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Abstract: The present study used the official Portuguese land use/land cover (LULC) maps (Carta de
Uso e Ocupação do Solo, COS) from 1995, 2007, 2010, 2015, and 2018 to quantify, visualize, and predict
the spatiotemporal LULC transitions in the Beja district, a rural region in the southeast of Portugal,
which is experiencing marked landscape changes. Here, we computed the conventional transition
matrices for in-depth statistical analysis of the LULC changes that have occurred from 1995 to 2018,
providing supplementary statistics regarding the vulnerability of inter-class transitions by focusing
on the dominant signals of change. We also investigated how the LULC is going to move in the
future (2040) based on matrices of current states using the Discrete-Time Markov Chain (DTMC)
model. The results revealed that, between 1995 and 2018, about 28% of the Beja district landscape
changed. Particularly, croplands remain the predominant LULC class in more than half of the Beja
district (in 2018 about 64%). However, the behavior of the inter-class transitions was significantly
different between periods, and explicitly revealed that arable land, pastures, and forest were the most
dynamic LULC classes. Few dominant (systematic) signals of change during the 1995–2018 period
were observed, highlighting the transition of arable land to permanent crops (5%) and to pastures
(2.9%), and the transition of pastures to forest (3.5%) and to arable land (2.7%). Simulation results
showed that about 25% of the territory is predicted to experience major LULC changes from arable
land (−3.81%), permanent crops (+2.93%), and forests (+2.60%) by 2040.

Keywords: landscape pattern; transition matrix; systematic processes; change detection;
Discrete-Time Markov Chains

1. Introduction

In many areas of the globe, the scale and extent of land use/land cover (LULC) changes have
been affected by socioeconomic and biophysical factors (e.g., [1,2]). More specifically, environmental
conditions, internal and external policies, the functioning of local and national markets, and the
demographic situation have been pointed out as the main causes directly responsible for the LULC
changes [3–5]. Therefore, over the last decade, for dynamic visualization and quantification of the
spatial patterns of the LULC changes, Geographic Information Systems (GIS) have been widely used,
since they allow for the use of vector or remote sensing data, expressed spatially and temporally [6–8].
Particularly, LULC change monitoring and assessment is a practice that assists a more conscious and
thrifty management of this natural resource, which could result in effective environmental planning
and informed policy decisions.

Commonly, in LULC change analysis, the LULC transitions are quantified and visualized based
on a transition matrix by computing the inter-class percentage and by measuring, e.g., the persistence,
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gain/loss, net, and rate of the changes, in order to achieve comprehensive monitoring of physical
changes over time [9,10]. Although these are the most commonly used measures, since they are very
instructive for understanding the nuance of LULC changes, there are other measures that are equally
informative and can contribute to more insights regarding LULC change processes [11] and to the
design of anticipatory measure responses to changes. For instance, the quantification of both net
change and swap (which comprises both the gain and loss of an LULC class in different locations of
the study area), as well the gross gains/losses, allows for the detection of the inter-class transitions that
have occurred as a systematic or as a random process of change [11,12]. Thus, the dominant signals of
LULC changes can be distinguished.

Hence, whereas a systematic transition occurs by a continuous or general process of change, having
a gradual tendency for progressive increment influenced by different factors (e.g., population growth
or internal and external policies) [13], a random transition occurs as a single abrupt episode process
of change influenced by factors that occur suddenly (e.g., floods or wildfires) [12,13]. Accordingly,
distinguishing systematic (dominant) processes within a pattern of LULC changes, which tends to
evolve in a progressive way driven by established and continued processes (see, e.g., [12,14]), allows
one to focus on the mechanisms of change and further in-depth assessment of the potential change’s
main drivers. Therefore, a better understanding of the LULC dynamics and better policies and
measures in line can reduce the adverse impacts of dominant LULC changes [12,14,15].

In addition, apart from LULC change dynamics analysis, since the end of the 20th century,
the prediction of future scenarios at different spatial and temporal scales has been extensively
carried out [16–18]. In fact, the study of past and future LULC changes has been very promising for
understanding past trends [2] and potential future developments, being a decision-making basis for
environmental management and the sustainability of the ecosystems. Therefore, as a complex process,
LULC dynamics is regularly modeled through several methods that are efficient in the simulation
and prediction of future LULC [19], including the discrete-time Markov chain (DTMC) model (more
commonly known as the Markov chain [20]) [21,22], the cellular automata (CA) model [18,23,24],
and neural networks [25], among others. Of these approaches, the DTMC model is of countless
importance for modeling LULC changes [26–28], as it has the advantages of a time dimension and
is able to represent the LULC change data, since it has the ability to quantify not only the states of
conversion between LULC classes but also the rate of conversion among them. Thus, it is a stochastic
process, where space is discrete (i.e., mainly based on probabilities, not certainties).

Context and Background

The last decades of the 20th century and the first decades of the 21st century have shown that
European and Mediterranean rural areas have been undergoing significant changes [29,30]. Indeed,
one of the most remarkable changes in LULC in Europe, identified in Fuchs et al.’s [2] research, is the
increase in forest to the detriment of the agricultural land. Likewise, the same trend has been observed
in Portugal [30]. Indeed, the LULC changes in Portugal have been the most dynamic among the
European Union (EU) countries [30,31].

For instance, despite the existence of numerous studies regarding the LULC changes in
Portugal [32–34], the primary research focus has been on urban areas rather than rural areas. However,
rural areas and agriculture have an important role in the regional and national economy of individual
countries, as they constitute an important source of income for part of the population. Therefore, it
is urgent to monitor the dynamics of rural LULC changes to promote and ensure a weighted and
parsimonious use of the available resources.

Accordingly, given the stark changes of the Portuguese landscape, this study seeks to unravel the
LULC changes situation in the Beja district, the largest Portuguese district in terms of area and the
second in terms of percentage of agricultural land (about 47% in 2010); a rural region where we can
find the Montado (named Montado in Portugal and Dehesa in Spain), an agrosilvopastoral agricultural
heritage system [35,36], that has been indicated as a globally important agricultural system according
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to the Globally Important Agricultural Heritage System (GIAHS) program promoted by the Food and
Agriculture Organization of the United Nations (FAO) [37].

Moreover, this research is an effort to evaluate the spatiotemporal LULC changes with a particular
focus on the evaluation of the dominant LULC changes and to simulate the future changes, in order to
determine the main LULC processes’ transformations and suggest new strategies for formulating better
land use policies. The analysis was performed in a 10,229.05 km2 area in the southeast of Portugal,
which is experiencing marked landscape changes [32]. Thus, the main objectives of the present study
were threefold: (i) identify and analyze the spatiotemporal dynamics of LULC over the past 23 years
(1995–2018); (ii) quantify and analyze in depth the inter-class dominant (systematic) LULC transitions;
and (iii) quantify the states of conversion between LULC classes and simulate and analyze the future
LULC changes by 2040 using the DTMC model.

Our research is organized as follows: Section 2 details the study area, the used data, and the
applied methodology. The results of the LULC changes and future LULC developments are described
in Section 3. Finally, in Section 4, we discussed the main findings of our results and the implications of
the applied methodology, presenting also the main conclusions of our research.

2. Materials and Methods

2.1. Study Area

The study area, the Beja district, is located between 07◦37′58′′ W and 07◦41′17′′ W longitude and
between 38◦08′35′′ N and 38◦10′08′′ N latitude in the southeast of Portugal in the Nomenclature of
Territorial Units for Statistics (NUTS) II Alentejo litoral and Baixo Alentejo (Figure 1). The district of
Beja is bordered to the north by the Évora district, to the south by the Algarve region, to the east by
Spain, and to the west by the district of Setúbal and the Atlantic Ocean. Beja is the largest Portuguese
district, with an area of 10,229.05 km2 and a resident population of 152,758 inhabitants in 2011 [38].
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This region is characterized by a vast landscape of wheat, cork oaks, and olive trees, where the
dominant land use is mixed agrosilvopastoral. The landscape of this region is distinctive, with both
fragmented parcels and more compact parcels of land due to the different cropping calendars and
field geometries. Dispersed settlements are the predominant urban form in this region. The climate
is influenced by its distance from the coast, with a Mediterranean climate characterized by hot and
dry summers and wet and cold winters. To the southeast, the territory is flat; to the north and west,
the extensive plains are cut by tiny hills, the valley of the Guadiana River is the district’s main
geographical feature, which crosses from north to south in the eastern part of the district. The Alqueva
dam, the largest in the country, is located in this district.

2.2. Official Portuguese Land Cover (COS) Data

The official spatial land cover data (COS) produced by the Portuguese General Directorate for
Territorial Development (DGT) for 1995, 2007, 2010, 2015, and 2018 were used. These maps have the
highest cartographic detail for the study area and are available for free on the DGT website (http:
//mapas.dgterritorio.pt/geoportal/catalogo.html). The COS maps are produced by photointerpretation
(i.e., over orthophoto maps), with vector (polygons) structure data, a cartographic accuracy of
0.5 m, a minimum mapping unit (MMU) of 1 ha, and a scale of 1:25,000 [39]. The five datasets
have a hierarchical nomenclature system (a DGT report describes in detail the COS nomenclature
characteristics [39]).

Spatiotemporal LULC change analysis was developed considering three major classes of the first
hierarchical level of the COS nomenclature, namely, artificial surfaces, forest, and water bodies. In
order to specify the major changes in croplands and characterize the type of agricultural activity in this
region, we used the second hierarchical level of the COS nomenclature of the agriculture mega class,
namely arable land, permanent crops, pastures, and heterogeneous areas. Therefore, a total of seven
classes were used (Table 1). All LULC maps were clipped to the extent of the case study area, converted
to a raster format of 100 × 100 m, and reclassified into seven classes. The cartographic information
treatment and the spatiotemporal analysis were developed in QGIS software.

Table 1. Land use/Land cover (LULC) class description.

LULC Classes Description

Artificial surfaces Urban fabric; industrial, commercial, and transport units; mine, dump, and
construction sites; artificial non-agricultural vegetated areas.

Agricultural-Arable land
Lands under a rotation system used for annually harvested plants and fallow
lands, which are rain-fed or irrigated. Includes flooded crops such as rice fields
and other inundated croplands.

Agricultural-Permanent crops

Lands not under a rotation system. Includes ligneous crops of standard cultures
for fruit production such as extensive fruit orchards, olive groves, chestnut
groves, walnut groves shrub orchards such as vineyards and some specific
low-system orchard plantation, espaliers, and climbers.

Agricultural-Pastures

Lands that are permanently used (at least 5 years) for fodder production. Includes
natural or sown herbaceous species, unimproved or lightly improved meadows
and grazed or mechanically harvested meadows. Regular agriculture impact
influences the natural development of natural herbaceous species composition.

Agricultural-Heterogeneous areas

Areas of annual crops associated with permanent crops on the same parcel,
annual crops cultivated under forest trees, areas of annual crops, meadows and/or
permanent crops which are juxtaposed, landscapes in which crops and pastures
are intimately mixed with natural vegetation or natural areas.

Forest Forests; shrub and/or herbaceous vegetation associations; open spaces with little
or no vegetation.

Water bodies Inland wetlands; coastal wetlands; marine waters.

2.3. Spatiotemporal LULC Change Analysis

To identify and analyze the spatiotemporal dynamics of LULC in the Beja district, we first presented
a brief evolution and distribution analysis of each class between 1995 and 2018. We quantified the
changes for each year and reported them spatially and temporally. Secondly, we computed four change

http://mapas.dgterritorio.pt/geoportal/catalogo.html
http://mapas.dgterritorio.pt/geoportal/catalogo.html
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matrices in order to understand the main transition dynamics within each LULC class during the
periods 1995–2007, 2007–2010, 2010–2015, and 2015–2018. The matrices were presented in graphical
form. Each graph for each period shows the changes within each class from the initial time to the
final time.

2.4. LULC Change Detection

For the LULC change detection in-depth analysis, we compared two maps (1995 and 2018) and
produced a cross-tabulation matrix for the overall period (1995–2018). We decided to only analyze
the overall period since each period comprises different years. While the first period has 12 years
(1995–2007), the second (2007–2010) and the last (2015–2018) have 3 years, and the third has 5 years
(2010–2015), so the change detection analysis could be influenced by the year’s discrepancy between
periods. Thus, the transition matrix represents the percentage of LULC changes within each class (j),
where the diagonal values indicate the percentage of LULC that persists

(
P j j

)
for each LULC class from

initial time (T1) (1995) to the final time (T2) (2018), rows indicating the transitions from initial time(
P j+

)
, and columns indicating the transitions in the final time

(
P+ j

)
.

By following Pontius et al.’s [11] study, we obtained several measures from the transition matrix
result and grouped them into two categories. The first category includes the (i) persistence, (ii) gain,
(iii) loss, (iv) total change, (v) absolute value of net change, and (vi) swapping tendency. Since net
change cannot detect the swap between each class, and therefore underestimates the LULC total
change, the swapping tendency is calculated, since it comprises both the gain and loss of an LULC
class in different locations of the study area [11]. Additionally, we presented the LULC vulnerability
to transition by calculating the gain-to-loss, lost-to-persistence, and the gain-to-persistence ratios.
A description of each measure is in Table 2.

Table 2. Description of each measure for LULC change detection analysis.

Persistence
(
P j j

)
The amount of LULC for each class which remains from initial time and the later time.

Gain
(
G j

) The amount of gains is the difference between the total value of each LULC class for the
later time

(
P+ j

)
and the value of persistency

(
P j j

)
.

Loss
(
L j

) The amount of losses is the difference between the total for the initial time
(
P j+

)
and the

value of persistency
(
P j j

)
.

Total change
(
C j

)
The total change (overall change) is the sum of gain

(
G j

)
and loss

(
L j

)
.

Net change
(
D j

) The amount of net change is the maximum value of the gains and losses
(
P+ j

)
minus the

minimum value of gains and losses
(
P j+

)
.

Swap tendency
(
S j

) The amount of swap is two times the minimum value of the gains and losses
(
G j, L j

)
for

each LULC class.

Gain-to-Loss (G/L) The tendency to experience more gain or loss is the division of gain
(
G j

)
and loss

(
L j

)
.

Values above 1 suggest larger tendency to gain than loss.

Loss-to-persistence
(
Lp

) The tendency to experience more loss or persistence is the division of loss
(
L j

)
and

persistency
(
P j j

)
. Values above 1 suggest larger tendency to loss than to persistence.

Gain-to-persistence
(
Gp

) The tendency to experience more gain or persistence is the division of gain
(
G j

)
and

persistency
(
P j j

)
. Values above 1 suggest larger tendency to gain than to persistence

The second category includes the measurement of systematic and random LULC changes by using
the off-diagonal entries of the transition matrix (which indicates the transitions from one LULC class
to the other) for the significant inter-class transitions detection. To detect if the inter-class transition
is systematic or random, the expected LULC value was compared with the observed LULC value in
the matrix. Following the statistical definitions outlined by Pontius et al. [40], a random transition
indicates that the gain from other LULC classes was equivalent to the size of those other losing classes,
or the loss to other LULC classes was equivalent to the size of those other gaining classes. Therefore,
values close to zero or at zero indicate a partly systematic or random transition, respectively, while
numbers far from zero indicate a systematic inter-class transition [11].
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As such, the measurement of the systematic and random LULC transitions will result in three
values in terms of gain

(
Gi j

)
and in three values in terms of loss

(
Li j

)
. Firstly, we compute the expected

LULC gains percentage if the gain in each class were to occur randomly:

Gi j =
(
P+ j − P j j

) Pi+∑ j
i=1, i, j Pi+

 (1)

where
(
P+ j − P j j

)
is the total gross gain of LULC class j, and Pi+ is the size of LULC class i in the initial

time (1995).
∑ j

i=1, i, j Pi+ is the sum of the sizes of all LULC classes, excluding LULC classes of j, in the
initial time. Secondly, we compute the expected LULC losses percentage if the loss in each class were
to occur randomly:

Li j = (Pi+ − Pii)

 P+ j∑ j
j=1, j, j P+ j

 (2)

where (Pi+ − Pii) is the observed total gross loss of LULC class i, and P+ j is the size of LULC class j in

the final time (2018).
∑ j

j=1, j, j P+ j is the sum of the sizes of all LULC classes, excluding LULC classes
of j, in the final time.

Third, we compute the differences between the observed LULC percentage and the expected
LULC percentage under a random process of gain:

Pi j −Gi j (3)

where Pi j is the observed LULC, and Gi j is the expected LULC if the gain in each class were to
occur randomly. Fourth, we compute the differences between the observed LULC percentage and the
expected LULC percentage under a random process of loss:

Pi j − Li j (4)

where Pi j is the observed LULC, and Li j is the expected LULC if the loss in each class were to
occur randomly.

2.5. The Discrete-Time Markov Chain (DTMC) Model

2.5.1. States Transition Probability of the Markov Chain

To quantify the states of conversion between the LULC classes and simulate and analyze the
future LULC changes by 2040, we used the Discrete-Time Markov Chain (DTMC) model. Specifically,
the DTMC model use matrices to model the LULC transition probabilities among a set of discrete
states. Therefore, a DTMC is characterized by an array of random variables X1, X2, . . . , Xn showing a
memoryless property (i.e., a Markov property). The memoryless property postulates that the transition
probabilities are independent of the chain state before its current state. Thus, the Xn+1 state distribution
relies only upon the current state Xn regardless of the Xn−1, Xn−2, . . . , Xn1 states.

Pr
(
Xn+1 = xn+1

∣∣∣X1 = x1, X2 = x2, . . . , Xn = xn
)
= Pr

(
Xn+1 = xn+1

∣∣∣Xn = xn
)

(5)

Strictly, a Markov chain is a probabilistic automaton, where Xn has a set of possible states
S = {S1, S2, . . . , Sr} entitled as the “state space of the chain.” The procedure begins in one of S states
and changes consecutively from one to another. Each change is named either step or transition, and
the transition probability pi j is set as the probability of change from state si to state s j in just one step.

pi j = Pr
(
X1 = s j

∣∣∣X0 = si
)

(6)
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whereas the probability to change from state si to state s j in n steps is given by p(n)i j = Pr
(
Xn = s j

∣∣∣X0 = si
)
.

If Equation (7) proves to be true, the DTMC is time-homogeneous, which indicates that the original
transition probabilities remain unchanged through time.

Pr
(
Xn+1 = s j

∣∣∣Xn = si
)
= Pr

(
Xn = s j

∣∣∣Xn−1 = si
)

(7)

For k > 0, if pi j = Pr
(
Xk+1 = s j

∣∣∣Xk = si
)
∧ p(n)i j = Pr

(
Xn+k = s j

∣∣∣Xk = si
)
, then the Markov chain is

said to be time-homogeneous. The transition probability can be represented as a transition probabilities
matrix (or simply transition matrix) P =

(
pi j

)
i, j

, where each element (i, j) denotes the position of pi j.

P =


pii · · · pi j
...

. . .
...

p ji · · · p j j

 (8)

The dispersion through the states can be transcribed as a stochastic (
∑

i xi = 1, xi ≥ 0) row vector
x. Hence, x(1) relates to x(0) as x(1) = x(0)P and, recursively, we have x(2) = x(0)P2

∧ x(n) = x(0)Pn.

2.5.2. Classification States and Simulating Future States

The states can be classified by means of their periodicity. A state that is not absorbing is a transient
one. A state si is said to be transient if there is a state sk that is attainable from s j, but j not being
attainable from sk. In other words, if s j is transient, there is no guarantee that, after leaving s j, the system
will return there. Suppose that, for a chain with initial state x, the number of periods required to return
to that state is given by Tx→x. If P(Tx→x < +∞) = 1 ≡ P(Tx→x = +∞) > 0, the x state is transient.

A state s j is said to be recurrent if it is not transient, i.e., if it is always possible to return to s j.
As such,

state x is recurrent i f
P(Tx→x < +∞) = 1 or
P(Tx→x = +∞) = 1

in addition is


null recurrent i f P(Tx→x) = +∞

positive recurrent i f P(Tx→x) < +∞

absorbing i f P(Tx→x = 1) = 1
(9)

The time necessary to reach a specific state can also be computed. The so-called hitting time, i.e.,
the first passage

(
si → s j

)
, is given by the number of steps

(
Ti j

)
that the chain requires until it hits the

state s j for the first time, considering that X0 = si.

h(n)i j = Pr
(
Ti j = n

)
= Pr

(
Xn = s j, Xn−1 , s j, . . . , X1 , s j

∣∣∣X0 = si
)

(10)

where h(n)i j =
∑

k∈S−{s j}
pikh(n−1)

kj and h(n)i j = pi j.

A measure interconnected with (h) h that is frequently used is the mean first passage time, i.e.,
the expected hitting time. In an ergodic Markov chain, the mean first passage time from si to s j is the
estimated number of steps necessary to go from the initial state si to s j for the first time. This measure is

the (h) average value, explicitly hi j =
∑

n=1...∞ nh(n)i j . When delineating the first passage time, one can
assume that si = si j and thus obtain the first recurrence time Ti = in f {n ≥ 1 : Xn = si|X0 = si}.

Therefore, having the recurrent states, we calculated the mean recurrence time, i.e., the expected
number of steps to return to the initial state:

ri =
∑
∞

k=1
k · P(Ti = k) (11)

Finally, as the period under analysis presents different cycles, that is more dynamic cycles
(1995–2007 and 2010–2015) interspersed with less dynamic ones (2007–2010 and 2015–2018), we chose
to perform future simulations based on trends of the whole set (1995–2018). Thus, based on the year
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2018 and using the trends recorded over 23 years, we created a scenario of LULC for 2040 (instead of
2041 for rounding purposes).

2.5.3. Uncertainty of Future States

Uncertainty can then be characterized by the probability vectors that are produced as a sub-product
of simulation, made available by most stochastic modeling procedures [41]. These probabilities provide
useful information about the quality of the resulting classification in terms of the uncertainties involved.
To fully explore the information of the probability vector, additional measures of uncertainty are
needed [42]. The greater the uncertainty, the lower the probability that a pixel will be associated
with a given class, so uncertainty is the complement of the probability. Formally, if we considerer
Pi j, the probability that a given pixel j is associated with class i, the uncertainty can be described by
Ui j = 1− Pi j.

However, normally the true class of the pixel is not known and, consequently, the amount of
information required to indicate the pixel class is also unknown. The pixel entropy is therefore defined
as the expected information index of a piece of information that reveals your true class. For this
purpose, the entropy measure combines the uncertainties of the various pixel classes, weighing them
by their probabilities. In this way, the global entropy can be estimated from the normalized values of
probabilities by class, using the expression Ei j = −

∑
Pi j ∗ log 2Pi j.

3. Results

3.1. LULC Spatiotemporal Evolution and Distribution

The spatiotemporal analysis results showed that the Beja district has undergone major changes
between 1995 and 2018 (Table 3). At first sight, the predominance of agricultural and forestry areas
over the entire study period was observed. However, the occupancy tendency of both classes showed
large fluctuations. Examining the results, between 1995 and 2010, there was a loss of almost 6.6% of the
agricultural area, but this mega class continued to occupy the largest portion of the territory (in 2010
about 62.88%). Subsequent years (2015–2018) saw an increase in agricultural area (+1.08%).

Table 3. LULC from 1995 to 2018 (in %).

LULC Class 1995 2007 2010 2015 2018

Artificial surfaces 0.79 1.04 1.09 1.21 1.24
Agricultural areas 69.43 63.30 62.88 63.12 63.96

Arable land 26.64 23.69 22.83 22.77 20.70
Permanent crops 7.43 8.80 9.87 10.25 12.56

Pastures 14.13 10.63 10.11 10.68 11.50
Heterogeneous areas 21.23 20.18 20.07 19.42 19.20

Forest 28.35 33.68 33.94 33.53 32.66
Water bodies 1.44 1.99 2.09 2.14 2.14

Indeed, except for the permanent crops, there has been a significant decrease in remaining
croplands. Particularly, arable land, the cropland with the most significant predominance in the
Beja district (in 2018 about 20.7%), presented a decrease of almost 6% between 1995 and 2018, while
heterogeneous areas and pastures decreased by about 2% and 2.6%, respectively. Heterogeneous areas
are mainly concentrated near forestland, and the pastures class almost disappears in the central region
of the Beja district. Permanent crops increased by about 5%, particularly in the northern part of the
district, where the patch correspondent to this class is noticeable (Figure 2).
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Figure 2. LULC map of the Beja district for 2018, and the detailed changes detected between 1995
and 2018.

By contrast, the forestland presented an area increase of almost 5.6% between 1995 and 2010
(in 2010 about 34%), but in subsequent years (2010–2018) there was a loss of almost 1.3% (in 2018 about
32.7%). It is noticeable that the green area corresponds to the forestland class in the SSW of the study
area, probably due to its being closer to the Atlantic Ocean and to its orography (plateaus). However,
the increase in forest was especially near the wetlands, untangling the southeast part of the district.
As for the artificial surfaces, although substantially reduced in this region, they present a linear growth
increment between the period under analysis (close to 0.5%), especially in the north of the district near
the Beja airport. The same occurred with the wetlands class with an overall increase of 0.7%, with
some visible expression in the northeast part of the district (Figure 2).

3.2. Main LULC Transitions by Period

The analysis of the inter-class transitions by period is present using the cross-tabulation matrices
in graphical form for the four periods under analysis (Figure 3). Specifically, during the first period
(1995–2007), almost 20% of the LULC changed. The results revealed a clear tendency for each type of
agricultural use to transition to another agricultural use or to transition to forest. Additionally, the forest
class and the pastures class were the two that presented the highest LULC transition values. Indeed,
the first period experienced a significant decrease in croplands (−6.3%), mostly due to forestland,
with transitions from the pastures (3.8%), heterogeneous areas (1.8%), and arable land (1.7%) classes.
However, about 1.8% of forestland also transitioned to agricultural areas. By contrast, arable land and
pastures exchange between themselves.

As for the second period (2007–2010), about 3% of the LULC changed. This period experienced the
same trend: a decrease in croplands, albeit much less significant (−0.42%). The arable land, pastures,
and permanent crops classes transitioned between each other, the highest area transitioning from
arable land to permanent crops (0.8%).
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The subsequent period (2010–2015) experienced about 8.5% of LULC changes. However, this
period counters the decreasing trend in cropland, albeit modestly, as croplands increased but only by
about 0.24%. Thus, a transition tendency similar to the first period can be observed, since the major
recorded transitions were between agricultural areas and forestland. Accordingly, the heterogeneous
areas and forestland classes transitioned between each other, with heterogeneous areas transitioning to
forest (1.18%) and forest transitioning to heterogeneous areas (1.55%).

During the last period (2015–2018), almost 4.7% of the LULC changed. This period experienced
the highest gain in agricultural areas (+0.84%). Once again, arable land transitioned mainly to pastures
(0.7%), and pastures transitioned mainly to arable land (0.5%), while heterogeneous areas transitioned
to arable land (0.7%) and to pastures (0.7%). Indeed, the most substantial transition recorded was from
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arable land to permanent crops (1.8%), followed by the transition from forest to pastures (0.7%), and
from arable land to pastures (0.6%). Unlike the past two periods, we verified for the first time more
losses than gains for the forest class.

3.3. LULC Change Detection

The in-depth analysis of the overall LULC change detection shows that, for the overall period
(1995–2018), about 72.1% of the LULC persisted, while 27.9% exhibited transitions. Briefly, the highest
LULC transitions were experienced from arable land to permanent crops (4.96%), followed by the
transition from pastures to forest (3.48%) (Table 4). In addition, the overall period transitions highlighted
that forest experienced high gains from agricultural classes, while both artificial surfaces and water
bodies showed a minor transition to other LULC classes.

Table 4. LULC transition matrix 1995–2018 (in %) *.

2018
LULC Class Artificial Surfaces Arable Land Permanent Crops Pastures Heterog. Areas Forest Water Bodies

19
95

Artificial
surfaces 0.76 0.00 0.01 0.01 0.00 0.00 0.00

Arable land 0.16 16.47 4.96 2.92 0.17 1.78 0.18
Permanent

crops 0.03 0.53 6.14 0.12 0.42 0.17 0.03

Pastures 0.13 2.70 0.92 6.52 0.26 3.48 0.12
Heterog.

areas 0.10 0.64 0.40 1.18 16.23 2.53 0.16

Forest 0.05 0.37 0.11 0.76 2.13 24.66 0.27
Water bodies 0.01 0.00 0.01 0.01 0.00 0.04 1.36

* The highest LULC transitions are highlighted in bold.

From Table 5, it can be verified that, during the overall period, both the artificial surfaces and
water bodies classes experienced a lower percentage of persistence (0.76% and 1.36%, respectively).
These results are mostly due to their lower percentage of territory occupancy within the period analysis.
Thus, artificial surfaces occupied about 1.2% of the district area, meaning almost 0.5% of gains and only
0.03% of losses. Therefore, the changes in the artificial surfaces class is mostly net change (about 0.45%).
Similarly, the water bodies class experienced almost 0.8% of gains against 0.1% of losses between
1995 and 2018. Thus, most of the change in the water bodies class is a net change (0.7%). Hence,
artificial surfaces and water bodies experienced a gain–loss ratio of 18.3 and 10.5, respectively; however,
according to the loss-to-persistence and gain-to-persistence ratios, both classes presented a greater
tendency to persist than to gain or lose. Figure 4 presents the net changes for both the artificial surfaces
and water bodies classes. While artificial surfaces gains are highly dispersed across the district and
usually founded near spots with the same LULC, water bodies gains are not clustered predominantly
near to each other. Due to the minimal losses during 1995–2018, it is difficult to identify the dispersion
of losses across the district.

Table 5. Summary of LULC changes (1995–2018) (in %).

LULC Class Pj Gj Lj Cj Sj Dj G/L Lp Gp

Artificial surfaces 0.76 0.48 0.03 0.50 0.05 0.45 18.32 0.03 0.63
Arable land 16.47 4.23 10.16 14.39 8.46 5.93 0.42 0.62 0.26

Permanent crops 6.14 6.42 1.30 7.71 2.59 5.12 4.96 0.21 1.05
Pastures 6.52 4.99 7.61 12.60 9.97 2.62 0.66 1.17 0.77

Heterogeneous areas 16.23 2.97 5.00 7.97 5.94 2.03 0.59 0.31 0.18
Forest 24.66 8.00 3.69 11.69 7.38 4.31 2.17 0.15 0.32

Water bodies 1.36 0.78 0.07 0.85 0.15 0.70 10.47 0.05 0.57
Total 72.14 27.86 27.86 27.86 17.27 10.59

Note: P j = persistence, G j = gain, L j = loss, C j = total change, S j = Swap, D j = net change, G/L = gain-to-loss ratio,
Lp = loss-to-persistence ratio, Gp = gain-to-persistence ratio.
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Figure 4. Changes in the artificial surfaces and water bodies classes (1995–2018).

In contrast, forest, arable land, and heterogeneous areas presented a high percentage of persistence
(24.66%, 16.47%, and 16.23%, respectively), while pastures and permanent crops presented a relatively
low percentage of persistence (6.52% and 6.14%, respectively). These results are mostly due to each
LULC class percentage of territory occupancy during all the years under study. Nevertheless, permanent
crops and forest classes presented more gains than losses during the overall period. The gain–loss
ratio indicates that permanent crops presented 4.9 times more gain than loss, while forest presented
a ratio of 2.2 times more. However, the influence of net changes was found to be the main driver in
permanent crops (66% of the total change for permanent crops), while swapping was the main driver
in the forest class (63% of the total change for forest).

However, according to the loss-to-persistence and gain-to-persistence ratios, the forest class
experienced a greater tendency to persist than to gain or lose, while the permanent crops class
presented a greater tendency to persist than to lose and a greater tendency to gain than to persist.
Figure 5 presents the net changes for both the permanent crops and forest classes. The gains of
forestland are dispersedly distributed across the Beja district and are usually found near spots with
the same LULC. Comparatively, permanent crops gains are primarily distributed in the north and
east. Gain spots are grouped mainly near to each other, while losses are minimal and show no
distribution pattern.
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Figure 5. Changes in the forest and permanent crops classes (1995–2018).

The remaining agricultural classes presented more losses than gains, with a loss–gain ratio of 2.4,
1.5, and 1.7 for arable land, pastures, and heterogeneous areas, respectively. These three agricultural
classes indicate both swap and net changes between 1995 and 2018. However, the influence of swapping
was found to be the main driver of the total change, which was a change by 59%, 79%, and 75% for
arable land, pastures, and heterogeneous areas, respectively. While both arable land and heterogeneous
areas presented a greater tendency to persist than to gain or lose, the pastures class presented a greater
tendency to lose than to persist and a greater tendency to persist than to gain.

Figure 6 presents the net changes for arable land, pastures, and heterogeneous areas. The three
classes present a very distinct change pattern. Arable land losses are mainly consolidated in the north
and east of Beja, while the gains are dispersed in the south of the district, predominantly near spots
with the same LULC. As for pastures, the gains are spread over the entire territory, while the losses can
be found in the south and close to the east. Lastly, the heterogeneous areas show large gains in the
center of the territory, while losses are distributed mainly close to where there is forestland.
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3.4. Detection of Random and Systematic LULC Transitions

The random and systematic LULC transitions analysis showed that not all the inter-class transitions
during the period under analysis were systematic (dominant) processes within a pattern of LULC
changes. Based on Tables 6 and 7, we are able to determine what the dominant transitions in each
LULC class would be if the gain or loss in each class were to occur randomly. Therefore, the arable
land and permanent crops classes experienced the strongest dominant signal of change. While arable
land systematically transitioned to permanent crops, permanent crops were systematically gaining
from arable land simultaneously (3.12%), and arable land was also systematically losing to permanent
crops (3.35%). However, permanent crops systematically avoided losses to arable land.

Table 6. Inter-class LULC transitions gains.

2018

1995 Artificial
Surfaces

Arable
Land

Permanent
Crops Pastures Heterog.

Areas Forest Water
Bodies

(i) Expected LULC if the process of change in each class were to occur randomly (%)
Artificial surfaces 0.76 0.05 0.05 0.05 0.03 0.09 0.01

Arable land 0.13 16.47 1.85 1.55 1.00 2.98 0.21
Permanent crops 0.04 0.43 6.14 0.43 0.28 0.83 0.06

Pastures 0.07 0.81 0.98 6.52 0.53 1.58 0.11
Heterog. areas 0.10 1.22 1.47 1.23 16.23 2.37 0.17

Forest 0.14 1.63 1.97 1.65 1.07 24.66 0.22
Water bodies 0.01 0.08 0.10 0.08 0.05 0.16 1.36

(ii) Observed LULC minus the proportion expected under the random process (%) *
Artificial surfaces 0.00 −0.04 −0.05 −0.04 −0.03 −0.09 0.00

Arable land 0.03 0.00 3.12 1.37 −0.84 −1.20 −0.03
Permanent crops −0.01 0.10 0.00 −0.31 0.14 −0.66 −0.03

Pastures 0.06 1.88 −0.06 0.00 −0.28 1.91 0.01
Heterog. areas −0.01 −0.59 −1.07 −0.06 0.00 0.16 −0.01

Forest −0.08 −1.27 −1.85 −0.89 1.06 0.00 0.05
Water bodies 0.00 −0.08 −0.09 −0.08 −0.05 −0.12 0.00

* The magnitude of the value indicates the percent of LULC. The most systematic transitions are highlighted in bold.
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Table 7. Inter-class LULC transitions losses.

2018

1995 Artificial
Surfaces

Arable
Land

Permanent
Crops Pastures Heterog.

Areas Forest Water
Bodies

(i) Expected LULC if the process of change in each class were to occur randomly (%)
Artificial surfaces 0.76 0.01 0.00 0.00 0.01 0.01 0.00

Arable land 0.16 16.47 1.61 1.47 2.46 4.19 0.27
Permanent crops 0.02 0.31 6.14 0.17 0.28 0.48 0.03

Pastures 0.11 1.78 1.08 6.52 1.65 2.81 0.18
Heterog. areas 0.08 1.28 0.78 0.71 16.23 2.02 0.13

Forest 0.07 1.13 0.69 0.63 1.05 24.66 0.12
Water bodies 0.00 0.02 0.01 0.01 0.01 0.02 1.36

(ii) Observed LULC minus the proportion expected under the random process (%) *
Artificial surfaces 0.00 0.00 0.00 0.01 0.00 −0.01 0.00

Arable land 0.00 0.00 3.35 1.44 −2.29 −2.41 −0.09
Permanent crops 0.01 0.22 0.00 −0.05 0.13 −0.31 0.00

Pastures 0.02 0.92 −0.16 0.00 −1.39 0.68 −0.06
Heterog. areas 0.02 −0.64 −0.37 0.46 0.00 0.51 0.03

Forest −0.02 −0.77 −0.57 0.13 1.08 0.00 0.16
Water bodies 0.01 −0.01 0.00 0.00 −0.01 0.02 0.00

* The magnitude of the value indicates the percent of LULC. The most systematic transitions are highlighted in bold.

Likewise, while arable land systematically transitioned to pastures, the pastures class was
systematically gaining from arable land simultaneously (1.37%), and arable land was also systematically
losing to pastures (1.44%). By contrast, while pastures were systematically transitioning to arable land,
arable land was systematically gaining from pastures simultaneously (1.88%), and pastures were also
systematically losing to arable land (0.92%). Thus, the arable land and pastures classes systematically
transitioned between each other. Analyzing the situation more closely, based on Table 6, it should also
be noted that permanent crops and arable land systematically avoided gaining from forest (−1.85%
and −1.27%, respectively), and permanent crops or arable land avoided gaining from heterogeneous
areas (−1.07% and −0.59%, respectively). In Table 7, it can be seen that arable land systematically
avoided losing to heterogeneous areas (−2.29%) or to forest (−2.41%), and pastures avoided losing to
heterogeneous areas (−1.39%).

Even though forest systematically gained from pastures (1.91%), there was a weak signal of
pastures losing to forest (0.68). The analysis of the results in Table 6 also recognized that pastures
systematically avoided gaining from forest (−0.89%), while Table 7 indicated that pastures avoided
losing to heterogeneous areas (−1.39%). On the one hand, heterogeneous areas systematically gained
from forests (1.06%), while heterogeneous areas systematically avoid losing to forest (0.51%). However,
forest was systematically losing to heterogeneous areas (1.08%). From Table 6, it also appeared that
forest and heterogeneous area classes systematically avoided gaining from arable land (−1.20% and
−0.84%, respectively), and forest avoided gaining from permanent crops (−0.66%).

3.5. States Transition Probability of the Markov Chain

Table 8 presents the temporal transition probability matrix for the overall period (1995–2018),
showing the probability that each LULC type transitions to another (the off-diagonal entries indicate
the transitions probability from one LULC class to another). As expected, there is a small probability
that artificial surfaces will transition to another use (3%), and the same is observed with the water
bodies (5%). For forest areas, there is a probability of an approximately 13% change in use, specifically,
approximately 8% towards heterogeneous areas.



Sustainability 2020, 12, 4332 16 of 28

Table 8. Markov chain probability transition matrix (1995–2018) (in %).

2018
LULC Class Artificial Surfaces Arable Land Permanent Crops Pastures Heterog. Areas Forest Water Bodies

19
95

Artificial
surfaces 0.97 0.00 0.01 0.01 0.00 0.00 0.00

Arable land 0.01 0.62 0.19 0.11 0.01 0.07 0.01
Permanent

crops 0.00 0.07 0.83 0.02 0.06 0.02 0.00

Pastures 0.01 0.19 0.07 0.46 0.02 0.25 0.01
Heterog.

areas 0.00 0.03 0.02 0.06 0.76 0.12 0.01

Forest 0.00 0.01 0.00 0.03 0.08 0.87 0.01
Water bodies 0.01 0.00 0.01 0.00 0.00 0.03 0.95

With regard to croplands, there is a clear tendency for each type of agricultural use to transition to
another agricultural use or to forest. For example, pastures and arable land are the classes that are most
likely to transition. Pastures have a 25% probability of transition to forest and a 19% probability of
transition to arable land. Arable land presents a 19% probability of transition to permanent crops and
an 11% probability of transition to pastures. Heterogeneous areas have a 12% probability of transition
to forest. From all croplands, the low probability of permanent crops to transition (about 17%) and the
low probability of heterogeneous areas to transition (about 24%) to other LULC classes are noteworthy.

3.6. Classification States

The analysis in Section 3.5 showed that each state has a positive probability to achieve any other
state. Therefore, all states of the DTMC communicate, and the matrix can be cataloged as irreducible.
As there are no transition or absorbing states, the matrix is also recurrent; i.e., all states are recurrent.
Finally, as we always obtain k = 1, the recurrent states are all aperiodic. Together, since all states
are recurrent and aperiodic, communicating the matrix can be cataloged as ergodic. Thus, having a
transition probability matrix, the mean first passage time was evaluated. Table 9 gives us the mean
first passage time between 1995 and 2018. It is clear that a high number of steps are expected to be
necessary for transition to artificial surfaces and water bodies, suggesting that both of these LULC
classes are almost stable. Faster transitions are, in all cases, towards a forest state.

Table 9. Mean first passage time.

2018

1995 Artificial
Surfaces

Arable
Land

Permanent
Crops Pastures Heterog.

Areas Forest Water
Bodies

Artificial surfaces 0.0 61.3 62.0 53.2 55.4 46.1 145.1
Arable land 232.3 0.0 23.5 26.8 27.0 17.2 134.2

Permanent crops 233.3 27.9 0.0 33.1 24.2 19.8 135.7
Pastures 232.1 26.7 34.9 0.0 25.5 12.1 132.6

Heterog. areas 233.8 36.0 42.1 29.8 0.0 12.7 132.4
Forest 236.6 40.0 46.6 33.2 20.5 0.0 130.7

Water bodies 218.5 58.4 58.3 52.7 46.5 31.6 0.0

Having the recurrent states, we calculated the mean recurrence time, i.e., the expected number of
steps to return to the initial state. This measure is narrowly related to the mean first passage and states.
Even in our case, a returning probability of 1 does not signify that the predictable return time is fixed.
The results showed that all the LULC classes represent positive recurrent states (Table 10). Thus, if the
system initiates in state si, in determining the number of steps necessary to return to si for the first time,
it is obvious that it will eventually return to the initial sate. This is because, in the first step, the system
either stays at si or changes to other state s j, and from that state s j, one will ultimately reach si since the
chain is ergodic.
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Table 10. Mean recurrence time.

LULC Class 1995–2007 2007–2010 2010–2015 2015–2018 1995–2018

Artificial surfaces 22.8 122.0 11.2 76.8 8.62
Arable land 37.7 33.8 5.1 25.1 12.80

Permanent crops 56.4 9.2 6.2 1.5 7.16
Pastures 83.8 99.1 8.7 12.7 17.98

Heterog. areas 21.4 16.5 8.0 12.8 6.74
Forest 7.5 7.8 4.0 9.8 2.97

Water bodies 1.4 1.5 16.1 46.9 7.90

From Table 10, it is noticeable that, in the first period (1995–2005), the LULC classes with the
lowest mean recurrence time are forest (7.5) and water bodies (1.4), which denotes the resilience of
these two LULC classes. The next period (2005–2010) is similar to the previous one, but we start to
see the emergence of permanent crops (9.2). The last two periods emphasize the importance of forest
and permanent crops in the study area. However, the roles invert themselves, since in 2015–2018,
permanent crops achieved a major role in the landscape of Beja, and this may soon become an absorbing
state. As for the overall period from 1995 to 2018, we can confirm the forest resilience with a lower
value (2.97), whereas the different changing cycles slightly reduce the importance of permanent crops,
especially due to the dynamics between 1995 and 2007.

Table 11 shows that, on average, and after some time, following the 2015–2018 trend, 67% of the
area will be permanent crops. Likewise, considering the 2010–2015 trend, about 20% of the territory
will be arable land and about 25% forestland. In the former periods of 1995–2005 and 2005–2010,
it could be expected that 72% and 65% of the Beja district area will be water bodies, respectively. Lastly,
the analysis of the overall period (1995–2018) allows us to embrace the different dynamics observed,
avoiding trends too ephemeral to be considered in the long term and reconfirming forestland as the
most likely class to occur.

Table 11. Steady sates (%).

LULC Class 1995–2007 2007–2010 2010–2015 2015–2018 1995–2018

Artificial surfaces 0.04 0.01 0.09 0.01 0.11
Arable land 0.03 0.03 0.20 0.04 0.07

Permanent crops 0.02 0.11 0.16 0.67 0.13
Pastures 0.01 0.01 0.11 0.08 0.05

Heterog. areas 0.05 0.06 0.12 0.08 0.14
Forest 0.13 0.13 0.25 0.10 0.33

Water bodies 0.72 0.65 0.06 0.02 0.12

3.7. Simulating Future States

As stated before, in our recurrent positive (i.e., having a stationary distribution) and aperiodic
matrix, regardless of the initial probabilities, as the time step increases towards infinity, the chain
probability distribution converges. In this case, the chain has a limiting distribution, i.e., a stationary
distribution. In Figure 7, we inspect a random simulation of p(n)i j through time and show that, taking into
account the 1995–2015 probability vector (Figure 7a), states converge to two vectors. The probability of
being in States 1 (artificial surfaces) and 7 (forest) converges to higher values than the others LULC
classes. Over the long term (e.g., after 48 time steps), the increasing probability of becoming forest
overcomes the decreasing probability of becoming artificial surfaces.
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As for Figure 7b, where we focus on the most recent trend (2015–2018), the situation is somewhat
similar. While the system evolves to infinity, the probability vector converges to a vector assigning most
of the probability to State 3 (permanent crops). In this case, the probability of becoming permanent
crops overpasses that of becoming artificial surfaces only after 28 time steps. In addition, the decreasing
rate of the probability of becoming artificial surfaces is much higher in b) than in a). Lastly, it was
confirmed that the empirical probabilities behave in the same way (Figure 8).
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Therefore, the future state simulation results showed that, in 2040, about 25% of the territory
can transition use, and about 21% of that territory corresponds to agricultural land. Accordingly,
the major changes concern cropland areas, with a predicted decrease of about −3.67% in 2040 (total
60.3%) (Figure 9). However, this situation hides very different behaviors for each cropland class, since
arable land (−3.81%), pastures (−1.35%), and heterogeneous areas (−1.02%) diminish. In contrast, and
following the trend of past years, permanent crops will see its importance continue to rise (+2.93%).
The remaining LULC classes will continue expanding until 2040, where forest class will increase by
about 2.60%, artificial surfaces will increase by about 0.40%, and water bodies will increase by about
0.65%. Figure 9 shows the spatial distribution of LULC by 2040.
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In Figure 10a, we have the uncertainty map for the 2040 LULC simulation, with values ranging
from 0.03 to 0.53. Crossing these values with LULC classes shows us where the model performs
better. Thus, we have two classes that are very resilient and are therefore modeled with a low degree
of uncertainty: artificial surfaces and water bodies, both with an average uncertainty of 0.03. Next,
also with low values, are the two most dynamic and important classes of the study area, namely,
forest (0.13) and permanent crops (0.17). Finally, three classes remain, which, due to their complex
structure and overlapping, achieve the worst values: heterogeneous areas (0.23), arable land (0.38),
and pastures (0.53). In Figure 10b, we have a spatial notion of the entropy distribution with values
oscillating between 0.28 and 1.95. Spatially, both calculations, uncertainty and entropy, show a high
rate of agreement.
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4. Discussion and Conclusions

In recent decades, the abandonment of agricultural land has been an international trend.
In Portugal, this has occurred, confirming marked changes in the agricultural landscape [30,31].
Therefore, in this study, we analyzed the spatiotemporal changes that occurred in the largest district
of Portugal, Beja, which has an agricultural economic background, and provided a trend projection
for the year of 2040. Accordingly, the monitoring of the dynamics of LULC at the regional level
revealed noteworthy LULC dynamics intrinsically associated with distinct agricultural practices of
food production and distribution.

4.1. About the LULC Changes Detection

The degree of transition between the LULC classes in the Beja district was significantly different
during each period under analysis. The following findings are worth noting:

(i) In 23 years, about 28% of the Beja district experienced dozens of inter-class transitions, but the
most significant changes were in the croplands. Nevertheless, croplands remain the predominant
LULC class in more than half of the Beja district (in 2018 about 64%). Particularly, there was a
predominance of arable land that was dispersed in a great part of Beja, despite the significant
decrease in this practice between 1995 and 2018 (−5.9%). Despite the decrease, the results
confirmed the importance of cereal production in this region, as in the case of wheat [43,44].
Likewise, heterogeneous areas experienced a continuous decline (−2%), but even so this class
represents the second largest cropland in the district, which confirms the relevance of the Montado
system and the cork oak exploitation in the agroforestry areas of the district.

(ii) Of all the agricultural classes, permanent crops experienced a growing tendency. Thus, this
cropland gained prevalence after a certain period and simultaneously experienced some loss
(+5.13% between 1995 and 2018). In spite of the reduction in the territory, the substantial
increase in permanent crops suggests an emphasis on intensive farming without fallow, proved
by the enlargement of the olive grove plantation in this region and the increase in olive oil
production [43,44]. These results are consistent with other studies, despite the methodological
approach differences [31,32,45].

(iii) As for the overall period, forests experienced more gains than losses (+4.31% between 1995 and
2018). There was a clear tendency of agricultural land loss to the detriment of forests, these
results being in line with what is happening on a national level observed in other studies [30,46].
Additionally, about 63% of the total changes experienced by forests was attributed to a swap type,
which may indicate that the Beja district simultaneously experienced forms of reforestation and
deforestation between 1995 and 2018.
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(iv) Lastly, artificial surfaces and water bodies experienced more gains than losses and showed a
tendency to persist. A main cause for these observed gains is spatial conversions, such as the
expansion of the Beja airport area and the construction of new roads in the case of artificial
surfaces [47], and the Alqueva dam construction in 2002 in the case of the water bodies [31].
Nonetheless, artificial surfaces only increased about 0.45%, between 1995 and 2018, which indicates
that the increase in urban areas was not remarkable in the Beja district, thereby counteracting the
Portuguese trend towards an urban area increase [46].

Accordingly, the behavior of the inter-class transitions was significantly different between periods,
and explicitly revealed that arable land, pastures, and forest were the most dynamic LULC classes, having
experienced both damage and recovery over the years. Hence, the drivers that promote the LULC gains
are likely to differ from the drivers that lead to LULC losses [12]. On the one hand, the main cause for
cropland changes could be the competition between LULC classes, since such competition may restrict
the use of available land even when this land has suitable determinants for a specific LULC class, which
would explain higher observed losses compared with gains [12]. In addition, the political measures
of incentives for the increase in technology, for example, the almost total abandonment of traditional
agriculture or the high level of subsidies to agriculture, could be explanatory factors for the agricultural
LULC changes observed [48]. Accordingly, the LULC periodical fluctuations were depolarized by certain
drivers, such as political decisions, economic development planning, or even weather conditions, showing
the importance of the analysis of the possible drivers of changes in future work [46].

4.2. About the Dominant LULC Transitions

The analysis of the differences between the observed LULC and the expected LULC gains and
losses under a random process of changes showed that, of the several observed inter-class transitions,
few experienced dominant signals of change between 1995 and 2018 (Figure 11), namely:

(i) transitions of arable land to permanent crops and to pastures, which accounted for about 5% and
2.9%, respectively;

(ii) transitions of pastures to forest and arable land, which accounted for about 3.5% and
2.7%, respectively;

(iii) transitions of forest to heterogeneous areas, which accounted for about 2.1%.

Accordingly, the arable land tendency to lose, especially for the permanent crops class, causes some
concerns. The Beja district located in the Mediterranean region is a suitable region to produce olive oil
mainly due to favorable weather conditions. Moreover, the positive market environment prevailed
with the gradual increase in global olive oil consumption in the past decade, and the super-intensive
olive grove plantation also increased to cover the demand [45]. Thus, traditional olive grove plantations
are becoming unusual, mainly because the super-intensive cropland production profitability is higher
and because of Common Agricultural Policy (CAP) incentives [49]. While this type of agricultural
practice will start producing in the 3rd year after planting, the traditional practice can occur after
one decade. In addition, mechanization in the super-intensive olive grove is less labor-dependent,
meaning a greater capacity for profit. Hence, this all points to one conclusion: the high increase in
super-intensive olive crops to produce olive oil is highly associated with the expansion of permanent
crops, which is at the expense of arable land.

Thus, the Beja district is experiencing a new landscape dynamic, caused not only by the systematic
increase in permanent crops areas but also by the decrease of arable land that produces a historical
agricultural product: wheat (the grain of civilization). Indeed, over the last century, Beja consistently
showed remarkable importance in wheat production, mainly explained by: (i) the type of soil in Beja,
“Barros de Beja” (Beja clays), which is a dense and deep soil that is particularly suitable for this cereal
production; (ii) the type of land exploitation (latifundium) [50]; and (iii) the weather conditions (i.e.,
a temperate climate with Mediterranean characteristics), as the wheat crop has a relative tolerance to
water deficiency [51].
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Thus, these results indicate that, although arable land predominated in the Beja district between
1995 and 2018, this cropland experienced a significant decrease due to the competition between LULC
classes. Accordingly, the transition from arable land to permanent crops was relatively constant
over time, and it was more pronounced in the last period (2015–2018), presumably triggered by
the substantial increase of foreign investment (especially from Spanish investors) and the strong
exploitation of water resources, after the construction of the Alqueva dam that filled its reservoir only
10 years after construction began (in 2012) [45]. Thus, it seems essential to assess the impact of this
systematic transition, since everything points to an increasing super-intensive olive grove cultivation
system that will result in a negative impact on this land in the future [52].

In addition, arable land also experienced systematic transitions to pastures. This change was
especially strong in the first period (1995–2007), possibly due to changes in the CAP, which led to a
decrease in the areas under arable crops, in particular cereal production, and an increase in fallow land
maintenance and natural pasture. These policies arose out of a concern related to land preservation in
the context of rural planning, resulting, among other actions, in reduced dryland cereal cultivation
areas, due to the recognition of the negative impact on soil depletion and erosion resulting from
previous agricultural campaigns [53] and an international acknowledgement of the role of such areas
in mitigating climate change [54,55].

On the contrary, Beja also experienced a systematic transition from pastures to arable land.
This dynamic LULC change was substantially stronger in the first period (1995–2007) and partly
contradicts the prior interpretation of the possible factors responsible for such changes. Therefore,
following the abovementioned explanations, we believe this transition can also be linked with the
implementation of the CAP, which favors fallow land maintenance. Indeed, the arable land class mainly
comprises a land rotation system between annually harvested crops (rain-fed or irrigated) and fallow
plots, which in our study area mainly represents dry-fed and rain-fed cereal production. However,
according to the COS map nomenclature, this class can also comprise fallow land for a maximum
of five years. Additionally, agricultural pasture systems have limitations regarding their production
irregularity over a given year due to the irregularity of rainfall [56,57] and may not be economically
viable for farmers if not subsidized [50,58], which may partly justify these changes in the landscape.
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In the Beja district, a systematic transition from pastures to forestland was also found, and this was
most significant in the first period (1995–2007) and was probably associated with afforestation policy
(the 1992 CAP reform) and EU subsidies (Agenda 2000), which promoted the conversion of pastures
in Eucalyptus and Pinus forests [50] for conservation of the land’s structure and functions. Lastly,
the systematic transition from forest to heterogeneous areas, which occurred significantly between the
third period (2010–2015), is probably related to forest fires, as reforestation took place after this event
in the form of Montado to combat desertification [59].

For instance, the examination of the systematic and random transition showed that some of the
major LULC transitions, such as heterogeneous areas and arable land transitioning to forest (2.53% and
1.78%, respectively) and the heterogeneous areas transitioning to pastures (1.18%), were random or
partially systematic. In addition, it is interesting that heterogeneous areas did not experience systematic
losses, which indicates a strong signal of persistence in this LULC class. Thus, the Beja district still
retains important traditional agricultural areas, such as the Montado, an agrosilvopastoral system of
global importance.

4.3. About the LULC Future Changes

The transition probability simulation between uses for the year 2040 allowed us to understand
that imbalances can arise in the future, highlighting that about 25% of the territory is predicted to
transition, and about 21% of that territory corresponds to agricultural land. These results are a warning
that the Beja district will experience strong landscape dynamics in agricultural land, emphasizing the
importance of measures in mitigating the negative effects of such strong signals of LULC transitions [12].

Additionally, the DTMC model showed a high agreement value, proving to be a useful mechanism
for monitoring and evaluating LULC changes, with a trend projection with high applicability and
flexibility. Therefore, the main advantage of using Markov chains is their mathematical logic that
enables swift applications, as well as their possible interaction with other techniques such as remote
sensing and GIS, both of which commonly work with matrices. However, a disadvantage of this model
is that it does not explain the facts, because the process only takes into account the time variable. Thus,
predictions made through this model mostly indicate changes in the state of variables in time and not
in space. Nevertheless, the stationary probabilities are useful as indicators of the landscape shares of
each LULC class and provide highly valuable information in decision-making processes.

4.4. Main Conclusions and Future Studies

The purpose of this study was to analyze the spatiotemporal evolution of LULC in Beja from
1995 to 2018 and simulate the future development for the year 2040. This analysis indicates that
in 23 years there were significant changes that deeply modify the Beja district landscape, mainly
due to two opposite phenomena: the intensification of agricultural practices and the afforestation of
agricultural lands. The observed LULC patterns reflect the last decade’s structural changes in the
Portuguese economy and society and confirm the impact of political decisions and different agricultural
activity management, which led to the loss of a significant amount of agricultural heritage. In fact, this
regional landscape and the traditional features of agricultural land are facing an uneven transformation
dynamic that does not take into account either the balance or the environmental enhancement of the
local diversity agricultural systems [49].

The acquired spatiotemporal knowledge regarding the agricultural LULC changes allowed us to
obtain a general picture of the main transitions of a region of Portugal that has more importance in the
regional agricultural production sector, particularly in the production of cereals, such as wheat, barley,
oats, and other products such as olive oil and cork. An understanding of the systematic transitions
and the locations thereof provides useful insight into ecosystem service management and contributes
to future sustainability strategies. Nonetheless, this statistical approach is exclusively based on an
analysis of the LULC transition matrix, and the interpretation of the LULC transitions is based on
a sequence of historical determinism documented in prior investigations (e.g., [49,57,60]), so any
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factor mentioned to rationalize the systematic transition is based only on assumptions of historical
fact. Therefore, additional research is necessary to assess the many processes that create these LULC
changes, which have been linked to dozens of possible drivers and their different levels of feedback.
Still, providing an understanding of the inter-class transitions that have occurred as systematic changes
has proven to be a straightforward, effective approach that allows us to differentiate the predominating
quantity transitions from those that experienced a single abrupt episode process of change influenced
by factors that occur suddenly.

The information obtained contributed to sciences related to the earth and human society on a
variety of levels, providing effective information for economic and environmental monitoring and
evaluation, resulting in informed policy decisions and in the design of anticipatory measures response
to change. Furthermore, in this exploratory study, we used COS maps, official Portuguese LULC
data produced by a governmental institution (DGT), and these data were advantageous because of
their higher cartographic detail and were characterized by temporal continuity. This highlights the
importance of having an entity responsible for producing LULC thematic cartography with regularity
and reliability and making it available free of charge, as it can be used for multiple purposes, such
as territorial planning and management, ecosystem service mapping, and the identification of areas
vulnerable to rural fires (e.g., [34,61–63]).
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