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Abstract: South Africa has great potential for considering wind energy as an alternative resource.
The climatology allows for significant wind energy production. An accurate joint description of
the wind speed (linear) and wind direction (circular) characteristics is important for wind farm
development. In this paper, a bivariate class of flexible joint probability density functions of wind
speed and wind direction for the use in wind energy analysis is presented. This joint model accounts
for bimodality, skewness, and a dependency structure between the wind speed and wind direction.
For the joint probabilistic description of the wind speed and wind direction, special cases of this
bivariate class are evaluated, namely the semi-parametric Möbius model on the disc, the Möbius
distribution on the disc, and the Beta type III Möbius distribution on the disc. These three special
cases are applied to wind speed and wind direction data recorded every ten minutes at two locations
in South Africa. Evaluation of the models is based on three different information criteria and
normalized deviation. Overall, the semi-parametric model is superior to the parametric models based
on the performance measures. The wind energy potential at the two locations is evaluated using the
semi-parametric model.

Keywords: circular–linear distribution; South Africa; wind direction; wind energy; wind power
density; wind speed

1. Introduction

In South Africa, fossil fuels are the main form of energy supply. This results in emissions causing
local and global environmental complications. Fossil fuels are not sustainable and, therefore, it is of
importance to investigate renewable energy resources. Eskom (the electricity supply commission of
SA) is a South African electricity public utility that generates approximately 95% of electricity used
in South Africa. It is also well known that Eskom’s current fleet of power stations is old and suffers
from reliability problems, resulting in frequent load shedding (a controlled blackout to respond to
unplanned events to protect the electricity power system from a total blackout), with a negative impact
on the South African economy. Renewable resources also have inherent constraints; for example,
solar power is limited to the availability of the sun rays and is costly. Considering the climatology of
South Africa, wind energy stands out as a viable option. From an environmental impact perspective,
wind energy is superior in comparison to other energy sources [1]. As reported by [1], even though
wind energy is popular due to the cost efficiency, there are some unfavorable environmental impacts
of wind energy, such as the noise produced by the windmills, its impact on the ecology (bird hits), etc.
To overcome these negative impacts, the design of the wind farms is of utmost importance.
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The overall capacity of all wind turbines installed worldwide reached 597 GW by the end of 2018
(Global Wind Energy Council: Global wind statistics, 2019; https://gwec.net/wp-content/uploads/
2019/04/GWEC-Global-Wind-Report-2018.pdf (accessed 22 August 2019)). This covers 6% of the
global electricity demand. As emphasized in [2], a total of 98 countries can be provided with electricity
produced by wind energy. Furthermore, there is a great interest in expanding wind energy. Modeling
of short-term wind speed is essential for evaluating wind energy potential. Typical distributions that
are used in characterizing wind speed observations are Weibull, gamma, normal, Rayleigh, log-normal,
Nakagami, inverse Gaussian, logistic, and Birnbaum–Saunders distributions. A review of the different
distributions used to model wind speed is given in [3]. Apart from wind speed, the importance of
including wind direction in the analysis of wind energy has been emphasized in many studies [4–14].
According to [15], existing wind distributions can be classified into two groups: (i) Unimodal and
univariate distributions of wind speed and (ii) unimodal and bivariate distributions of wind speed and
wind direction. The use of a joint probability density function (PDF) of wind speed (linear variable)
and wind direction (circular variable) is important in wind energy projects [4]. In this paper, a flexible
joint PDF of wind speed and wind direction is presented using the disc manifold, which has an
embedded correlation structure for the circular–linear variables. Current bivariate models for wind
speed and wind direction have all been defined on a cylindrical manifold. A comprehensive summary
of circular–linear distributions on the cylindrical manifold can be found in [16]. Unlike the widely used
Johnson–Wehrly (JW) [17] construction method used in [4,10,11,13,18–20], this class of distributions
allows for the joint modeling of wind speed and wind direction with an integrated correlation structure.
In this paper, we will only focus on models defined on the disc, as a comparison with cylindrical
models is invalid due to the different manifolds. Furthermore, this proposed class of distributions
accounts for bimodality and skewness present in the data. Thus, the practitioner can more accurately
model the wind power density [21] for determining wind farm locations and optimal wind energy
potential at various locations.

The remainder of this paper is organized as follows: Section 2 provides background and describes
the wind data recorded at two locations in South Africa, namely Humansdorp and Noupoort.
The proposed wind models are presented in Section 3. In Section 4, the methodology for finding the
estimated values of the parameters of the underlying statistical distributions is discussed. The fitting
criteria implemented in the evaluation of the bivariate fits are outlined. The numerical results are
presented in Section 5, and Section 6 concludes with some final remarks.

2. Site Location and Wind Data

As of 2019, in South Africa, there are 33 wind farms: 22 fully operational and 11 in construction
(based on the South African Wind Energy Association https://sawea.org.za/). In order to assess
the competence of the proposed models, two stations situated in South Africa, namely Humansdorp
and Noupoort, have been selected. These locations already have a fully operational wind farm;
however, they were chosen due to the availability of data. The wind speed and wind direction
provided by the Wind Atlas for South Africa project (WASA) (http://wasadata.csir.co.za/wasa1/
WASAData (accessed 29 August 2019)) were recorded every 10 min at 20 and 60 m heights. For each
location, the main characteristics were reported by the WASA (http://stel-apps.csir.co.za/wasa-data/
docs/WASA1Station_and_Site_Description_Report_April2014.pdf (accessed 29 August 2019)); these
characteristics include a photographic documentation of mast design, installation, and surroundings,
as well as elevation maps that have been constructed for each site from Shuttle Radar Topography
Mission (SRTM) 3 arc-second data. These reported images provide an overall view of the location and
terrain. Figure 1 shows the locations of the stations and Table 1 provides the geographical details for
the locations.

https://gwec.net/wp-content/uploads/2019/04/GWEC-Global-Wind-Report-2018.pdf
https://gwec.net/wp-content/uploads/2019/04/GWEC-Global-Wind-Report-2018.pdf
https://sawea.org.za/
http://wasadata.csir.co.za/wasa1/WASAData
http://wasadata.csir.co.za/wasa1/WASAData
http://stel-apps.csir.co.za/wasa-data/docs/WASA1Station_and_Site_Description_Report_April2014.pdf
http://stel-apps.csir.co.za/wasa-data/docs/WASA1Station_and_Site_Description_Report_April2014.pdf
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Figure 1. Locations of the two stations in South Africa (Google Maps, 2020. Google Maps (online).
Available through: <https://www.google.com/maps> (Accessed 05 March 2020)).

Table 1. Geographical details of the two stations.

Station Latitude Longitude Elevation
(◦S) (◦E) (m)

Humansdorp −34.109965 24.514360 110
Noupoort 31.252540 25.028380 1806

In Table 2, information on the quantity and quality of the measured wind data for the two locations
is given. The period of utilized data, the total number of observations, the number of expected data,
and absent data are presented, respectively. The record contained no calm data, as the average of the
wind speed over a ten-minute interval was recorded.

Table 2. Information of the wind data for the two locations.

Station Data Period (dd/mm/yyyy) Total Data Expected Data Absent Data

Humansdorp 01/01/2016–28/02/2019 166,226 166,320 94
Noupoort 01/01/2016–28/02/2019 137,660 166,320 28,660

In Table 3, the descriptive statistics for the wind speed for the two locations are given; specifically,
the maximum (Max), mean, standard deviation (std), skewness, and kurtosis (skewness is a measure
of the asymmetry, and kurtosis measures the peakedness of the distribution). In Table 4, the values
of the main circular statistics [22] of the wind direction for the two locations are given. Specifically,
the mean resultant length (ω̄), mean direction ( θ̄ ), circular variance (VΘ), circular standard deviation
(νΘ), circular dispersion (δ), circular skewness (s), and circular kurtosis ( k) are shown.

Table 3. Descriptive statistics of the wind speed data.

Station Height (m) Max (m/s) Mean (m/s) std (m/s) Skewness Kurtosis

Humansdorp 20 24.40 6.01 3.40 0.68 0.16
Humansdorp 60 26.66 7.13 3.65 0.63 0.26
Noupoort 20 21.37 6.93 3.09 0.64 0.19
Noupoort 60 24.79 7.91 3.50 0.57 0.13

From Table 3, Noupoort has the highest mean wind speed with the value of 7.91 m/s, while
Humansdorp has the lowest mean wind speed with the value of 6.01 m/s. Since the skewness is
positive for both the stations, we can conclude that the distributions are skewed to the right. The wind
direction data for the Humansdorp location seems to be more concentrated based on the ω̄, as seen

https://www.google.com/maps
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in Table 4. Based on the θ̄, the Humansdorp location is dominated by winds blowing from the
West-Northwesterly (for θ ∈ [1.77; 2.16]) sector while for Noupoort the dominant wind direction is
North Westerly (for θ ∈ [1.57; 2.36]).

Table 4. Descriptive circular statistics for the wind direction data.

Station Height (m) ω̄ θ̄ (rad) VΘ νΘ δ s k

Humansdorp 20 0.24 −1.21 0.76 1.68 8.10 0.55 −0.65
Humansdorp 60 0.28 −1.16 0.72 1.60 6.22 0.60 −0.71
Noupoort 20 0.14 −0.82 0.86 1.99 23.92 0.04 −0.72
Noupoort 60 0.15 −0.88 0.85 1.95 20.69 −0.08 −0.74

3. Models

Based on the assumption that the air density (air density is dependent on altitude, humidity, and
temperature; we consider the air density to be independent of the wind characteristics and be equal
to a constant value of 1.225 kg/m3), ρ, is constant, the wind power probability density function is
expressed as [4]

P(x, θ) =
1
2

ρ fX,Θ(x, θ)x3. (1)

The wind power density defined in (1) is used to evaluate the wind energy at the two locations.
Consider the following joint PDF for the wind speed, X, and the wind direction, Θ, namely the

General Möbius distribution on the disc (GM) [23],

fX,Θ(x, θ) =
C
(
1− a2)2 x

π [1− 2ax cos (θ − µ) + a2x2]
2 g
(

a2 − 2ax cos (θ − µ) + x2

1− 2ax cos (θ − µ) + a2x2

)
, (2)

with a ∈ [0, 1), µ ∈ (−π, π] and x ∈ [0, 1], θ ∈ (−π, π], g(·) is a continuous function with support
[0, 1], and

C =

[
π

∞

∑
k=0

g(k)(0)
(k + 1)!

]−1

,

where g(k)(·) denotes the derivatives of g(·) around zero. We denote this class as (X, θ) ∼ GM (Ψ, g)
where the set of parameters is denoted by Ψ with Ψ = (a, µ). The parameters can be interpreted as a
controlling the skewness, or the asymmetry for the length from the center of the disc, and µ controlling
the orientation of the distribution.

Using the results of [23], we present the following three special models of (2), namely (i) a
semi-parametric Möbius model on the disc (SPM), (ii) the Möbius distribution on the disc (MD), and
(iii) the Beta type III Möbius distribution on the disc (BM), to jointly model the wind speed and wind
direction for the wind data observed at Humansdorp and Noupoort. The parametric special cases are
obtained by considering the form of the function g(·) to be as given in Table 5. By substituting the
form of g(·) in (2), we obtain the joint PDF of the proposed models, as given in Table 6.

Table 5. Form of g(·) considered for the parametric special cases.

Model g(w) Parameter Conditions

MD (1− w)γ−1 γ ∈ (0, ∞)

BM wβ−1 (1− w)γ−1 (1 + w)−(γ+β) γ ∈ (0, ∞), β ∈ (0, ∞)

The parameters in the MD and BM models can be interpreted as γ controlling the steepness of
the concentration and β contributing to the concentration by adding bimodality. As the value of β

increases (β > 1), the model introduces another mode in the form of an antimode. The behavior of the
parameters is discussed in [23].
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Table 6. Proposed joint probability density functions (PDFs) used for the joint modeling of wind speed
and wind direction.

Distribution Probability Density Function Domain of
Definition Ψ

Parameter
Conditions

SPM f (x, θ) =
C(1−a2)

2
x

π[1−2ax cos(θ−µ)+a2x2]2
g
(

a2−2ax cos(θ−µ)+x2

1−2ax cos(θ−µ)+a2x2

) x ∈ [0, 1],
θ ∈ (−π, π]

{a, µ} a ∈ [0, 1),
µ ∈ (−π, π]

where C =
[
π ∑∞

k=0
g(k)(0)
(k+1)!

]−1
g(·) is a
continuous
function with
support [0, 1]

MD f (x, θ) =
γ(1−a2)

γ+1
x(1−x2)

γ−1

π(1−2ax cos(θ−µ)+a2x2)γ+1 ,
x ∈ [0, 1],
θ ∈ (−π, π]

{a, µ, γ}
a ∈ [0, 1),
µ ∈ (−π, π],
γ ∈ (0, ∞)

BM f (x, θ) =
2βΓ(β+γ)(1−a2)

γ+1
x(1−x2)

γ−1
[a2−2ax cos(θ−µ)+x2]

β−1

πΓ(β)Γ(γ)[(1+x2)(1+a2)−4ax cos(θ−µ)]γ+β ,
x ∈ [0, 1],
θ ∈ (−π, π]

{a, µ, γ, β}

a ∈ [0, 1),
µ ∈ (−π, π],
γ ∈ (0, ∞),
β ∈ (0, ∞)

4. Materials and Methods

4.1. Fitting of the System of Wind Distributions

For the estimation of the parameters of the SPM model, the computational stages for estimating
g(·) and the parameters are given by Algorithm 1. For the parameter estimation of the MD and BM
models, maximum likelihood (ML) estimation is performed. Since closed-form expressions could not
be obtained for the parameters, numerical optimization of the ML is performed using the “optimization”
package available in the R software.

A general algorithm for estimating the parameters of the SPM model is given in [23]. In this paper,
a specific case of the general algorithm was used and is described in Algorithm 1.

Take note that ,in Algorithm 1 Step 1, the kernel function is estimated using the argument x2.
This was chosen as it is the argument before the Möbius transformation and, since the transformation
applies to the variable, the function of g(·) can be estimated using the original argument.

In Algorithm 1, the starting values for a and µ are obtained using a randomized technique of
simulating random numbers for a ∈ [0, 1) and µ ∈ [−π, π) and selecting the set of parameters, Ψ̂, that
maximize the likelihood function.

4.2. Evaluation of Goodness-of-Fit

In this paper, four goodness-of-fit metrics were applied to evaluate the models. The Akaike
information criterion (AIC) estimates the relative amount of information lost by a given model.
The Bayesian information criterion (BIC) is widely used for model selection and is similar to the AIC.
The Hannan–Quinn information criterion (HQC) is similar to the BIC and is strongly consistent. These
three measures differ in terms of the amount of model complexity penalization. The two measures
BIC and HQC penalize more severely than AIC [24]. The BIC attempts to find the true model among
the set of candidates; however, this is not the case for the AIC [25]. The conclusion made using the
AIC and BIC will only differ when the AIC chooses a larger model (more complex model) than the
BIC. From a statistical viewpoint, information criteria are commonly used when assessing the accuracy
of a probabilistic model [26]. These three strict criteria are considered most significant in measuring
performance accuracy of distributions. These three metrics are defined in Table 7, where p is the
number of estimated parameters in the model, n the total number of data points, and L̂ the maximum
value of the likelihood function for a specific model.
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Algorithm 1 Maximum likelihood (ML) estimation algorithm for semi-parametric Möbius model on
the disc (SPM) model.

Step 1. Given the observations x1, x2, . . . , xn, we estimate g(·) in (2) using kernel density estimation
as follows:

ĝ (w) =
1

nh

n

∑
i=0

K
(

w− wi
h

)
,

where wi = x2
i , h is the bandwidth, and K(·) is the kernel function. For this paper, we assume a

Gaussian kernel with restricted support of x ∈ [0, 1] and use a plug-in bandwidth selection technique
to obtain the optimal h value.

Step 2. For given a and µ, compute the value of the argument of g(·) in (2), i.e., compute the value
of qi = (a2 − 2axi cos (θi − µ) + x2

i )/(1− 2axi cos (θi − µ) + a2x2
i ). Using the function estimated in

Step 1, ĝ(·), calculate the corresponding function of ĝ(qi).

Step 3. Compute the likelihood function based on (2) using the estimated ĝ(qi), â, and µ̂.

Step 4. Repeat Steps 2 and 3 using an optimization technique to achieve convergence for the
parameters a and µ. The final estimated values are those that maximize the likelihood function.

Table 7. Evaluated goodness-of-fit metrics.

Metric Equation

AIC 2p− 2 ln(L̂)
BIC p ln(n)− 2 ln(L̂)
HQC 2p ln[ln(n)]− 2 ln(L̂)

Remark 1. It is appropriate to compare parametric with semi-parametric models via AIC or BIC. We can
motivate this two ways. The process in this paper of implementing kernel density estimation on the unknown
function g(·) and then maximum likelihood estimation on the model is similar to that in [27], where they
used the AIC and BIC for model selection in a semi-parametric context. Secondly, from the profile likelihood
viewpoint [28], by substituting the estimated g() into the density function (Equation (2)), we obtain a parametric
form for which we can then apply maximum likelihood estimation as in [29–31].

The fourth goodness-of-fit measure is the normalized deviation, which is used for circular–linear
models [4]. The normalized deviation is based on the difference between the observed, N(o)

ij ,

and expected, np(e)ij , number of data points. The expression for the normalized deviation, dij, is
given by

dij =
N(o)

ij − np(e)ij

σ
(e)
ij

, (3)

where σ
(e)
ij is the normalizing factor and the expected standard deviation. Normalized deviation values

close to zero indicate a model of good fit.

Remark 2. On the use of AIC, BIC, and HQC in order to compare parametric and semi-parametric models, one
must make some regularity assumptions. As such, we will be assuming the estimation of the nonparametric
component g(·) using the kernel density estimation is a finite-dimensional problem in our case. Once we estimate
the nonparametric component, we apply the plugin approach into the likelihood (as outlined in Algorithm 1)
and then maximize the log likelihood to obtain the estimate of parameters; indeed, this a maximization over a
restricted parameter space. There is no guarantee that using this method will provide good estimates for the
parameters. Therefore, in order to make sure the estimates fulfill satisfactory conditions, we need to use other
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measures in addition to the aforementioned information criteria. As such, we computed the normalized deviation
for a valid comparison.

4.3. Influence of Wind Speed and Wind Direction Data

The bivariate relationship between the wind speed and wind direction is measured by the
linear–circular correlation coefficient, rx,θ , defined in [22] as

rx,θ =

√
r2

xc + r2
xs − 2rxcrxsrcs

1− r2
cs

, (4)

where rxc = cor(x, cos θ), rxs = cor(x, sin θ), and rcs = cor(cos θ, sin θ). The correlation coefficients for
the two locations are given in Table 8, emphasizing the need for a joint model with an embedded
correlation structure.

Table 8. Correlation coefficient for the wind speed and wind direction.

Station Height (m) Correlation Coefficient

Humansdorp 20 0.2487562
Humansdorp 60 0.1711075
Noupoort 20 0.2688977
Noupoort 60 0.2677411

Subsequently, in Figures 2 and 3, the wind speed and wind direction for the two locations are
given to assist the practitioner in choosing an appropriate model. Figures 2a–d and 3a–d illustrate the
wind speed and wind direction histograms, respectively. From the histograms, the bimodality in the
wind direction and the skewness in the wind speed can be seen. Figures 2e–h and 3e–h illustrate the
wind speed and wind direction boxplots, respectively.

(a) A histogram of the wind speed at 20 m. (b) A histogram of the wind speed at 60 m.

(c) A histogram of the wind direction at 20 m. (d) A histogram of the wind direction at 60 m.

(e) A boxplot of the wind speed at 20 m. (f) A boxplot of the wind speed at 60 m.

Figure 2. Cont.
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(g) A boxplot of the wind direction at 20 m. (h) A boxplot of the wind direction at 60 m.

(i) A windrose diagram of the wind speed
and wind direction at 20 m.

(j) A windrose diagram of the wind speed
and wind direction at 60 m.

Figure 2. Data plots for the Humansdorp location.

The boxplots for the wind speed (Figures 2e,f and 3e,f) are plotted by month of the year and
indicate the seasonality of the wind behavior. The circular boxplots in Figures 2g,h and 3g,h were
constructed using the methodology proposed by [32]. The circular boxplots display the skewness
present in the wind direction. The windrose diagrams in Figures 2i and 3j illustrate the intensity of the
wind speed in the specific wind directions.

(a) A histogram of the wind speed at 20 m. (b) A histogram of the wind speed at 60 m.

(c) A histogram of the wind direction at 20 m. (d) A histogram of the wind direction at 60 m.

(e) A boxplot of the wind speed at 20 m. (f) A boxplot of the wind speed at 60 m.

Figure 3. Cont.
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(g) A boxplot of the wind direction at 20 m. (h) A boxplot of the wind direction at 60 m.

(i) A windrose diagram of the wind speed
and wind direction at 20 m.

(j) A windrose diagram of the wind speed
and wind direction at 60 m.

Figure 3. Data plots for the Noupoort location.

5. Results and Discussion

The results from estimating the joint wind speed and wind direction distributions are presented
and discussed in this section. In Table 9, the parameter estimates and the performance measures for
the proposed models are given.

Table 9. Parameter estimates from fitting the proposed distributions to the two locations at 20 and
60 m height.

Model Estimates Estimates
fX,Θ(x, θ) â µ̂ γ̂ β̂ log(L̂) AIC BIC HQC

Humansdorp at 20 m

SPM 0.06 1.643 - - −50,073.496 100,150.992 100,171.034 100,161.912
MD 0.06 1.61 19.99 - −137,147.608 274,301.217 274,331.280 274,310.136
BM 0.05 1.84 12.58 0.82 −128,863.955 257,735.910 257,775.994 257,747.8033

Humansdorp at 60 m

SPM 0.06 1.71 - - −134,644.097 269,292.195 269,312.237 269,303.114
MD 0.06 1.75 19.06 - −143,268.526 286,543.052 286,573.115 286,551.972
BM 0.07 1.94 10.43 0.89 −143,270.191 286,548.383 286,588.467 286,560.2753

Noupoort at 20 m

SPM 0.03 2.26 - - −98,121.666 196,247.332 196,266.997 196,258.1571
MD 0.05 2.20 19.92 - −105,008.477 210,022.953 210,052.451 210,031.7791
BM 0.04 2.28 13.69 1.23 −102,044.187 204,096.373 204,135.704 204,108.1408

Noupoort at 60 m

SPM 0.05 2.33 - - −119,253.019 238,510.038 238,529.703 238,520.8631
MD 0.05 2.33 15.89 - −121,825.312 243,656.624 243,686.122 243,665.4491
BM 0.03 2.67 12.24 1.4 −120,573.788 241,155.575 241,194.905 241,167.3428

The following inferences can be drawn from Table 9:
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1. For the Humansdorp location at 20 m, the SPM model performs the best overall. The BM model
performs the best from the parametric models.

2. For the Humansdorp location at 60 m, the SPM model performs the best overall. The MD model
performs the best from the parametric models.

3. For the Noupoort location at 20 m, the SPM model performs the best overall. The BM model
performs the best from the parametric models.

4. For the Noupoort location at 60 m, the SPM model performs the best overall. The BM model
performs the best from the parametric models.

5. The SPM model outperforms overall based on the performance measures. This model has the
advantage of limited distributional assumptions. However, it is worth noting that the selection of
the bandwidth plays an important role in statistical analysis.

6. The BM model performs the best from the parametric models based on the performance measures.
This is a result of the model’s flexibility in capturing bimodality and skewness present in the
data. The presence of bimodality and skewness can be seen in the data plots (see Figure 2 and
Figure 3).

For comparison purposes, it is important to note that, since our model is fitted using the
maximum-likelihood method (for the parameters), we can use the AIC and/or BIC, which are based
on the likelihood method. The squared error loss can be used to refine the aforementioned criteria
measures as discussed in [33].

In Table 10, a summary of the normalized deviations for the parametric models for each location
is provided. Figure 4 illustrates the normalized deviation plots for the parametric models for each
location. Using this metric from Table 10, we can conclude that the MD model has a better fit for the
Humansdorp location and the BM model fits better for the Noupoort location, as the median of the
normalized deviation is closer to zero.

(a) The normalized deviation for the MD
model for Humansdorp at 20 m.

(b) The normalized deviation for the BM
model for Humansdorp at 20 m.

(c) The normalized deviation for the MD
model for Humansdorp at 60 m.

(d) The normalized deviation for the BM
model for Humansdorp at 60 m.

Figure 4. Cont.
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(e) The normalized deviation for the MD
model for Noupoort at 20 m.

(f) The normalized deviation for the BM
model for Noupoort at 20 m.

(g) The normalized deviation for the MD
model for Noupoort at 60 m.

(h) The normalized deviation for the BM
model for Noupoort at 60 m.

Figure 4. (a–d) Plots of the normalized deviations for the parametric models for the Humansdorp
location. (e–h) Plots of the normalized deviations for the parametric models for the Noupoort location.

Table 10. Normalized deviations for parametric models for each location.

Station Height (m) Model Median Range

Humansdorp 20 MD −0.2708471 (−86.41038; 114.30956)
Humansdorp 20 BM −0.2757685 (−66.82174; 168.59107)

Humansdorp 60 MD −0.3938287 (−73.57794; 154.53348)
Humansdorp 60 BM −0.8428266 (−74.65866; 201.50158)

Noupoort 20 MD −0.4002134 (−84.15884; 116.17518)
Noupoort 20 BM −0.2386832 (−80.73554; 126.18355)

Noupoort 60 MD −0.3757053 (−76.41617; 162.44165)
Noupoort 60 BM −0.08373657 (−73.58869; 179.88564)

For the wind power density, (1), we substitute the proposed parametric base models fX,Θ(x, θ)

(joint model of wind speed and wind direction) to evaluate the wind energy. Based on the parametric
models of best fit in Table 9, the wind power density is plotted in Figure 5 for the estimated parameter
values given in Table 9.

The intensity plots for the estimated wind power density (1) for when the base model is considered
as the SPM model (model of best fit) are given in Figure 6 for various values of θ and x.

Figure 6 illustrates that the estimated wind power density is maximal when the wind is blowing
in a North Westerly direction (for θ between 1.57 to 2.36, given that −π is the North direction) and
when the wind speed is low to moderate. It can also be noted that at the Humansdorp location a height
of 20 m displays a stronger wind power density compared to the height of 60 m, and at the Noupoort
location, a height of 60 m displays a stronger wind power density compared to the height of 20 m.



Sustainability 2020, 12, 4371 12 of 15

(a) Wind power density with the BM model
as the base model for Humansdorp at 20 m.

(b) Wind power density with the MD model
as the base model for Humansdorp at 60 m.

(c) Wind power density with the BM model
as the base model for Noupoort at 20 m.

(d) Wind power density with the BM model
as the base model for Noupoort at 60 m.

Figure 5. Plots and contour plots of the estimated wind power density (1) for each location with the
parametric model of best fit as the base joint model of wind speed and wind direction.

(a) Humansdorp at 20 m. (b) Humansdorp at 60 m.

(c) Noupoort at 20 m. (d) Noupoort at 60 m.

Figure 6. Estimated intensity plots of wind power density (1) values of the semi-parametric model for
various values of x and θ.

6. Conclusions

In this paper, we propose a class of joint probability models for the wind speed and wind direction
data at Humansdorp and Noupoort. This class accounts for an embedded correlation structure between
the wind speed and wind direction and additionally captures the skewness and bimodality present
in the data. Based on the circular–linear correlation coefficient, the need to account for dependency
between the wind speed and wind direction is emphasized. The wind energies at the two locations
were evaluated using the SPM model (best performing model) to determine the wind energy potential
at the different heights for the two locations. One of the reviewers pointed out that a comparisons
between the models proposed in this paper and existing joint wind speed and wind direction models
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are inappropriate due to the differences in the definitions of the manifolds. Considering the situation
surrounding the supply of electricity in South Africa, the need for investigating and investing in
alternative renewable energy sources is of utmost importance to the socioeconomic development of
the country.
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Abbreviations

The following abbreviations are used in this manuscript:

a Skewness parameter of distribution on a disc
AIC Akaike information criterion
BIC Bayesian information criterion
BM Beta type III Möbius distribution on a disc
CDF Cumulative distribution function
f (x, θ) Joint probability density function (PDF) of wind speed and wind direction
GM General Möbius distribution on a disc
HQC Hannan–Quinn information criterion
k Circular kurtosis
KDE Kernel density estimation
L̂ Maximum value of the likelihood function
log(L) Log likelihood function
MD Möbius distribution on a disc
ML Maximum likelihood
n Total number of data points
p Number of estimated parameters
PDF Probability density function
P(x, θ) Wind power density (W/m2)
rx,θ Correlation coefficient of linear and angular variables
s Circular skewness
SPM Semi-parametric Möbius model on the disc
VΘ Circular variance
ω̄ Mean resultant length
x Wind speed
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Greek Letters
β Concentration parameter of distributions on disc
δ Circular dispersion
γ Concentration parameter of distributions on disc
µ Orientation parameter of distributions on a disc
νΘ Circular standard deviation
ρ Air density (kg/m3)
θ Wind direction
θ̄ Mean direction
θ̄ Mean direction
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