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Abstract: This paper presents a smart building energy management system (BEMS), which is in
charge of optimally controlling the sustainable operation of a building-integrated-microgrid (BIM).
The main objective is to develop an advanced high-level centralized control approach-based model
predictive control (MPC) considering variations of renewable sources and loads. A finite-horizon
planning optimization problem is developed to control the operation of the BIM. The model can
be implemented as a BEMS for the BIM to manipulate the indoor temperature and optimize the
operation of the system’s units. A centralized MPC-based algorithm is implemented for the power
management scheduling of all sub-systems as well as power exchanges with the electrical grid.
The MPC algorithm is verified over case studies applied to two floors residential building considering
the climate condition of a typical day of March, where the effects of both loads and thermal resistance
of building shell on the operation of the BIM are analyzed via numerical simulations. The analysis
shows that 96% of the total electrical load has been fulfilled by the local production where 23%
represents the total electric output of the micro-CHP and 73% is the renewable energy production.
The deficit, which represents only 4%, is purchased from the electrical distribution network (EDN).

Keywords: building powered microgrid; sustainable energy management system; model predictive
control; renewable energy; energy efficiency

1. Introduction

The integrated smart grids on a building’s energy production and management is, so far,
a promising research field that will establish a strong platform from experimental and computational
to a real, large utilization in buildings. Smart grids concept can be considered a revolutionary way
on managing energy production sources in term of flexibility, efficiency, and being environmentally
friendly [1], and responding to an energy demand instantly on active systems [2] by communication
tools and procedures; especially in areas where renewable energies have a considerable and substantial
potential and when the cost of the connection to the general power network may have technical and
financial inconveniences. The implementation of the microgrid in a building may have numerous goals,
especially reducing the energy cost and power consumption for less dependence to a general network.
This paper aims to present the building-integrated-microgrid (BIM) as a new concept that may support
the transition to intelligent buildings, which can be considered as energy efficient buildings. The BIM
may play a vital task in the shift and upgrading of electric networks by enhancing the grid efficiency
and allowing consumers to participate in managing their own consumption.

Considerable efforts have been dedicated to investigating the smart buildings operation. Wang et al. [3]
proposed a control approach to manage the comfort in smart buildings. In [4], an optimization problem
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for a microgrid operation has been implemented. Reference [5] proposed a decision making model for
building structures. Authors in [6] proposed a formulation minimizing daily energy cost. Reference [7]
presented a framework to predict and manage building energy. In [8] an energy scheduling approach
for houses and buildings is presented. Authors in [9] studied the consequences of selecting precise
scheduling structures, preference methods and aggregation tools for residential demand-side aggregation,
and identified the tensions that exist between various proposed model formulations. Reference [10]
proposed a complete optimization framework for home energy management considering many classes
of appliances. In [11], an autonomous scheduling algorithm is developed to shave the peak load by
deferring the photovoltaic energy on peak demand side and reducing the reverse power flow of the
photovoltaic upcoming from a rooftop of a residential building. In [12], a two-stage co-optimization
framework for the planning and energy management of a customer with battery energy storage
systems and demand response programs has been proposed. In [13], the energy storage management
system is also enhanced by a modular design distributed on battery storage with integrated power
electronics into battery cells as an integrated module to satisfy functional performance of the battery
without extra equalizers. Reference [14] proposed an original formulation based on the Pontryagin’s
Minimum Principle that may be viewed as a preliminary continuous time attempt to model and control
the exchange of power in a network of microgrids. Authors in [15] proposed a problem formulation
considering a team of cooperative microgrids and presenting a distributed control approach for energy
exchanges. In [16], a predictive control scheme defining energy exchanges for networked microgrids is
investigated. Reference [17] presented a stochastic optimization problem for day-ahead planning of
energy storages. In [18], a model predictive climate control of a Swiss office building has been presented.
In [19], a control framework for optimal operation of smart connected microgrids is designed. In [20],
the reliability of the MPC is presented for global energy management and optimization in a cooperative
network of smart residential buildings’ integrating loads, several distributed energy, energy storage
and plug-in electric vehicles that allow sending and receiving the energy between the buildings in a
predictive demand scheme. Reference [21] concentrated on investigating a comprehensive mechanism
that integrates prediction technics, modelling, and data structure design to develop a demand side
management approach. Reference [22] presented a consistent framework for setting net zero energy
building definitions. An outline on life cycle approaches of nearly zero energy building is presented
in [23]. Authors in [24] investigated a pilot case study regarding a nearly zero energy building
renovation. Authors in [25] studied the green roofs in office building districts. Reference [26] discussed
the restrictions to building information modelling applications. Authors in [27] assessed the effect of
model simplifications on thermal comfort and energy performance. In addition, authors considered
a case study of a residential building. An energy management framework for an islanded building
microgrid in presented in [28,29].

Considering the above-mentioned discussion, prior works present complex frameworks, which are
difficult to implement in practical cases, time-consuming, and require computation time requirement.
The importance of the proposed study can be summarized in providing a reduced and efficient
optimization and control framework embedded in model predictive control to account uncertainties of
weather conditions and loads. The main contributions of this paper can be summarized in presenting
and implementing a comprehensive predictive centralized control framework for a BIM, where the
aim is to present an innovative control strategy-based MPC. The proposed framework is expressed
as a constrained scheduling optimization problem embedded in a model predictive control scheme
to optimally control the operation of BIM considering uncertainties and dynamics of loads as well
as renewable energy sources. The microgrid is designed to feed the energy needs of the building
as well as to ensure the welfare of the occupants. The main aim is to develop an efficient energy
management-based predictive controller to manage the energy exchanges at the BIM level ensuring
the consumer’s needs. The developed algorithm is implemented to proficiently control the operation
of the BIM that considers both forecasts and newly updated data. This paper attempts to increase the
application of smart grids by developing novel energy management approaches and control technics
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focusing on application to a BIM. These methodologies could enhance shifting from passive buildings
to active ones playing a key role in an electrical grid. The challenging task is the formulation of a
predictive constrained planning problem enabling an efficient energy management, precise control of
the thermal power loads, and optimizing the operation of the energy storage device (ESD) and the
micro-CHP unit. The challenge is the definition of the global problem, where diverse systems will be
modeled and tested considering many conditions. The presented control strategy might be taken as
a practical solution to mitigate and address the smart energy management challenges in buildings.
Besides, it can be considered as a complete approach that can be effectively considered in real scenarios.
The main advantage of the developed approach lies in its ability to mitigate the uncertainties and
intermittent behavior of inputs.

The rest of the paper is organized as follows. In Section 2, the smart building-integrated-microgrid
is modeled. The tracking control problem is formalized in Section 3, while the results and discussion
are presented in Section 4. Finally, some concluding remarks are presented in Section 5.

2. The Smart Building-Integrated-Microgrid Modeling

Smart BIM is a novel concept integrating loads, distributed energy sources, storage systems and
advanced metering infrastructure. The special feature of these buildings is their ability to perform
demand response strategies as a set of programs, which allow the building manager or/and consumers
to plan and manage activities connected to the energy usage. Specificallyit helps them to play a
crucial task in shifting their own loads in peak intervals to reduce their consumption or/and shift to
off-peak hours to smooth the power load curve. In the proposed paper, we suppose that the BIM
integrates renewable distributed generations, micro-CHP, ESD, electric and thermal loads, BEMS and
an advanced metering infrastructure.

The BEMS aims to optimally control the operation of the BIM in autonomous mode, otherwise,
linking and connecting the BIM sub-systems and the global central controller (GCC). The BEMS
is in charge of collecting data and implementing forecasts of energy production and power loads.
Furthermore, it makes an interface of communication for sending/receiving control signals to the
BIM components. The high level BIM central controller is managing energy exchanges by accurately
consenting the optimal operation of the BIM. The main objective of the GCC is to provide a high-level
control to generate optimal set points for all components as well as for the energy exchanges. The GCC
is in charge of the smart energy management in the BIM. It decides about the state of the ESD
(storing/discharging), the energy exchanges with the EDN (selling/purchasing) as well as the state of
the micro-CHP.

2.1. The Solar PV Generators Modeling

The PV module is modeled according to the following Equations:

Ipv(t) = Isc,re f

{
1−A

[
exp

( Vmp,re f

BVoc,re f

)
− 1

]}
+ ∆I(t) (1)

Vpv(t) = Vmp,re f

[
1 + 0.0539log

(
Gin(t)

Gst

)]
+ µ∆T(t). (2)

where,

A =

(
1−

Imp,re f

Isc,re f

)
exp

[
−

Vmp,re f

BVoc,re f

]
(3)

B =

Vmp,re f
Voc,re f−1

ln
(
1−

Imp,re f
Isc,re f

) (4)
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∆I(t) = γ

(
Gin(t)

Gst

)
∆T(t) +

(
Gin(t)

Gst
− 1

)
Isc,re f (5)

∆T(t) = Tamb + 0.02Gin(t) (6)

where Isc,re f and Imp,re f are respectively the module short circuit and the maximum power currents.
Vmp,re f and Voc,re f are respectively the maximum power and open circuit voltages of the module. Gin
and Gst are respectively the solar irradiation and the standard light intensity.

The total power and voltage output of the PV modules are given by:

Vpv, out(t) = βpv, sVpv(t) (7)

upv(t) = βpv, sβpv, pVpv(t)Ipv(t)ξloss (8)

where βpv, s and βpv, p are respectively the serial and parallel number of modules.

2.2. Wind Turbine Generator

The power output of the wind turbine is given by:

uwt(t) =


0 v(t) < vc

Pr
(
av3(t) − b

)
vc ≤ v(t) ≤ vr

Pr vr ≤ v(t) ≤ v f
0 v(t) > v f

(9)

 a = (1 + b)/v3
r

b =
(

vc
vr

)3
/[

1−
(

vc
vr

)3
] (10)

where v(t) is the expected wind speed at the hub height of the wind turbine and Pr is the rated power.

2.3. Energy Storage System Dynamics

It is worthwhile to mention that the energy storage system can be charged directly from the
renewable generators or/and from the main grid. However, the energy storage system is discharged
mainly to satisfy the needs of the BIM. The charging from the main grid is allowed only at periods of
energy shortage. The charging state of the storage system in given as follows:

s(t + ∆t) = s(t) + βCharuChar(t)∆t− βdisudis(t)∆t (11)

where uChar(t) and udis(t) are respectively the charged and discharged powers at the instant t, βChar is
the charging efficiency, βdis is the discharging efficiency.

2.4. Loads

The total load of the building is supposed to comprise controllable and non-controllable
loads [30,31]. The controllable load is assumed to be delimited to the thermal load that is defined as
the desired hot water and preferred building temperature. This will allow assessing the effects of the
thermal loads on the operation of the BIM. It is assumed that the required thermal power is ensured
by the micro-CHP. More details about users’ controllable appliances can be found in [32]. The main
objectives can be summarized in controlling the consumption patterns while maximizing the use of
the local available renewable energy production, smoothing the load profile and minimizing the cost
of the energy purchased from the main grid. The temperature state of the water storage is given
as follows [33]:
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Tst(t + ∆t) = Tst(t) +
qcold(t)

qT
(Tcold(t) − Tst(t)) +

uth
chp(t) − uth

air(t)

qTCwater
(12)

where qT is the water storage volume, Cwater is the specific heat of water, and Tcold(t) is the temperature
of cold water.

The building temperature is defined by the following Equation:

Tin(t + ∆t) = Tin(t)e
−

∆t
RBIMCair +

(
RBIMuth

air(t) + Tout(t)
)(

1− e−
∆t

RBIMCair

)
(13)

where Cair is the inside air’s heat capacity, RBIM is the thermal resistance, Tout(t) is the
outside temperature.

The predictions of load are implemented by BEMS that supports the GCC in delivering control
signals defining the optimal energy management strategy for the BIM. Advanced metering infrastructure
is in charge of collecting weather and historical data of energy consumption in order to perform
predictions for the MPC algorithm.

2.5. Energy Exchanged on the Building’s Envelope

The building construction shell material can be considered as a homogeneous one with special
material characteristics. In our case, the material is concrete for structures and masonry of alveolar
cement bricks. The outside window glasses represents 3% of the total envelope area, so the total energy
exchanged on the building’s shell can be considered of the masonry ones. The energy exchanged on
the building’s envelope is also a function of material density, inertia, exterior climate data such as
solar rays, wind, air pressure, hygrometric data, etc. The global exchanged energy through building’s
envelope can be written as:

uth,m(t) =
Awλm

ew
(Tin(t) − Tout(t)) (14)

where Aw is the total walls’ area, λm is the material conductivity, and ew is the thickness wall metering.

3. Building Energy Management Algorithm: The Tracking Control Problem

Many authors in the literature suggested the use of model predictive control for demand side
management and scheduling of the operation of microgrids and buildings. Authors in [34] presented
a robust model predictive control for real-time demand side management in residential smart grids.
Furthermore, authors validated and demonstrated the effectiveness of their method. In this paper,
the proposed scheduling framework works following a receding horizon approach. The optimal
control state is determined for the energy storage system, micro-CHP, and all power flows at the
microgrid level, while, just the first control state is considered. The procedure is then repeated under
the receding horizon principle, i.e., at the next time step, new data are available, allowing computing
the new control sequences. The optimization framework defined in Equation (15), subject to operational
constraints, expressed as state, inequality and equality in Equations (16)–(30) is formulated as a mixed
integer nonlinear programming problem, where the decision variables are the power flows exchange
at the BIM level. The main advantage of this approach is its ability to anticipate future events while
providing a clear constraints management.

3.1. Objective Function

The main objective is to track, as possible, the reference signals representing the optimal desired
BIM temperature and the optimal non-controllable load as well as to maximize the stored energy in the
ESD with a minimum interaction with the EDN. The reference signals define the ideal operations of the
BIM that maximize this energy efficiency. The optimization problem is formulated as a multi-objective
optimization problem subject to quadratic cost function where the objective function is defined
as follows:
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J =
T∑

t = 1

(
Tin(t) − Tin(t)

)2
+

T∑
t = 1

(
lnc(t) − lnc(t)

)2
−

T∑
t = 1

(s(t))2 +
T∑

t = 1

(
(ug,p(t)

)2
(15)

where Tin(t) is dynamic reference state representing respectively the desired temperature of the BIM
and lnc(t) are dynamic reference states representing the non-controllable load.

3.2. State Equations and Constraints

The predicted power balance ∆ũbal(t) of the BIM is given by the following Equation:

∆ũbal(t) = uwt(t) +upv(t) + uelc
chp(t) − lnc(t)

= ug,s(t) + uChar(t) − βdisudis(t) − ug,p(t)
(16)

where ug,p(t), and ug,s(t) are respectively the power purchased and sold from/to the EDN, and uelc
chp(t)

is the electric power output of the micro-CHP.
The energy storage system is constrained by capacity limits:

smin ≤ s(t) ≤ smax (17)

uchar, min ≤ uchar(t) ≤ uchar, max (18)

udis, min ≤ udis(t) ≤ udis, max (19)

udis(t) ∗ uchar(t) = 0 (20)

The renewable power generation is limited between an upper and lower bound:

uwt, min ≤ uwt(t + k) ≤ uwt, max (21)

upv, min ≤ upv(t + k) ≤ upv, max (22)

The electric power consumed in the BIM is constrained by upper and lower bounds:

lnc,min ≤ lnc(t) ≤ lnc,max (23)

The preferred hot water and buildings’ temperature are constrained by preference limits:

Tst,min ≤ Tst(t) ≤ Tst,max (24)

Tin,min ≤ Tin(t) ≤ Tin,max (25)

The electrical and thermal power outputs of the micro-CHP are limited:

uelc
chp(t) =

ηel

ηth
uth

chp(t) (26)

uth
chp,min ≤ uth

chp(t) ≤ uth
chp,max (27)

uelc
chp,min ≤ uelc

chp(t) ≤ uelc
chp,max (28)

The micro-CHP power output ramp rates are given by:

−
ηth

ηel
ur ≤ uth

chp(t) − uth
chp(t− ∆t) ≤

ηth

ηel
ur (29)

− ur ≤ uelc
chp(t) − uelc

chp(t− ∆t) ≤ ur (30)
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4. Application and Numerical Results

4.1. Case Study Description

The proposed control framework is applied to a case study to assess its performance and
effectiveness. The considered BIM includes two floors of a residential building of 120 [m2] situated
in Marrakech, Morocco. The total power load of the building represents the consumption of five
occupants. Furthermore, the BIM comprises a wind generator of 5 [kW] and a PV system of 1 [kW]
composed by 4 × 250 [W] high efficiency polycrystalline solar PV modules. The maximal capacity
of the energy storage system is ranged between 1 and 24 [kWh]. The electric power output of the
micro-CHP unit is ranged between 0.3 and 3 [kW], while thermal power output varies from 0.5 to
5 [kW]. In addition, the thermal and electrical efficiencies are respectively equal to 50% and 30%.
The total volume of the water storage is equal to 150 L. The estimated total controllable electrical load
is reported in Figure 1, whereas Figure 2 displays the projected hot water load in the BIM. The cold
water temperature Tcold(t), is set to be equal to 10 [◦C] from 9:00 to 21:00 and set to be 7 [◦C] for the
rest of the day. Furthermore, the outside temperature of the BIM Tout(t) is equal to 10 [◦C] from 1:00
to 6:00, and takes a value of 15 [◦C] from 7:00 to 17:00. Whereas, it equals to 6 [◦C] for the rest of the
day. Furthermore, the water storage temperature is supposed to be comprised between 50 and 70 [◦C]
with a primary state equal to 60 [◦C] (Tst(0) = 60), while, the building’s temperature is set to follow
the reference desired temperature signal reported in Figure 3, with an initial state equal to 18 [◦C]
(Tin(0) = 18).
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4.2. Results and Discussion

The high-level centralized control algorithm-based MPC defined in the prior sections is simulated
and verified over a case study to prove its real application as well as to validate its performances
considering several conditions. In this paper, it is supposed that the BIM includes renewable
distributed generations, micro-CHP, ESD, electric and thermal loads, BEMS and an advanced
metering infrastructure.

In this case study, the prediction and control horizons are both set equal to 24 h. Furthermore,
the scheduling optimization problem has been resolved considering the receding horizon approach to
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take into account the intermittent character and dynamics of renewable resources and load. In addition,
providing a route of the upcoming state and control variables satisfying the optimal functioning of
the BIM is considered. The predictive model is applied over the prediction horizon considering new
data. The expected renewable power output is modeled as the sum of deterministic part and a noise
represented by the standard normal distribution to reflect the uncertain behavior of the resources.
In general, the weighting factors are used to reflect and follow the strategy and objectives of the
decision maker or users. In other word, the weighting factors define priorities in satisfying the different
objectives (some time-conflicting). In this paper, we assumed the same priority, which means that the
objectives should be satisfied considering the same priority.

The smart BIM includes a wind generator of 5 [kW] and a PV system of 1 [kW] including
4 × 250 [W] high efficiency polycrystalline solar PV modules. The deterministic renewable power
generation is reported in Figure 4.Sustainability 2020, 12, x FOR PEER REVIEW  9 of 18 
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In this paper, it is assumed that the micro-CHP unit is devoted to maintaining the water storage
heated through its thermal power output. The latter is set to feed the hot water demand and keep
the building’s desired temperature. Although, the electric power output that is defined as a fraction
of the thermal power is considered to support the BIM in covering its electric load. We note that the
thermal resistance of the building’s shell affects strongly the operation of the micro-CHP unit. In this
context, we considered six different building envelop materials with the aim to select optimal material
minimizing the thermal power losses. The considered materials are: reinforced concrete, concrete, fire
brick, clay, rock and wood; each one is characterized by its thermal conductivity. The thermal power
losses of the building considering the six materials are shown in Figure 5. It can be seen that wood
presents the best performance in term of minimizing the thermal power loss followed by clay and fire
brick that showed similar behaviors. For the rest of the paper, the fire brick is chosen due to its good
thermal proprieties as well as its large use in the north of Africa.
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The time-varying power scheduling for the thermal power output of the micro-CHP unit as
determined by the MPC algorithm is shown in Figure 6. It can be observed that the micro-CHP reached
its maximum capacity only from 19:00 to 23:00; this is mostly for the reason that the operation of the
unit tracks the temperature reference signal as well as the hot water demand defining the standard
comfort of the residents. The proposed MPC model replies to the variation of the thermal loads and
regulates the operation of the unit to track as the reference signal.
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The dynamic state of the water storage temperature is described in Figure 7. It can be seen that
the water temperature varies between 50 and 70 [◦C], which define the comfort limits imposed by the
occupants. This trend depends on the cold water temperature, outdoor temperature, as well as the
comfort constraints imposed by the occupants.
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The time-varying state of the predictive scheduling of the building’s temperature is shown in
Figure 8. It can be seen that the desired temperature describing the comfort of the occupants is
met except the intervals of [5 h, 8 h] and [19 h, 20 h]. We mention that initial temperature state of
the building is 18 [◦C], which justify the progressive evolution of the temperature at the beginning.
Concerning the two other intervals, they coincide with peaks defining high demand in hot water.
Consequently, the micro-CHP unit must satisfy both constraints related to building temperature and
hot water. However, the MPC-based temperature validates the efficiency of the developed control
strategy to follow the reference signal.
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The MPC-based optimal state of the ESD as determined by resolving the optimization model
considering the receding horizon scheme is presented in Figure 9. It can be observed that the ESD
compensate the intermittent character of the wind and solar energy productions, fulfilling the total or a
fraction of the electric load. Besides, the figure reports a comparison between the optimal states of
the ESD as determined by the receding algorithm and as calculated considering perfect predictions.
The purpose is to measure the impacts of the prediction errors on the optimal scheduling of the BIM
operation. The investigation of the figure shows that the precision of the predictions considerably
affect the optimal results.Sustainability 2020, 12, x FOR PEER REVIEW  12 of 18 
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The optimal scheduling of time-varying daily load satisfaction of the BIM is reported in Figure 10.
The total electrical load has been satisfied mainly by the local energy production. The analysis of the
results shows that 96% of the total electrical load has been fulfilled by the local production where 23%
represents the total electric output of the micro-CHP and 73% is the renewable energy production
coming directly from the renewable generators and/or discharged from the ESD.

The deficit that represents only 4% is purchased from the EDN. We have clearly demonstrated
that coupling microgrid with residential buildings could be potentially beneficial from both building
decision makers and the main electric grid. In fact, adopting such approach by commercial and
institutional buildings could decrease significantly their energy bill and reduce the pressure on the
grid. We note that the results obtained are mainly affected by the climate conditions, availability of
renewable resources, accuracy of predictions, comfort constraints imposed by the occupants, as well as
operational constraints.

The dynamic variation of the optimal state of the energy storage system for five days is reported in
Figure 11. The storage system shows similar trends with different rates compensating the variabilities and
fluctuations of the renewable resources. The storage system tends to track the power load of the building
ensuring the comfort preferences of the occupants. Furthermore, the energy storage system regulates its
operation to ensure the power balance between production and demand. The operation of the energy
storage system depends mainly on the power balance at the BIM level. The charging/discharging states
during five days are expressed in Figure 12. It can be seen that the storage system is mostly set in
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charging mode during the day and set in discharging mode at night due to the high power demand.
In general, the operation strategy is affected by variabilities of the power load and the renewable
energy production of the microgrid.
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The operation of the micro-CHP is highly affected by the outdoor temperature. The time-varying
thermal power output of the micro-CHP according to variation of the outside temperature is reported
in Figure 13 for five days of operation. It can be seen that the micro-CHP responds actively to the
variabilities of the outdoor temperature by regulating and adjusting the thermal power accordingly.
As an example, during the first day, the micro-CHP is set to operate with the minimum power until
16:00, and then starts responding to the drop in outdoor temperature. We note that the operation of the
micro-CHP is also affected by the occupants’ preferences represented by the set-points.
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A comparison between the optimal temperature and the reference defining the comfort preferences
of the occupants during five days is shown in Figure 14. We note that the initial starting indoor
temperature is set to be 18 [◦C]. It can be seen that the thermal comfort of the occupants is completely
satisfied during all the days. This result demonstrates the efficiency and performance of the proposed
control algorithm in the optimization and the real-time management of the whole BIM.
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5. Conclusions

In this paper, the implementation of a multi-objective model predictive control MPC for a BIM has
reached its objectives for optimizing both comfort of occupants in term of desired reference temperature,
hot water and the electric load. Various methodologies in the literature presented complex frameworks,
challenging to implement in practical cases, time-consuming, and computationally intensive or not
appropriate for real-time implementations, or may generate suboptimal solutions. The strength of the
proposed study can be summarized in providing a reduced and efficient predictive control strategy
embedded in model predictive control to account for uncertainties of weather conditions and loads
to optimally control a BIM. This paper aims to assess the value and utility of integrating the MPC
multi-objective into a residential building through an electric and thermal optimization. A centralized
control tool based on managing and controlling the renewable energies, energy storage, building
material envelope, micro-CHP unit and the exchanged power with the main grid is tested. The main
goal is to reduce significantly the energy bill, integrating the microgrid concept to building. The MPC
resolved the optimization problem following the receding scheme, filled the electric need totally or
in parts in renewable energies with less purchased power from the main grid. The total electrical
load has been satisfied mainly by the local energy production in 96% including the CHP production
and the renewable energies. The power purchased from the main grid was only 4% in peak load.
The simulation results demonstrated clearly the efficiency of the MPC integrated to the building, taking
advantages of the renewable energy sources by reducing the electric bill while ensuring the occupants’
comfort in desired temperature and hot water. The results of simulating the BIM operation over five
days show that the thermal comfort of the occupants is completely satisfied during the whole time
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horizon. The BIM covered, as an average, about 87% of its power load, while, 13% is purchased from
the utility. The results prove the ability of the proposed predictive model to cope with uncertainties
and fluctuations of the renewable energy sources as well as the loads. Furthermore, the findings
demonstrate the efficiency and performance of the proposed control algorithm in the optimization
and the real-time management of the whole BIM. This real case can be generalized in a large-scale
district to reduce the pressure on the electric grid and to enhance the penetration of renewable energy.
In this case, the current problem formulation can be extended by adopting other control schemes and
approaches like decentralized, team theory, multi-agent, and distributed control.
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Nomenclature

Aw total walls’ area [m2]
Cwater specific heat of water [kWh/l ◦C]
Cair inside air heat capacity [kWh/◦C]
ew thickness wall metering [m]
Isc,re f module short circuit current [A]
Imp,re f module maximum power current [A]
Gin solar irradiance [kW/m2]
Gst standard light intensity [kW/m2]
Pr rated power [kW]
qT water storage volume [l]
RBIM thermal resistance [◦C /kW]
Vmp,re f module maximum power voltage [V]
Voc,re f module open circuit voltage [V]
βpv, s serial number of modules [–]
βpv, p parallel number of modules [–]
βChar charging efficiency [–]
βdis discharging efficiency [–]
lnc(t) non-controllable load reference [kW]
Tst(t) temperature of water storage [◦C]
Tin(t) indoor temperature [◦C]
Tout(t) outside temperature [◦C]
Tin(t) indoor temperature reference [◦C]
Tcold(t) temperature of cold water [◦C]
s(t) state of energy storage system [kWh]
v(t) expected wind speed [m/s]
uChar(t) charged power [kW]
udis(t) discharged power [kW]
ug,p(t) power purchased [kW]
ug,s(t) power sold [kW]
uelc

chp(t) electric power of micro-CHP [kW]

uth
air(t) thermal power of micro-CHP [kWh]

upv(t) power output of PV modules [kW]
uwt(t) power output of wind turbine [kW]
∆ũbal(t) power balance [kW]
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