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Abstract: Since the implementation of the Belt and Road Initiative, China’s total amount of outward
foreign direct investment (OFDI) has increased each year and this has caused its relationship with
carbon emissions (CO2e) to receive great attention recently. Forecasting China’s CO2e accurately
by considering the impact of OFDI is important since the government can use it to formulate an
appropriate emissions plan to fulfill its carbon reduction commitments. Because the relationship
between OFDI and CO2e has nonlinear characteristics, a nonlinear grey multivariable model with
fractional-order accumulation (NFGM(1,N)) was proposed in this study. To enhance the prediction
accuracy, an optimization process was used to determine the parameters. The outcomes of the variable
fractional order showed that fractional-order accumulation can better extract the grey information
hidden in the original data, which confirmed the principle of new information priority. The result of
the power coefficient indicated a nonlinear relationship between the CO2e and OFDI. Based on the
prediction performance, the prediction accuracy of the NFGM(1,N) model was proven to be superior
to those of the ARMA model, linear regression model, the GM(1,1), GM(1,N), and FGM(1,N) models.
The empirical results also revealed that OFDI increased the CO2e in China. The relationship between
the CO2e and OFDI exhibits a U-shaped development based on further predictions for the 2018–2030
period. Finally, some suggestions for long-term CO2e reduction plans were provided in this paper.

Keywords: carbon emissions forecasting; nonlinear grey multivariable model; fractional-order
accumulation; OFDI

1. Introduction

In recent years, excessive carbon dioxide emissions (CO2e) have caused a series of severe
environmental problems, such as global warming, the melting of glaciers, and the frequent occurrence
of extreme weather, and they also have had a harmful influence on human health. For those reasons,
countries around the world have put their efforts into CO2e reduction and have committed to setting
emissions reduction goals. China, as the largest developing country with the largest CO2e in the
world [1], promised at the UN Climate Change Summit in 2009 (COP15) that the CO2e per unit of
GDP will be reduced by 40%–45% at the end of 2020 compared to 2005. Moreover, at the Paris Climate
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Change Conference in 2015 (COP21), China further committed to reduce its CO2e by 60%–65% by 2030
compared to 2005. Therefore, it is meaningful for the government to accurately forecast China’s CO2e
to enable it to comprehend the trend of emissions and to realize its CO2e reduction commitment.

The issues regarding the impact factor analysis and prediction of CO2e have received great attention
from both academics and practitioners. Previous studies have found that economic growth, energy
consumption, urban population, and research and development (R&D, for details of Nomenclature,
refer to “Appendix A”) were important factors affecting CO2e [2,3], predicted emissions by considering
the effects of these factors [4–6]. General speaking, reducing CO2e mainly depends on technological
advances, which come from the R&D undertaken and foreign direct investments (FDI) [7–9]. In the
past few decades, many academics have focused on analyzing the relationship between FDI and
CO2e, and they concluded that inward FDI (IFDI) and outward FDI (OFDI) could affect CO2e [10,11].
However, compared to IFDI, there are still few studies on the relationship between OFDI and CO2e,
and no complete theoretical system has been generated. The results of previous studies showed that
OFDI had an increased or a reduced impact on CO2e [12,13]. In the context of the uncertain effects,
it can be recognized that there is a nonlinear relationship between OFDI and CO2e [14]. With the
implementation of the “go out” strategy, especially the Belt and Road Initiative proposed in 2013,
China’s OFDI increased continuously and first surpassed IFDI in 2016, when it reached 216.42 million
U.S. dollars. Therefore, in consideration of the upward trend of OFDI, it is essential to analyze the
relationship between China’s CO2e and OFDI, and forecast emissions by evaluating the effect of OFDI.

Due to the increasing trend of OFDI, forecasting China’s CO2e by considering the impact of OFDI
helps to improve the prediction accuracy, which also makes the grey multivariable GM(1,N) model
stand out from the numerous grey models. The GM(1,N) model, which was proposed by Deng [15], is a
prediction model with one system characteristics variable and N-1 relevant variables. More specifically,
the GM(1,N) model is a typical causal prediction model because it takes full account of the effect of
the relevant factors on the system behavior change in the whole modeling process [16]. At present,
the traditional GM(1,N) model uses the first-order accumulated generating operation (1-AGO) to
generate a sequence; however, 1-AGO is not consistent with the principle of the new information
priority in the grey system theory. Therefore, Wu et al. [17] proposed fractional-order accumulation
to give separate weights to older and newer data, which had been combined with the GM(1,1) and
GM(1,N) models [18–20]. In this study, the fractional-order accumulated generating operation is
introduced to the traditional GM(1,N) model (the FGM(1,N) model) to further improve the prediction
accuracy. Furthermore, the GM(1,N) is a linear prediction model; in other words, with this model it
is not appropriate to reflect the nonlinear relationship between system characteristics variable and
relevant variables in reality [21]. Referring to the nonlinear grey model used in previous studies [22,23],
this study proposes the nonlinear fractional grey multivariable model, abbreviated as the NFGM(1,N),
to predict China’s CO2e by considering the nonlinear relationship between the OFDI and emissions.
The fractional order, power, and the coefficients in modeling, are the crucial issues which influence
the prediction accuracy of the proposed model. Therefore, finally, this study applies the optimization
algorithm to determine the values of the parameters.

The rest of this paper is organized as follows. Section 2 is a review of previous related literature.
The proposed nonlinear fractional grey multivariable model is presented in Section 3. Section 4 predicts
the CO2e in China by considering the effect of the OFDI. The conclusions are listed in Section 5.

2. Literature Review

2.1. Relationship between OFDI and Carbon Emissions

Compared with the studies of the relationship between IFDI and CO2e in host countries, there
has been little research concentrating on the effects of OFDI from the home country’s perspective [24].
Among the existing studies, on the one hand, most of them concluded that the OFDI had an impact
on reducing CO2e. Liu and Gong [25] and Jiang et al. [14] concluded that an increase in OFDI had a
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positive effect on emissions reduction. Nie and Liu [24] used provincial panel data to analyze the effect
of OFDI on CO2e and found that although OFDI was beneficial to reduce the emissions, it was restricted
by the threshold effect of urbanization. Long and Zhou [26] mentioned that OFDI had a positive
effect on carbon productivity because of the reverse technology spillover effect. More specifically,
they found that the carbon productivity increased by 0.37% for each 10% of the increases in the OFDI
reverse technology spillover effect, but the effect was different in different regions. On the other
hand, several studies hold the opposite view; that is, that OFDI would increase the CO2e in the home
country. By using an applied panel threshold model, Yang and Sun [27] found that OFDI aggravated
environmental pollution. Liu and Li [13] used provincial panel data to examine China’s home country
effect on CO2e and found that the per capita CO2e increases by 0.012% for each 1% increase in OFDI,
but there were regional differences in this result.

The reasons for the uncertain relationship between OFDI and CO2e can be summarized as
follows. First, based on Kojima’s theory of marginal industry expansion, one country prefers
to transfer its marginal industries with high energy consumption and emissions to the other
country, which causes the CO2e to decline in the home country due to the emissions transference
effect. Second, as Buckley et al. [28] stated, China’s OFDI was motivated by resource seeking; thus,
the resource-intensive industries were transferred by OFDI, which reduced the CO2e in the home
country [25]. However, as stated in the study of Liu and Li [13], China’s OFDI was not dominated
by the industries with high emissions, so the emissions transference motivation was not clear. Third,
owing to the reverse spillover effects from the resources and technologies backflow, the energy-related
technical levels in the home country were enhanced, thereby reducing the CO2e [29,30]. However,
the technological spillover effect on China’s emission reduction will be varied because of the differences
in economic development and absorptive capacity in different regions.

According to the reviews above, the general conclusion can be drawn that OFDI has a significant
impact on CO2e, but the effect is uncertain. Furthermore, the positive or negative effect of OFDI on
CO2e indicates that there is a nonlinear relationship between these two variables [31,32].

2.2. China’s CO2e Forecasting Using Grey Model

The widely used prediction models can be roughly categorized into two groups: econometrics
methods, including regression models and time series analyses, and intelligence computational
technologies. However, knowing the sample distribution and having a large amount of data are
the bases of accurate predictions with econometrics methods. Successful intelligence computational
technology also needs a large amount of training data [17]. Under these circumstances, the grey model,
which works well with an uncertain system, small sample size, poor information, and without the
need to make any statistical assumptions, has drawn considerable attention. Grey models have been
successfully applied in several disciplines and achieved great performance [20,33–35].

A grey prediction model and the improved versions of it have often been applied to the issues
related to China’s CO2e forecasting. Overall, the grey models used can be divided into univariable
and multivariable models; these are represented by the GM(1,1) and GM(1,N) model, respectively.
To examine whether China can achieve its peak emissions commitment by 2030, Li et al. [36] applied the
traditional GM(1,1) model to predict China’s CO2e. Meng et al. [37] predicted the energy-related CO2

in China using a small-sample hybrid model that combined the GM(1,1) model with a linear model,
and they estimated the parameters by using a non-constrained optimization equation. Considering the
nonlinear feature of a sequence, Pao et al. [38] forecast China’s CO2e by the nonlinear grey Bernoulli
NGBM(1,1) model, and they used a combined iterative numerical method as an optimization method
to improve the prediction accuracy. Wu et al. [39] applied a conformable fractional non-homogeneous
grey model to predict the CO2e in the BRICS (Brazil, Russia, India, China, and South Africa) countries.
However, because the GM(1,1) model only reflects the sequence response to time, many studies applied
the GM(1,N) model to predict China’s CO2e while considering the effects of relevant factors [40].
Wu et al. [5] predicted the CO2e in the BRICS countries by using GM(1,N) with an opposite-direction
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accumulated generating operator. Wang and Ye [21], Wang and Li [23] applied a nonlinear grey
multivariable model and derived the non-equigap grey Verhulst model to predict the CO2e in
combination with optimization algorithms.

A review of the literature shows that the fractional-order accumulative generation operation has
been combined with the grey model and achieved great prediction performance. The introduction of
fractional order only changes the way the sequence accumulation generates and does not change the
linear feature of the GM(1,N) model, so it is still inappropriate to reflect the nonlinear relationship
between the system variables and relevant variables. Therefore, this study proposed the NFGM(1,N)
model and introduced the power model to the FGM(1,N) model to predict China’s CO2e by reflecting
the nonlinear effect of OFDI.

3. Methodology

The NFGM(1,N) model is an extension of the FGM(1,N) model and reflects the nonlinear
relationship between the dependent variable and independent variables by introducing the power
model to the FGM(1,N) model. The processes of the proposed NFGM(1,N) model and the determination
of the parameters are demonstrated in this section. For details of traditional GM(1,N) model, refer to
“Appendix B”. A numerical example is then used to verify the validity of the NFGM(1,N) model.

3.1. Nonlinear Fractional Grey Multivariable Model

The computational steps to construct an NFGM(1,N) model are demonstrated as follows.
Step 1: Present the data sequences. The system characteristics sequence X(0)

1 =(
x(0)1 (1), x(0)1 (2), . . . , x(0)1 (n)

)
and relevant factors sequence X(0)

i =
(
x(0)i (1), x(0)i (2), . . . , x(0)i (n)

)
are

presented, where i = 2, 3, . . . , N.
Step 2: Perform the accumulated generating operation. The accumulative sequence X(ri)

i =(
x(ri)

i (1), x(ri)
i (2), . . . , x(ri)

i (n)
)

can be obtained from X(0)
i by the ri-order accumulated generating

operation (ri-AGO) as follows:

x(ri)
i =

k∑
j=1

(
k− j + ri − 1

k− j

)
x(0)i ( j), k = 1, 2, . . . , n (1)

where
(

k− j + ri − 1
k− j

)
=

(k− j+ri−1)(k− j+ri−2)...(ri+1)ri
(k− j)! . Based on the study of Wu et al. [41], r should be

taken in the interval (0,1).
Step 3: Construct the NFGM(1,N) model. Drawing on the concept from the GM(1,1) model, a grey

control parameter term u is added to the model. Therefore, the NFGM(1,N) model is given as

(
x(ri)

1 (k) − x(ri)
1 (k− 1)

)
+ az(ri)

1 (k) =
n∑

i=2

bi

(
x(ri)

i (k)
)γi

+ u (2)

where a, bi, and u are the coefficients of the modeling, which represent the development term, the driving
coefficients, and grey control parameter, respectively. Moreover, ri and γi are the order of the fractional
for different variables and the power, respectively. The NFGM(1,N) model reverts to the FGM(1,N)
model when γi = 1, and it reverts to the traditional GM(1,N) model when ri = 1 and γi = 1.

Step 4: Estimate the coefficients. The parameters a, bi, and u can be estimated by using the
OLS method

[a, bi, u]T = (BTB)
−1

BTY (3)

where
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B =



−z(r1)
1 (2)

(
x(r2)

2 (2)
)γ2

· · ·

(
x(r2)

N (2)
)γN

1

−z(r1)
1 (3)

(
x(r2)

2 (3)
)γ2

· · ·

(
x(r2)

N (3)
)γN

1
...

...
. . .

... 1

−z(r1)
1 (n)

(
x(r2)

2 (n)
)γ2

· · ·

(
x(r2)

N (n)
)γN

1


, Y =


x(r1)

1 (2) − x(r1)
1 (1)

x(r1)
1 (3) − x(r1)

1 (2)
...

x(r1)
1 (n) − x(r1)

1 (n− 1)


(4)

where the background values of the system characteristics variable z(ri)
1 are calculated by an adjoining

mean generated sequence as follows:

z(r1)
1 (k) = 0.5×

(
x(r1)

1 (k) + x(r1)
1 (k− 1)

)
(5)

Then, the time response function can be represented as

x̂(r)1 (k) =

x(r)1 (1) −
1
a

 n∑
i=2

bi

(
x(ri)

i (k)
)γi

+ u


e−a(k−1) +

1
a

 n∑
i=2

bi

(
x(ri)

i (k)
)γi

+ u


 (6)

Step 5: Perform the inverse accumulated generating operation. The r-order inverse fractional
accumulation can be defined as

x(−r)(k) =
k∑

i=1

(
k− i− r− 1

k− i

)
x(0)(i) (7)

Therefore, the predicted values X̂(0)
1 can be calculated by using the inverse ri-order accumulated

generating operation (ri-IAGO) as follows:

x̂(0)1 (k) =
(
x̂(ri)

1 (k)
)(−ri)

=
k∑

j=1

 k− j− ri − 1
k− j

x̂(r)1 ( j) −
k−1∑
j=1

 k− 1− j− ri − 1
k− 1− j

x̂(r)1 ( j), k = 2, 3, . . . , n (8)

where x̂(r)1 (1) = x(0)1 (1).
Step 6: Determine the parameters. From the modeling process, once the parameters ri and γi are

determined, the other parameters a, bi, and u are ascertained. The objective of the optimal value of
ri and γi should be to make the proposed model have the highest accuracy with the given sample.
Therefore, this study establishes an optimization problem where the objective is to minimize the error
of the proposed model by changing the values of ri and γi, and the constraints follow the modeling
steps of the proposed model. The mean absolute percentage error (MAPE) is applied to assess the
prediction performance. In this study, from the perspective of improving the prediction accuracy,
taking the minimum MAPE of the modeling as the target, and the relationship between the parameters
of the model as a constraint, the non-linear optimization processes are built as follows:

min
ri, γi

MAPE =
1
n

n∑
k=1

∣∣∣∣∣∣∣∣x
(0)
1 (k) − x̂(0)1 (k)

x(0)1 (k)

∣∣∣∣∣∣∣∣× 100%

s.t.



[a, bi, u]T = (BTB)−1BTY

x̂(r)1 (k) =
[
x(r)1 (1) − 1

a

(
n∑

i=2
bi

(
x(ri)

i (k)
)γi

+ u
)]

e−a(k−1) +

[
1
a

(
n∑

i=2
bi

(
x(ri)

i (k)
)γi

+ u
)]

x̂(r)1 (1) = x(0)1 (1)

x̂(0)1 (k) =
(
x̂(r)1 (k)

)(−r)
=

k∑
j=1

 k− j− ri − 1
k− j

x̂(r)1 ( j) −
k−1∑
j=1

 k− 1− j− ri − 1
k− 1− j

x̂(r)1 ( j), k = 2, 3, . . . , n
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The above model can be solved by numerical software programing [42].

3.2. An Illustrative Example

To compare the modeling and prediction accuracy, a numerical example from Zeng’s [43] work is
used to verify the validation of the proposed NFGM(1,N) model. The system characteristics behavior
sequence is X1

(0) = (11.4918, 12.2255, 13.3201, 14.5930, 17.3891, 21.0232, 26.4446, 23.5325, 46.5982),
and the relevant factor sequence is X2

(0) = (2.6487, 3.7183, 5.4817, 8.3891, 13.1825, 21.0855, 34.1155,
55.5982, 91.0171). The backward data in the sequence represent the newer information. The first eight
data are used for model fitting, and the ninth datum is used for ex-post testing. The econometric
model, including the autoregressive moving average (ARMA) model and the linear regression model,
GM(1,1), GM(1,N), FGM(1,N), and NFGM(1,N) models are applied to the numerical example. However,
because the system characteristics behavior sequence fails to pass unit root test, which means that
the data is nonstationary, the sequence cannot be regressed by the ARMA model. The prediction
results of the remaining models are shown in Table 1. The MAPEs of the linear regression, GM(1,1),
GM(1,N), FGM(1,N), and NFGM(1,N) models in relation to model fitting are 2.91%, 5.51%, 1.51%,
1.10%, and 0.64%, respectively. The MAPEs of the ex-post testing are 8.63%, 15.87%, 3.67%, 9.60%, and
2.24%, respectively. As can be seen from Table 1, the prediction accuracy of the NFGM(1,N) model
is much better than that of the other models, whether for model fitting or ex-post testing. Figure 1
shows the superiority of the prediction accuracy of the proposed NFGM(1,N) model over the linear
regression model, GM(1,1), GM(1,N), and FGM(1,N) models. Therefore, the proposed NFGM(1,N)
model performs well in this numerical example compared with the other models.

Table 1. Predicted values and errors for numerical example.

No. Actual
Linear Regression GM(1,1) GM(1,N) FGM(1,N) NFGM(1,N)

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

1 11.4918 12.2438 6.54 11.4918 0.00 11.4918 0.00 11.4918 0.00 11.4918 0.00
2 12.2255 12.7083 3.95 10.2363 16.27 12.0729 1.25 12.1431 0.67 11.8068 3.43
3 13.3201 13.4741 1.16 12.041 9.60 13.3124 0.06 13.2250 0.71 13.2241 0.72
4 14.9530 14.7367 1.45 15.0235 0.47 14.9529 0.00 14.8553 0.65 14.9533 0.00
5 17.3891 16.8184 3.28 18.2006 4.67 17.2267 0.93 17.3104 0.45 17.3901 0.01
6 21.0232 20.2505 3.68 22.0495 4.88 20.5136 2.42 21.0355 0.06 20.9479 0.36
7 26.2226 25.9092 1.20 26.7124 1.87 25.4344 3.01 26.7891 2.16 26.3175 0.36
8 34.5325 35.2387 2.05 32.3614 6.29 33.0049 4.42 35.9340 4.06 34.6176 0.25

MAPE 2.91 5.51 1.51 1.10 0.64
9 46.5982 50.6204 8.63 39.205 15.87 44.8886 3.67 51.0725 9.60 47.6437 2.24

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 14 

To compare the modeling and prediction accuracy, a numerical example from Zeng’s [43] work 
is used to verify the validation of the proposed NFGM(1,N) model. The system characteristics 
behavior sequence is X1(0) = (11.4918, 12.2255, 13.3201, 14.5930, 17.3891, 21.0232, 26.4446, 23.5325, 
46.5982), and the relevant factor sequence is X2(0) = (2.6487, 3.7183, 5.4817, 8.3891, 13.1825, 21.0855, 
34.1155, 55.5982, 91.0171). The backward data in the sequence represent the newer information. The 
first eight data are used for model fitting, and the ninth datum is used for ex-post testing. The 
econometric model, including the autoregressive moving average (ARMA) model and the linear 
regression model, GM(1,1), GM(1,N), FGM(1,N), and NFGM(1,N) models are applied to the 
numerical example. However, because the system characteristics behavior sequence fails to pass unit 
root test, which means that the data is nonstationary, the sequence cannot be regressed by the ARMA 
model. The prediction results of the remaining models are shown in Table 1. The MAPEs of the linear 
regression, GM(1,1), GM(1,N), FGM(1,N), and NFGM(1,N) models in relation to model fitting are 
2.91%, 5.51%, 1.51%, 1.10%, and 0.64%, respectively. The MAPEs of the ex-post testing are 8.63%, 
15.87%, 3.67%, 9.60%, and 2.24%, respectively. As can be seen from Table 1, the prediction accuracy 
of the NFGM(1,N) model is much better than that of the other models, whether for model fitting or 
ex-post testing. Figure 1 shows the superiority of the prediction accuracy of the proposed NFGM(1,N) 
model over the linear regression model, GM(1,1), GM(1,N), and FGM(1,N) models. Therefore, the 
proposed NFGM(1,N) model performs well in this numerical example compared with the other 
models. 

Table 1. Predicted values and errors for numerical example. 

No. Actual 
Linear Regression GM(1,1) GM(1,N) FGM(1,N) NFGM(1,N) 
Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE 

1 11.4918 12.2438 6.54 11.4918 0.00 11.4918 0.00 11.4918 0.00 11.4918 0.00 
2 12.2255 12.7083 3.95 10.2363 16.27 12.0729 1.25 12.1431 0.67 11.8068 3.43 
3 13.3201 13.4741 1.16 12.041 9.60 13.3124 0.06 13.2250 0.71 13.2241 0.72 
4 14.9530 14.7367 1.45 15.0235 0.47 14.9529 0.00 14.8553 0.65 14.9533 0.00 
5 17.3891 16.8184 3.28 18.2006 4.67 17.2267 0.93 17.3104 0.45 17.3901 0.01 
6 21.0232 20.2505 3.68 22.0495 4.88 20.5136 2.42 21.0355 0.06 20.9479 0.36 
7 26.2226 25.9092 1.20 26.7124 1.87 25.4344 3.01 26.7891 2.16 26.3175 0.36 
8 34.5325 35.2387 2.05 32.3614 6.29 33.0049 4.42 35.9340 4.06 34.6176 0.25 
 MAPE  2.91  5.51  1.51  1.10  0.64 
9 46.5982 50.6204 8.63 39.205 15.87 44.8886 3.67 51.0725 9.60 47.6437 2.24 

 

Figure 1. Prediction precision of different prediction models for numerical example. 

 

Figure 1. Prediction precision of different prediction models for numerical example.



Sustainability 2020, 12, 4325 7 of 14

4. Empirical Study

4.1. Data Description

Because the prediction accuracy of the proposed NFGM(1,N) model for the numerical example
has been proved to be better than that of the other models, it is applied to forecast China’s CO2e
by considering the effect of OFDI. In this study, the NFGM(1,N) model is constructed for the
CO2e as a system characteristic behavior sequence and the OFDI as a relevant variable sequence.
More specifically, based on the commitments made by at the UN Climate Change Summit, the CO2e
per unit of GDP in China is chosen to represent the CO2e, and the total amount of OFDI is selected
to represent the OFDI. The raw data, shown in Table 2, were obtained from the International
Energy Association (https://www.iea.org) and the Development Indicators from the World Bank
(https://data.worldbank.org). The data from 2005 to 2014 are reserved for model fitting, and the data
from 2015 to 2017 are used for ex-post testing.

Table 2. Carbon emissions (CO2e) and outward foreign direct investment (OFDI) for 2005–2017.

Year CO2e OFDI

2005 2.37 13.73
2006 2.17 23.93
2007 1.82 17.15
2008 1.45 56.74
2009 1.40 43.89
2010 1.29 57.95
2011 1.14 48.42
2012 1.03 64.96
2013 0.96 72.97
2014 0.87 123.13
2015 0.83 174.39
2016 0.81 216.42
2017 0.76 138.29

4.2. Empirical Results

Following the modeling process mentioned above, the NFGM(1,N) model can be formulated
as follows:

dx(0.01)
1 (t)

dt
+ 0.1445x(0.01)

1 (t) = 0.000104(x(0.3)
2 (t))

0.91
+ 0.0405

where the optimal fractional orders for the CO2e and OFDI, and the optimal value of the power
are 0.01, 0.3, and 0.91, respectively. The values of the fractional order indicate that giving greater
weight to new information improves prediction accuracy, which is also consistent with the principle of
new information priority. As explained by Wu et al. [17] and Ding et al. [4], the driving coefficient
bi can be used to interpret the relationship between the system characteristic behavior and relevant
factors. In this study, the driving coefficient is b2 = 1.04 × 10−4, which indicates that there is a positive
relationship between the CO2e and OFDI. In other words, the CO2e increase with increasing OFDI.
To examine the prediction accuracy of the proposed NFGM(1,N) model, this model is compared with
the ARMA model, linear regression model, GM(1,1), GM(1,N), and FGM(1,N) models. The actual and
predicted values of the five competing models are displayed in Table 3. Table 3 shows that the MAPEs
of the ARMA model, linear regression model, GM(1,1), GM(1,N), FGM(1,N), and NFGM(1,N) models
for model fitting are 2.08%, 18.18%, 3.57%, 12.47%, 2.20%, and 2.16%, respectively. The MAPEs in
relation to ex-post testing are 4.32%, 126.04%, 19.41%, 96.75%, 5.22%, and 3.06%, respectively. Thus,
although the prediction accuracy of the NFGM(1,N) model is slightly inferior to that of the ARMA
model for model fitting, the prediction accuracy of NFGM(1,N) is much better than that of the other
competing models for ex-post testing.

https://www.iea.org
https://data.worldbank.org
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Table 3. Prediction accuracies of the competing models for CO2e.

Year Actual
ARMA(1,1) Linear Regression GM(1,1) GM(1,N) FGM(1,N) NFGM(1,N)

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

2005 2.37 2.37 0.00 1.97 16.78 2.37 0.00 2.37 0.00 2.37 0.00 2.37 0.00
2006 2.17 2.10 3.13 1.83 15.45 2.04 5.78 2.11 2.50 2.07 4.64 2.07 4.62
2007 1.82 1.82 0.07 1.92 5.46 1.82 0.25 1.82 0.03 1.81 0.48 1.81 0.54
2008 1.45 1.59 9.85 1.39 4.24 1.62 11.63 1.68 16.07 1.61 10.70 1.61 10.74
2009 1.40 1.41 0.70 1.56 11.80 1.44 3.28 1.48 5.96 1.43 2.25 1.43 2.08
2010 1.29 1.25 2.54 1.37 6.76 1.29 0.03 1.38 7.41 1.28 0.58 1.28 0.82
2011 1.14 1.13 0.63 1.50 32.34 1.15 0.99 1.22 7.29 1.15 1.35 1.14 0.71
2012 1.03 1.02 0.93 1.28 23.77 1.02 1.20 1.18 14.44 1.04 0.77 1.03 0.05
2013 0.96 0.94 2.25 1.17 22.01 0.91 5.25 1.14 18.23 0.95 1.19 0.94 2.05
2014 0.87 0.87 0.65 0.50 43.18 0.81 7.27 1.34 52.77 0.87 0.05 0.87 0.03

MAPE 2.08 18.18 3.57 12.47 2.20 2.16
2015 0.83 0.81 1.84 −0.19 123.34 0.72 12.56 1.59 92.07 0.81 1.69 0.82 0.20
2016 0.81 0.76 6.16 −0.76 193.19 0.64 20.90 1.82 123.25 0.76 6.53 0.79 3.41
2017 0.76 0.72 4.94 0.29 61.59 0.57 24.77 1.33 74.94 0.71 7.45 0.72 5.58

MAPE 4.32 126.04 19.41 96.75 5.22 3.06
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The prediction precision of different models is illustrated in Figure 2.
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The above results confirm that the proposed NFGM(1,N) model has good practicability, and it can
better predict China’s CO2e by considering the effect of OFDI than the other models. Therefore, it has
been applied to forecast the CO2e from 2018 to 2030. The predicted amount of OFDI from 2018 to 2030
is generated by the GM(1,1) model. The predicted value of the relevant factor from 2018 to 2030 is
then substituted into the NFGM(1,N) model, which thereby enables China’s CO2e predictions, after
considering the effect of OFDI, to be obtained correspondingly. The predicted OFDI and CO2e are
shown in Table 4. It is noteworthy that China’s carbon emissions will decrease initially, and then climb.
Additionally, the prediction of China’s CO2e in 2020 and 2030 are 0.64 and 0.85, respectively, which
represent reductions of 72.83% and 63.97%, respectively, compared with that of 2005. The calculation
results show that through unremitting efforts, China can fulfill the CO2e reduction commitments.

Table 4. Predicted OFDI and CO2e in 2018–2030.

Year OFDI
Prediction

CO2e
Prediction

2018 96.47 0.66
2019 203.89 0.66
2020 230.88 0.64
2021 261.44 0.63
2022 296.04 0.63
2023 335.23 0.64
2024 379.60 0.65
2025 429.85 0.67
2026 486.75 0.69
2027 551.18 0.72
2028 624.13 0.76
2029 706.75 0.80
2030 800.30 0.85

Figure 3 is an intuitive display of the prediction results of CO2e for the model fitting, ex-post,
and out-sample forecasting. From Figure 3 and Table 4, the data sequence of the prediction results
indicates that there is a U-shaped relationship between CO2e and OFDIs.
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4.3. Discussion and Suggestions

To determine whether China can deliver on its carbon reduction commitments, this study proposed
an NFGM(1,N) model to forecast China’s CO2e by considering the nonlinear relationship with OFDI.
This model was then applied to forecast the CO2e in China from 2018 to 2030. Several conclusions
can be obtained. First, based on the driving coefficient of the NFGM(1,N) model, the increasing OFDI
increases the CO2e in China, which is consistent with the previous studies of Yang and Sun [27] and
Liu and Li [13]. As far as this relationship is concerned, the carbon emission transferring effect and
technology spillover effect of OFDI are not so clear. The reason for this result may be that, on the
one hand, China’s OFDI mainly focuses on low energy consumption industries such as the service
industry; thus, industries with high emissions remain in the home country. On the other hand, China’s
current OFDI is mainly motivated by resource seeking, rather than technology seeking, so the influence
on technological upgrading in the home country is insignificant. Second, the relationship between
the CO2e and OFDI is U-shaped from the perspective view of prediction. According to the forecasts,
although China can achieve the emission reduction goal in 2020 and 2030, due to the long-term
possibility of emissions increasing, China still faces great pressure to reduce the CO2e.

Based on the forecast results, China’s CO2e appear to be on an upward trajectory in the future.
In the face of this less-than-optimistic situation, appropriate policies and suggestions are proposed
in the study. First, the government should encourage OFDI with technology-seeking motivation.
Although rising OFDI could lead to higher carbon emissions in the future, the reverse spillover effect on
technological upgrading that has been confirmed by many studies should not be overlooked. Therefore,
the government should encourage OFDI with a technology-seeking orientation. In particular, OFDI to
the countries with advanced technologies should be encouraged, which can enable domestic enterprises
to absorb more advanced knowledge and technology and promote domestic carbon productivity.
Second, the government should formulate long-term CO2e reduction plans. It can be seen from the
relationship that the conflict between OFDI and CO2e cannot be easily resolved in the short term.
As an important component of the “opening-up” strategy, in one respect, access to resources, advanced
technology, and markets through OFDI can be important drivers of domestic economic development.
In another respect, although it promotes economic development, OFDI will cause an increase in carbon
emissions. In the long run, the low-carbon economy should be regarded as the strategic goal of any
development in China. Although China’s CO2e reduction commitments can be achieved, formulating
appropriate long-term plans for OFDI and CO2e reduction are still needed to promote sustainable
economic development.
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5. Conclusions

China, as the largest developing country, has been plagued by the problem of excessive CO2e for
many years. Whether China can fulfill its commitments to emission reduction has become a global
focus. Since the Belt and Road Initiative was put forward, OFDI has been increasing, and this has
become an important part of the opening-up strategy. Meanwhile, due to the increasing emphasis on
environmental protection, the issues related to the impact of OFDI on CO2e have received general
attention. Therefore, this study proposed an NFGM(1,N) model to accurately predict China’s CO2e
by considering the nonlinear effect of OFDI. The results showed that the prediction accuracy of the
proposed NFGM(1,N) model was superior to the other competing prediction models.

The NFGM(1,N) model was applied to the prediction of China’s CO2e for the 2018–2030 period
because it has the smallest rate of error. According to the forecasts, China’s CO2e will decrease by 72.83%
and 63.97% in 2020 and 2030, respectively, compared to 2005. Moreover, the prediction of China’s CO2e
presents a U-shaped trend in the long run, which indicates that China still faces numerous pressures
related to CO2e reduction. Therefore, China’s government should encourage OFDI motivated by
technology seeking, maximize the reverse spillover effects on home country technologies, and develop
long-term plans to further reduce CO2e and to promote sustainable economic development.

All the empirical results showed that the proposed NFGM(1,N) model had a higher prediction
accuracy than the other models and was an appropriate tool to forecast China’s CO2e. However,
based on the empirical results, for the year 2008, the difference between actual value and predicted value
in NFGM(1,N) model is much larger than other year. The larger error may be due to the impact on the
global economy of the sudden global financial crisis in 2008. Furthermore, COVID-19 swept the world
at the end of 2019 and the beginning of 2020, which disastrously impacts the global economy, and more
or less affects China’s OFDI and CO2e in 2020, resulting in a deviation between the predicted value and
the real value. The influence of shock disturbances has always been a huge challenge for any prediction
model [44]. Therefore, in future studies, the prediction model will be further improved to reduce
the influence of shock disturbances, such as global financial crisis and COVID-19, on the predicted
results. Additionally, different optimization algorithms, including neural networks, PSO, and others
can be introduced into the NFGM(1,N) model to determine the optimal parameters. Furthermore,
some approaches, such as the GM(1,1) model, Fourier series, and Markov chain, are available to
combine with the NFGM(1,N) as the residual modification model to further improve the prediction
accuracy. Finally, the other relevant factors related to CO2e should be further analyzed.
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Appendix A. Nomenclature

CO2e Carbon dioxide emissions
OFDI Outward foreign direct investment
GM Grey model
R&D Research and development
FGM Grey model with fractional-order accumulated generating operation
NFGM Nonlinear grey model with fractional-order accumulated generating operation
ARMA Auto-regressive moving average model
MAPE Mean absolute percentage error
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Appendix B. Traditional GM(1,N) Model

Let X(0)
1 =

(
x(0)1 (1), x(0)1 (2), . . . , x(0)1 (n)

)
be an original dataset of a system characteristics sequence,

and X(0)
i =

(
x(0)i (1), x(0)i (2), . . . , x(0)i (n)

)
, where i = 2, 3, . . . , N are the relevant factors sequences.

The accumulative sequence X(1)
i =

(
x(1)i (1), x(1)i (2), . . . , x(1)i (n)

)
can then be generated from X(0)

i
by the first-order accumulated generating operation (1-AGO), as follows:

x(1)i (k) =
k∑

j=1

x(0)i ( j), k = 1, 2, . . . , n (A1)

The equation
dx(1)1

dt
= ax(1)1 =

n∑
i=2

bix
(1)
i (k) (A2)

is called the whitening equation of GM(1,N), where a is called the development coefficient of the
system, and bix

(1)
i (k) and bi are the driving term and driving coefficient, respectively.

The predicted value x̂(1)i (k) can be obtained by solving the differential equation with an initial

condition that x(1)1 (1) = x(0)1 (1):

x̂(0)1 (k) =

x(0)1 (1) −
1
a

n∑
i=2

bix
(1)
i (k)

e−a(k−1) +
1
a

n∑
i=2

bix
(1)
i (k) (A3)

Then a and bi can be estimated by a grey difference equation,

x̂(1)1 (k) + az(1)1 (k) =
n∑

i=2

bix
(1)
i (k) (A4)

The adjoining mean generated sequence of z(1)1 is called the background values of the system
characteristics variable.

z(1)1 (k) = 0.5×
(
x(1)1 (k) + x(1)1 (k− 1)

)
(A5)

The parameter a and bi can be estimated by using the ordinary least squares (OLS) method,

[a, bi]
T = (BTB)

−1
BTY (A6)

where

B =


−z(1)1 (2) x(1)2 (2) · · · x(1)N (2)

−z(1)1 (3) x(1)2 (3) · · · x(1)N (3)
...

...
. . .

...

−z(1)1 (n) x(1)2 (n) · · · x(1)N (n)


, Y =


x(0)1 (2)

x(0)1 (3)
...

x(0)1 (n)


(A7)

Using the inverse accumulated generating operation, the predicted value x(0)k is

x̂(0)1 (k) = x̂(1)1 (k) − x̂(1)1 (k− 1), k = 2, 3, . . . , n (A8)

where x̂(1)1 (1) = x(0)1 (1).
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