitability evaluation by assuming that the weights of
each relative criterion are equal or meet a certain priori proportion. This rough evaluation method
relies heavily on the assumption of equal criteria weighting. For the development of urban planning
quantification research, how to objectively quantify the evaluation criteria, quantify the evaluation
process and the relationship between the evaluation results and their criteria are problems that urgently
need to be solved.

Since RS has the ability to quickly and widely acquire basic data from Earth observation images,
it can be used for surveys and evaluations to help decision makers and professionals in urban
planning [25,26]. In recent years, with the improvement in the spatial resolution of RS images,
the geometric shapes of buildings are clear in RS images with submeter resolution. The breakthrough
of deep learning in computer vision makes the large-scale and accurate building roof extraction
become a research hotspot [27–30], providing favorable data and technical support for subsequent
suitability assessment based on the roof level of the building. Deep learning is a kind of neural
network with multi-layer hidden layer. In this paper, it mainly refers to convolutional neural networks
(CNNs). Through multi-layer convolution operation, CNNs gradually transform the low-level feature
representation such as spectrum and texture into high-level feature representation to complete the
learning tasks such as complex image classification (Specifically refers to dividing the remote sensing
image into buildings and backgrounds in this paper). As powerful and robust feature learning
algorithms, CNNs are increasingly playing an important role in the tasks of target extraction in
RS images. CNNs have shined in the ImageNet Large Scale Visual Recognition Competition since
2012 [31–35]. Full convolutional neural networks (FCNs) [36], SegNet [37] and U-net [38] make
end-to-end CNNs popular for semantic segmentation. Applying FCNs to the field of RS image
recognition makes it possible to detect different types of objects on the ground and predict their shape,
such as buildings and road [39–41]. Using deep learning method to extract buildings from remote
sensing images is essentially a binary semantic segmentation problem, that is, using CNNs to divide
images into buildings and backgrounds to achieve the purpose of extracting buildings. In this paper,
D-LinkNet [41] is used to extract urban buildings, and its large receptive field can fully identify the
context information of building targets.

In this paper, the suitability evaluation criteria of roof greening are considered comprehensively,
which involves the building itself, the environment, and social and demographic aspects. First of all,
the roof patches of buildings are extracted accurately from the remote sensing image by using the deep
learning method, and the roof patches are exactly matched with the remote sensing image. Then we
calculate the evaluation criteria quantitatively based on RS, GIS and location-based Internet services
technologies. Next, the technique for order preference by similarity to an ideal solution (TOPSIS)
method [42] is used in this paper to consider multiple criteria to obtain comprehensive evaluation
scores. Monte Carlo simulation (MCS) [43] is used to simulate different weights and repeat TOPSIS
method many times to get stable evaluation results. As a well-known multicriteria decision-making
analysis method, TOPSIS has been applied in the evaluation of sustainable urban development [44],
mineral potential mapping [45], the quantification of the vulnerability of urban landscapes to land
use changes [46] and so on. Finally, this paper conducts uncertainty and sensitivity analyses on the
evaluation results and quantitatively analyzes the influence of the change in criteria weights on the
final evaluation results of roof greening suitability. This evaluation method is not only at the theoretical
level but also practical and computable. Multisource data with rich and fine-grained forms are used in
this paper to establish a reusable and interpretable evaluation method for roof greening suitability.

The research in this paper focuses on providing a rapid and large-scale quantitative evaluation
method for roof greening suitability. The main contributions of this paper are as follows:

• The semantic segmentation method based on deep learning is used to extract patches of building
roofs quickly and effectively, which solves the problem of mismatch between the image and the
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buildings’ footprints due to different acquisition time. Accurate roof patches lay the foundation
for the subsequent suitability evaluation at the building level.

• This paper comprehensively considers building criteria (roof slope, materials), environmental
criteria as well as social and demographic criteria, and expresses them reasonably and quantitatively.
Then TOPSIS method is used to realize multicriteria decision-making analysis and its results have
the advantages of being quantitative and accurate. Ranking the priority of buildings for roof
greening retrofit in the whole study area, changing the fuzzy and qualitative evaluation methods
in past urban planning applications.

• Further, this paper analyzes the uncertainty and sensitivity of the evaluation results, which is
helpful for urban planning designers to focus on criteria with higher weight sensitivity.

2. Materials and Methods

2.1. Study Area

Xiamen Island (24◦26′46” N, 118◦04′04” E) is located at the southeast part of Fujian Province,
China. It is 13.7 km long from south to north and 12.5 km wide from east to west, covering an area of
155.89 square kilometers, and it is the fourth largest island in Fujian Province. The island is divided
into the Siming and Huli districts, which have jurisdiction over 9 blocks and 5 blocks, respectively.
As the political, economic and cultural center of the whole city, Xiamen Island has a high population
density of more than 10,000 people per square kilometer, resulting in a low per capita green area.
The land use situation on Xiamen Island is tense. In the high population density area of the island,
the planning and implementation of ecological space extension must take full account of the status of
built-up areas. If ecological construction is carried out through simple land requisition, it requires
higher transaction costs.

Roof greening can expand new urban ecological space on the roofs of existing buildings, which
is a supplement to the existing green space system on urban surface without changing the status of
land use. Roof greening is an effective means of expanding the urban green area under the restrictions
posed by land resource shortages. As a tourist and garden city, Xiamen has higher requirements for
the ecological environment. The government’s policy promotion and advocacy have resulted in good
opportunities for the ecological construction and development of Xiamen.

2.2. Materials

The high-spatial-resolution (HSR) RS data for Xiamen Island come from Google Map and were
obtained in October 2018, with a resolution of 0.5 m (Figure 1). The data of land use and the number
of floors of each building come from the Xiamen Municipal Natural Resources and Planning Bureau.
Among them, the land use types are divided into 10 categories (residential area, public management
and public service area, commercial area, urban green space, water, industrial area, transportation area,
special function area, agricultural and forestry area and other types). The urban green space distribution
comes from the land use data and includes main park green space, production protection green space
and scenic area green space in the city, which can provide green space for recreation and relaxation.
The road congestion data related to urban air pollution sources come from the comprehensive analysis
of the 2018 annual road traffic operation report [47] issued by the traffic police detachment of the
Municipal Public Security Bureau and the traffic congestion index of intelligent transportation of Baidu
Map [48]. Another source of urban air pollution considered in this paper is the list of key air pollution
enterprises in 2018 released by the Xiamen Environmental Protection Bureau [49]. The precipitation
distribution data come from the Resource and Environment Data Cloud Platform of the Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences [50]. Landsat 8
data obtained on August 21, 2019 (clear weather in summer) for surface temperature inversion are
downloaded from the United States Geological Survey (USGS). The population density data come
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from the Easygo Heat Map, which are location-based service (LBS) products of a social network-based
Chinese technology company named Tencent.
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Figure 1. The research area of Xiamen Island.

2.3. Methods

The overall method and technology flow can be roughly divided into three parts: (1) the first
part is the extraction of building roofs based on deep learning, and the latest semantic segmentation
technology is used to extract the roofs of the research area quickly and accurately. (2) The second part
is building roof criteria calculation based on multisource heterogeneous urban spatial data, including
building criteria, urban environmental criteria, meteorological criteria, social population criteria and so
on. (3) The third part is quantitative suitability evaluation and the accurate mapping of roof greening
based on MCS and TOPSIS. On this basis, the uncertainty and sensitivity of the evaluation results are
analyzed. The whole research method mainly focuses on the rapid and large-scale extraction of urban
building roofs, the quantitative calculation of suitability criteria, multicriteria decision-making and
evaluation result analysis. The methodological framework is shown in Figure 2.
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Figure 2. The methodological framework of roof greening suitability evaluation.

2.3.1. Fast Extraction of Building Roofs

Rapid and accurate extraction of building roofs is the premise of roof greening suitability
evaluation. To overcome the disadvantage of artificially designed features in traditional methods
that ignore the contextual information in images [51–53], this paper used the semantic segmentation
in deep learning method to extract the roof profiles of buildings. The specific network structure is
D-LinkNet, which includes an encoder-decoder structure, a pretrained encoder and dilated convolution
for building roof extraction tasks [41]. First, 27 sample image patches (with the size of each patch
being 1000 × 1000 pixels) were selected uniformly throughout the study area. The sample area should
include all types of buildings in the study area to the greatest extent possible. One of the original
sample images and the corresponding label images are shown in Figure 3a,b. All buildings’ roofs in
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the sample patches needed to be labeled, and the rest were used as background. In this way, building
extraction can be regarded as a binary semantic segmentation task. After semantic segmentation,
many attempts were needed to choose the appropriate threshold for binarization and to vectorize the
building patches based on the results of binarization. The process of binarization and vectorization
could be performed using ArcGIS 10.2 software.
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Figure 3. Example of building samples.

2.3.2. Generation of Suitability Evaluation Criteria

In this paper, the evaluation criteria of roof greening were divided into decisive criteria and
non-decisive criteria. The decisive criteria mainly included the roof slope, roof materials and building
layers. These three decisive criteria had a one vote veto right to judge whether a roof can be green
retrofitted. On the basis that the three decisive criteria met the requirements of roof greening, the other
non-decisive criteria more comprehensively reflected the suitability differences in the green roof
retrofitting of different roofs.

(1) Rooftop slope

The roof slope is one of the decisive criteria for determining whether a roof can be greened or not.
In the two-dimensional image space, it is difficult to calculate the exact roof slope value. However,
in a submeter high-resolution image, the ridge in the middle of the pitched roof can be seen clearly,
as shown in Figure 4. Furthermore, sloped roofs are usually made of tiles and fiberglass-reinforced
plastic, which are obviously different from flat roofs with steel-reinforced concrete structures and
parapets. These are important semantic information that can be used to distinguish pitched roofs from
flat roofs. Therefore, different semantic segmentation models can be designed to distinguish pitched
roofs from flat roofs. The samples used in the aforementioned part on deep learning roof extraction
needed to be relabeled. The labeling method was the same; the difference was that only sloped roofs
were chosen as the foreground in this part, with others chosen as background.
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(2) Roof material extraction

Changes in image spectral characteristics can reflect the difference in roof materials. Thus,
unsuitable roof materials can be identified on the pixel scale using the supervised classification method
in machine learning. First, roof patches extracted from the deep learning method mentioned above
could be used as masks because only the roof areas need to be classified. Then, four different roof
materials (red tiles, blue tiles, fiberglass-reinforced plastic, cement) were extracted by the maximum
likelihood classification method [54,55] based on the pixel scale. Finally, the zonal statistics of each roof
patch were obtained with the constraint of the roof patch boundary. The material type constituting the
majority in the pixels in one roof patch was the material type of this roof patch.

(3) Annual rainfall distribution

Influenced by the topography, the precipitation in Xiamen increases steadily from southeast to
northwest, as is the case on Xiamen Island. To quantitatively describe the precipitation distribution on
Xiamen Island, annual precipitation data, provided by the Resource and Environment Data Cloud
Platform of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy
of Sciences, were used. The platform has collected annual precipitation data in China since 1980.
Based on daily observation data from more than 2400 meteorological stations across the country,
data on the spatial distribution of precipitation in kilometer grids are obtained through collation,
calculation and spatial interpolation, and the units are accurate to 0.1 mm [50]. In this paper, the latest
spatial interpolation data for precipitation in 2015 were used to quantitatively analyze the increasing
distribution of precipitation from southeast to northwest on Xiamen Island. The inverse distance
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weighted (IDW) [56] method was used to interpolate the precipitation data of the kilometer grids to
obtain more precise and more suitable scale of data for buildings.

(4) Spatialization of the demographic data

The ultimate purpose of roof greening is to bring people a more livable environment. Because
green roofs are close to the places where people work and live, one of their social effects is that
they can provide a green space to relieve pressure for employees who are under work pressure and
can provide a place for residents to walk, relax and communicate. Thus, the spatial distribution of
population is a factor that must be considered. Population data usually come from statistical yearbooks
or census data, which are collected by the census and step-by-step statistics in administrative regions.
However, statistical data cannot reflect the spatial distribution characteristics of the population on a
fine scale. Therefore, focusing on roof greening, we need to find a more reasonable way to achieve
spatialization of the population data. The traditional method, which is to spread the population data
over a certain grid size, is mainly divided into the population density gravity model [57,58], area
weight method [59], IDW algorithm [60,61], population distribution model under the influence of
different land use types [62] and so on. In recent years, the popularity of mobile phones has made
some LBSs a new method of acquiring the real-time population density. Easygo is a high-resolution (25
m) user density product of Tencent, one of the Internet enterprises with the largest number of users in
China. Its user location information comes from all Tencent platforms, including WeChat, QQ instant
messaging, Tencent microvideo, Tencent microblogging, and Tencent Map. In 2018, the monthly active
accounts of WeChat reached 1.098 billion, and QQ reached 807 million. The abundant user location
data make Tencent Easygo a reliable data source.

This paper collected Easygo data from August 27 to August 29, 2019, at 10:00 a.m. and 9:00 p.m.
(all workdays). The land use data from the Xiamen Municipal Natural Resources and Planning Bureau
could help identify residential and nonresidential areas on Xiamen Island. Then, the population kernel
density of nonresidential areas in the daytime and the population kernel density of residential areas at
night were estimated using ArcGIS 10.2. Finally, the daytime and nighttime kernel density maps were
divided into five levels. The buildings in nonresidential areas adopted the kernel density level in the
daytime, while the buildings in residential areas adopted the kernel density level at night.

(5) Extraction of the urban heat island effect

The urban heat island effect can lead to higher temperatures in urban areas than in surrounding
suburbs or rural areas. The composition and allocation of urban landscapes have significant impacts
on the heat island effect. Vegetation significantly reduces the heat island effect, while impervious
surfaces increase it [63]. Promoting roof greening in built-up areas can reduce the surface temperature
and improve thermal comfort [64]. To measure the distribution of the heat island effect on Xiamen
Island, an image of Landsat 8 of a sunny summer day in 2019 (the satellite passing time was 10 a.m.
local time) was selected, and a practical split-window algorithm was used in this paper to derive land
surface temperatures (LSTs) from the Thermal Infrared Sensor of Landsat 8 [65], which can obtain LST
products with an accuracy better than 1 Kelvin thermodynamic temperature. The parameters of the
algorithm were determined based on a modified split-window covariance-variance ratio method to
estimate atmospheric water vapor subranges [66]. Then, the difference between the urban and rural
surface temperatures was used to reflect the intensity of the heat island effect.

(6) Urban air quality

The main pollutants of urban air pollution are gaseous and particulate pollutants, which mainly
come from transportation vehicles, industry and district heating emissions [24]. Green roofs can absorb
air pollutants through deposition on vegetation [67–70]. Due to the low latitude of Xiamen Island,
no district heating is needed. Therefore, the sources of air pollutants mainly include automobile
exhaust emissions and industrial air emissions. A traffic count map was used to represent the annual
average daily traffic intensity of the urban road network in [24], and finally, the daily vehicle counts
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were divided into 100 m × 100 m spatial units by spatial overlay. Learning from this kind of experience,
this paper divided roads into three levels, urban congestion roads, main roads and general roads,
according to the road congestion situation in the peak period of weekdays based on the comprehensive
analysis of the official annual road traffic operation report [47] and Internet map intelligent traffic
data [48] for Xiamen City. Meanwhile, in light of the list of key air pollution enterprises in 2018 released
by the Xiamen Environmental Protection Bureau, the garbage incineration power plant located in
the urban area was also identified as an air pollution source. Then, a multilevel buffer based on the
distance to air pollution sources was established to describe the impact range and levels of air pollution
sources. Finally, the pollution index in the buffer zone was overlaid and reclassified into five levels.

(7) Functional attributes, floors and area of buildings

The number of building floors and land use status come from the official data of the Xiamen
Municipal Natural Resources and Planning Bureau. Specifically, the land use function attribute of each
building was acquired through spatial join with land use data. The area of each building roof was
obtained by calculating the area of the building roof patches. Both spatial join and area calculation
could be realized in ArcGIS 10.2.

2.3.3. Suitability Evaluation

TOPSIS is a common multicriteria decision-making analysis method that can integrate multiple
conflicting criteria into one evaluation score [71]. This method evaluates the suitability of each item
by comparing its distance to the positive ideal solution (PIS) and the negative ideal solution (NIS).
The TOPSIS method mainly includes the following steps:

(1) Create criteria matrix X with m rows (m indicates the number of building roofs) and n
columns (n indicates the number of criteria), where each element of the matrix X is xi, j,
i = 1, 2, · · · , m, j = 1, 2, · · · , n. Weight vector {w1, w2, · · · , wn} also be determined for n criteria.

(2) Construct weight normalization matrix Z, where element

zi, j =
xi, j√
m∑

i=1
x2

i, j

×w j (1)

(3) Divide n criteria into benefit criteria and cost criteria (all five non-decisive criteria in this paper
are benefit criteria), and determine the PIS and NIS.

(4) For each zi ∈ Z, calculate the Euclidean distance to PIS D+
i and NIS D−i and the final evaluation

results Ei, where z+j and z−j represent the j-th criterion in the PIS and NIS, respectively:

D+
i =

√√√ n∑
j=1

(
zi, j − z+j

)2
(2)

D−i =

√√√ n∑
j=1

(
zi, j − z−j

)2
(3)

Ei =
D−i

D+
i + D−i

(4)

In the TOPSIS method, the criteria weights are the only subjective input. To quantify the impact
of this subjectivity, the following experiment conducted uncertainty and sensitivity analysis on the
suitability evaluation results.
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2.3.4. Uncertainty and Sensitivity Analysis

The uncertainty of the criteria weights can propagate to the final evaluation result through the
TOPSIS method. In this part, MCS [43] was used to carry out the TOPSIS method multiple times to obtain
multiple evaluation scores and finally to obtain the stable ranking results of roof greening suitability
in the whole research area by voting. As the only subjective input in TOPSIS, the weight sampling
method is very important. In this paper, the weight sampling method was Saltelli’s sampling scheme,
which extends the Sobol sequence to reduce the error rate in the sensitivity index calculation [72,73].
The number of samples N generated in this experiment was set to 10,000, and the number of non-decisive
criteria n was 5. According to this sampling method, a N(n + 2) × n = 70000× 5 mixed matrix was
generated as the input of the MCS. MCS was performed 70,000 times, and 70,000 TOPSIS evaluation
score maps were obtained. The MCS results were applied to perform uncertainty and sensitivity
analysis. The Sobol method [74,75] is a global sensitivity analysis method that can quantify the impact
of each criteria weight on the final suitability evaluation score. The results of Sobol sensitivity analysis
include two indices: the first-order indices and the total-order index. The first-order indices are used
to measure the influence of a single input variable on the output variance. The total-order index can
measure the total contribution of an input variable to output variance, including the interaction with
other variables.

3. Results

3.1. Building Roof Extraction

The results of roof extraction are shown in Figure 5. The five randomly selected small areas are
shown in subfigures (b–f). The roofs of most buildings could be extracted accurately, which was the
premise of subsequent experiments and analyses. To quantitatively reflect the effect of roof extraction,
this paper used the intersection over union (IOU) and pixel accuracy (PA) based on a confusion matrix,
which are commonly used indicators in computer vision tasks, to evaluate the accuracy of the roof
extraction results based on deep learning. Specifically, the IOU was used to reflect the fitting degree
between the extracted roof patches and the actual roof patches. The confusion matrix, IOU and PA are
defined as follows (Table 1):

IOU =
A∩ B
A∪ B

(5)

PA =
TP

TP + FP
(6)

Table 1. Confusion matrix.

Actual Positive Actual Negative

Predicted positive true positive (TP) false positive (FP)
Predicted negative false negative (FN) true negative (TN)

Five small areas of 400 × 400 size were randomly selected in the whole island for accuracy
evaluation. The IOU of these test areas was 80.07%, and the PA was 92.95%. Accurate roof extraction
was the basis of subsequent experiments. A few errors of roof extraction caused by shadow and poor
image quality in some small areas were corrected manually.
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Figure 5. Building roof extraction results.

3.2. Extraction Results of Decisive Suitability Criteria

The decisive criteria to be extracted mainly include the slope and material of the roof. The extraction
results of the roof slope and material are shown in Figure 6. 2D data cannot accurately extract the
accurate slope value of roofs, but they can be used to judge whether a roof is a flat roof or a pitched
top through the semantic information of the image. In the whole island, about 5% of the building
roofs were randomly selected to verify the results of the slope and material extraction. Compared with
the true value obtained by visual interpretation, extraction results of roof slope and material showed
good recognition effect. Finally, as some roof structures covered the original roofs, the misclassification
caused by these roof coverings was eliminated by manual correction in the whole island. The roof slope
and materials were the decisive criteria for roof greening. Good accuracy could ensure the accuracy of
subsequent suitability judgment.
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Island; (b) and (c) original image and roof slope recognition results of corresponding subarea 1; (d) and
(e) original image and roof material recognition results of corresponding subarea 2.

3.3. Calculation Results of Non-Decisive Suitability Criteria

A total of 20,261 roofs were identified by deep learning (the buildings in the shantytown were
not considered in this paper because they were too dense and in disrepair), of which 11,153 met the
requirements of the decisive criteria for roof greening (a flat roof, cement material, the number of
building floors being less than or equal to 12). The number of roofs suitable for roof greening accounts
for 55.05% of the total number of roofs and 53.09% of the total roof area. Since municipal construction
and retrofitting are usually carried out in batches based on the budget and benefits, the difference in
the spatial distribution of the five non-decisive criteria leads to a roof greening suitability difference of
11,153 roofs that meet the conditions for roof greening. The calculation results of the five non-decisive
criteria are shown in Figure 7.
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Figure 7. The spatial distribution of 5 non-decisive criteria of suitability in the study area: (a) the
distribution of precipitation in the whole island; (b) the surface temperature distribution obtained by RS
thermal infrared band temperature inversion; (c) the classification of the impact scope of air pollution
sources. Levels 1–5 mean different severity degree of air pollution. The larger the number is, the more
serious the air pollution is; (d) the spatial distribution of urban green space; (e) the classification of
the population density distribution at 10 a.m. on weekdays. Levels 1–5 mean the classification of
population density. The larger the number is, the denser the population is; and (f) the classification of
the population density distribution at 9:00 p.m. on weekdays.
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The annual rainfall in the Xiamen area generally increases from southeast to northwest [76].
To quantitatively describe the distribution of precipitation, this paper interpolated the precipitation
data for 2015. The results show that the annual average precipitation on Xiamen Island changes
significantly, and the precipitation interpolation result is shown in Figure 7a.

The RS inversion results of the urban heat island effect are shown in Figure 7b. Overlay analysis
of LST product and high-resolution Google image can reveal the heat island distribution characteristics
of Xiamen Island. First, the surface temperature of the whole island ranges from 29.85 ◦C to 52.85 ◦C.
Second, the heat island effect is more serious in the northern part than in the southern part. The surface
temperature of the Dongping Mountains area in the south of the island is relatively low, and the heat
island effect of Gaoqi Airport in the north of the island is more serious. Third, other areas with serious
heat island effects include the wharfs in the northwest of the island, scattered shantytowns, industrial
parks dominated by factory buildings and large-scale transportation hubs such as railway stations.
The underlying surface of these places is usually a large area of buildings and a concrete or asphalt
road, having a large material heat capacity and can store a large amount of solar radiation.

The distribution of urban air pollution is shown in Figure 7c. The distance from pollution sources
directly affects the distribution of urban air pollution. A multilevel buffer zone was established,
and the final air pollution level was reclassified into five levels based on the congestion conditions
of urban roads and the location of the garbage incineration power plant. Air pollution is serious
along Xianyue Road, Hubin Middle Road, Hubin North Road, Hubin South Road, Hubin West
Road, Chenggong Avenue, Jinshan Road, Lianyue Road, and Lujiang Road and around the garbage
incineration power plant.

The distribution of urban green space is shown in Figure 7d. Here, urban green space refers to
green space that can provide people with leisure and recreation, mainly including park green space,
production protection green space and scenic area green space in the city. Based on the green space
distribution, the distance between each building and the nearest green space was calculated.

The population kernel density distribution mainly reflects population aggregation. The population
distribution data of 10:00 a.m. and 9:00 p.m. on weekdays were collected in this experiment. The data
of 10:00 a.m. were used to reflect the population aggregation of nonresidential areas, while the data of
9:00 p.m. were used to reflect the population aggregation of residential areas. In this experiment, first,
the land use attributes of buildings were obtained based on the land use data and could be divided
into nonresidential areas and residential areas. Then, the population density levels of buildings in
nonresidential areas and residential areas were respectively spatially joined with the population density
classification data of 10:00 a.m. and 9:00 p.m. Figure 7e,f show the population density distribution by
day and night, respectively. Compared with the Internet map, the population density in the daytime
and at night is significantly different in some industrial software parks and some commercial centers,
such as the Xiamen Software Park in the east of Xiamen Island and the surrounding areas of the Fuxing
International Center.

3.4. Suitability Evaluation and Sensitivity Analysis

The overall evaluation results of 20,261 roofs are shown in Figure 8a. The evaluation results of
11,153 roofs meeting the decisive criteria are shown in Figure 8b. For each roof that met the decisive
criteria, 70,000 MCSs generated 70,000 evaluation scores. For decision makers in urban planning,
the relative ranking value of the roof greening suitability of buildings has more significant meaning
than the absolute TOPSIS score. Therefore, the average ranking value of 70,000 sorting results of each
roof in the experiment was the final suitability ranking value. In this way, the suitability degree of roof
greening is quantitatively described, and its ranking value corresponds to the suitability degree of
roof greening.

It can be seen from Figure 8b that the buildings with high roof greening suitability are mainly
concentrated in the middle of Xiamen Island. Specifically, in Huli District, the following areas and
their surroundings have higher roof greening suitability: Lianfa Huamei space, Luling primary school,
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Wanda Plaza, Huli high-tech industry garden. In Siming District, high suitability buildings are
concentrated in south of Bailuzhou Park and near Longxiang road.

The Sobol sensitivity analysis results are shown in Figure 9a,b. The influence of the five non-decisive
criteria weights on the final evaluation results is clear at a glance, and the results quantitatively represent
the sensitivity of the variance of the evaluation results to the five weights.
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Figure 8. Suitability evaluation of roof greening on Xiamen Island: (a) including roofs that do not
meet the requirements of roof greening; (b) including only the roofs that meet the requirements of
roof greening.
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4. Discussion

4.1. Criteria Extraction and Analysis

In this paper, the influence criteria of roof greening are divided into two categories: decisive
criteria and non-decisive criteria. It is very important to select roofs that can be green retrofitted by
decisive criteria before the suitability evaluation, which is the premise of the subsequent suitability
evaluation. In the extraction of roof patches, slopes and materials, the selection of samples is very
important and must cover the whole research area evenly and cover all kinds of roofs to the greatest
extent possible to make the classifier more robust.

Five non-decisive criteria need to reflect the spatial difference of roof greening suitability of
buildings from different aspects. If the correlations between the selected criteria is significant, it means
that the criteria are not independent enough, which has an adverse impact on the subsequent sensitivity
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analysis. Therefore, the correlation analysis between the non-decisive criteria is indispensable.
As shown in Figure 10, the absolute values of the correlations between the five non-decisive criteria
are all lower than 0.5, which means no significant correlation. This shows that the five criteria are
independent in spatial distribution.
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4.2. Uncertainty and Sensitivity of the Evaluation Results

In the study area, 70,000 MCSs were carried out on all roofs that met the requirements of roof
greening. In the 70,000 scores for each roof, the statistical indicators of these scores could be calculated.
The maximum and minimum scores and the variance of each roof are shown in Figure 11a–c, respectively.
In Figure 11a, low-value areas need to be noted because when the maximum value of 70,000 simulations
of a building roof is small, this roof has consistently low-value scores. In contrast, in Figure 11b, when
the minimum value is large, this roof has consistently high-value scores. The variance of the simulation
scores is shown in Figure 11c. Comparing the three figures in Figure 11, we find that the maximum and
minimum scores of roofs with small variance usually belong to the high-score part or the low-score
part together. The large difference between the maximum and minimum values of a roof with large
variance indicates that the score of the roof is uncertain.

The Sobol method [72,73] aims to conduct global sensitivity analysis within the framework of
probability and to decompose the variance of the results into each input variable. This experiment
decomposes the variance of the final evaluation scores of roof greening suitability to the weights of
five non-decisive criteria. As shown in Figure 9a,b, both the first-order indices and the total-order
index have a similar performance. The sensitivity of the final TOPSIS scores to the weights of the five
criteria ranked in order from strong to weak is: green space distance, air quality, population density,
land surface temperature, precipitation. The results of the sensitivity analysis also correspond to
Figures 7a–f and 8b. Clearly, In the roofs that meet the requirements of green roof retrofitting, the top
ranked roofs show a significant positive correlation with the distribution of the air pollution level
and population density and a significant negative correlation with the distance to urban green space.
The results of the quantitative suitability evaluation indicate that each roof has a specific score and
ranking value, which are the basis for urban planners to carry out roof greening retrofitting in batches.
In addition, the sensitivity analysis of the evaluation results clearly suggests that planners should
introduce more empirical knowledge to determine the weights of the criteria that are more sensitive. It
should be noted that the results of sensitivity analysis are the relative sensitivity of five criteria in the
current study area. In different research areas, researchers consider different impact criteria, and the
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spatial distributions of criteria data are also different, so the results of relative sensitivity analysis
between criteria will be different. This is also in line with the idea that roof greening retrofit should
adapt to local conditions.
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4.3. Advantages of the Framework and Future Improvements

Compared with previous roof greening suitability evaluation methods, this framework is more
comprehensive from building roof extraction to the final quantitative suitability evaluation process.
Using state-of-the-art deep learning technology to extract roofs effectively reduces the workload
of manual roof extraction in the past. At the same time, the previous methods usually stop at the
subjective evaluation of suitability based on criteria. On the basis of criteria quantification, this paper
goes further and achieves a quantification of the evaluation results and conducts a sensitivity analysis
of the evaluation results.

Because of the limitations posed by the data sources, the roof slopes in this paper could be
distinguished only as flat roofs or pitched roofs, and accurate values could not be obtained. In fact,
some pitched roofs with small incline angles can also be used for roof greening retrofitting [23].
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Obtaining accurate roof slope values in the future will depend on the use of high precision LiDAR
data [23] or oblique photogrammetry [77,78] modeling technology.

4.4. The Influence of Buildings’ Property Rights on the Implementation of Roof Greening

In practical work, roof greening often meets implementation difficulty because of the buildings’
purposes and property rights [79]. Buildings with different property rights have different priorities for
roof greening retrofit. Priority order 1, the public or municipal administration buildings, whose property
owners are the government, should be given retrofit priority, because these buildings do not involve
too much interest disputes. Priority order 2, the buildings for industries, businesses, and offices
are usually owned by some companies or enterprises. For the roof greening retrofit of this type of
buildings, the government can give appropriate policy subsidies. Priority order 3, other types of
buildings including residences. These buildings belong to individuals or groups. The government
needs to strengthen the publicity of roof greening to increase the awareness and enthusiasm of citizens
to retrofit the roofs.

As the property information of the buildings are kept confidential and unavailable, we only
provide an idea for the implementation to comprehensively use the property right information and
the roof greening suitability evaluation results mentioned above. Firstly, according to the property
rights, the buildings are divided into different roof greening priority categories. Secondly, in each
category, considering the suitability evaluation result (Figure 8a), after excluding the buildings that are
not suitable for roof greening, constructors can implement roof retrofit in a certain proportion based on
the rank of roof greening suitability.

5. Conclusions

This paper presented a quantitative and reusable evaluation framework for roof greening
suitability evaluation. Divided into three parts, namely, building roof extraction, criteria calculation,
and suitability evaluation and sensitivity analysis, this framework formed a complete process from
the extraction of roof patches to the final analysis of the evaluation results. In the study area of
Xiamen Island, the evaluation scores of each roof were calculated by MCSs and the TOPSIS method
based on multisource spatial data such as RS data (HSR optical data, land satellite thermal infrared
data), Internet location data (thermal map for population density), meteorological data, and urban
road traffic data. These multisource data comprehensively described the influencing factors of the
differences in roof greening suitability. A total of 70,000 MCS scores helped to select stable, highly
suitable building roofs by voting and finally obtained the suitability ranking of all building roofs on
Xiamen Island. Subsequently, the Sobol method was used to perform a sensitivity analysis of the
MCS results. The experimental results showed that the changes in weight of the three criteria, namely,
the distance to green spaces, population density, and the air pollution level, had a relatively greater
impact on the final evaluation results. In the future, to obtain more stable evaluation results, more
expert knowledge is further required to carefully determine the weights, especially the three weights
with relatively greater impact. In conclusion, the framework proposed in this paper can quickly
evaluate roof greening suitability in a large-scale area. The main contributions are as follows: (1) Using
deep learning technology to extract roof patches accurately and quickly, which avoids the problem of
mismatch of the building footprints and the RS image; (2) On the basis of quantitative expression of
influencing criteria, TOPSIS and MCS are used to get the accurate score and ranking of roof greening
suitability; (3) Further analyses of the uncertainty and sensitivity of the evaluation results are helpful
to find stable highly appropriate buildings for roof greening retrofit and find criteria with relatively
greater weight impact. The evaluation results of the building roofs in the whole area are ranked and
can be used by the relevant government departments and urban designers to carry out reasonable roof
greening planning and implementation based on the budget.
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