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Abstract: Deployment of new optimized routing rules on routers are challenging, owing to the tight 

coupling of the data and control planes and a lack of global topological information. Due to the 

distributed nature of the traditional classical internet protocol networks, the routing rules and 

policies are disseminated in a decentralized manner, which causes looping issues during link 

failure. Software-defined networking (SDN) provides programmability to the network from a 

central point. Consequently, the nodes or data plane devices in SDN only forward packets and the 

complexity of the control plane is handed over to the controller. Therefore, the controller installs the 

rules and policies from a central location. Due to the central control, link failure identification and 

restoration becomes pliable because the controller has information about the global network 

topology. Similarly, new optimized rules for link recovery can be deployed from the central point. 

Herein, we review several schemes for link failure recovery by leveraging SDN while delineating 

the cons of traditional networking. We also investigate the open research questions posed due to 

the SDN architecture. This paper also analyzes the proactive and reactive schemes in SDN using the 

OpenDayLight controller and Mininet, with the simulation of application scenarios from the tactical 

and data center networks. 

Keywords: software-defined networking; link failure recovery; restoration; resilience; fault-

tolerance 

 

1. Introduction 

Software-defined networking (SDN) separates the control plane from the data plane, i.e., it 

moves the control logic from the network devices to a central controller. The centralized controller 

manages the flow of data through a southbound application programming interface (SB-API). 

Similarly, a centralized management of the networking devices has the advantage that new 

applications, services, and networking functions can be flexibly deployed with minimum operating 

and capital expenses. A few survey studies on SDN operation, history, architecture, programmability, 

and research directions are described in [1–6]. 

Link failure recovery approaches leverage the SDN unique features of centralized control and 

the flexibility of programmable data plane for real-time applications such as video conferencing [7] 

and voice over IP (VOIP), which can tolerate a delay of 50 ms in case of recovery. Thus, the quality of 

service (QoS) can be maintained in case of a link failure to ensure untroubled and constant 

communication. The reported mean for link and device failures in a traditional data center network 

per day have been recorded as 40.8 and 5.2 failures per time unit [8], respectively, which necessitates 

the discovery of a method that enables faster recovery of failed links. The study [8] also reported that 

the frequency of link failures is higher than that of the node failures. Therefore, fault-resilient 
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approaches play an important role in traffic engineering for operator networks to ensure a fast failure 

recovery, which will ultimately accomplish the requirements of the end-users. 

The tight coupling of control and data planes in legacy networks makes them sluggish and 

complex to manage. Although traditional networks have been adopted universally, their 

management and configuration are cumbersome [9] because of the following reasons:  

 Vendors are hesitant in providing the source code of the protocols to the developer and user 

community because of being afraid of unverified changes to their devices that can lead to 

malfunctions in the networks [10]. 

 A global view of the network is hard to obtain in the traditional network architecture; hence, 

only distributed routing protocols can be used, e.g., routing information protocol (RIP) [11] and 

open shortest path first (OSPF) [12]. 

 The co-existence of data and control planes also leads to an improper utilization of the 

bandwidth [13], as it is shared by both the planes. Thus, the packets are broadcasted to the 

network, which leads to low link utilization. Similarly, the ball game gets worse as soon as there 

is a link failure because the system tries to search alternate paths in the network for packet 

broadcasting, leading to network congestion.  

In case of a link failure, re-routing is performed for discovering an alternative path to divert the 

packets from a failed link to the alternative path. However, the implementation of traditional routing 

protocols hinders the network growth and causes delays owing to several problems, such as flooding 

of the link-state information, long convergence time of path detection [14], deployment complexity 

of the network [15], and route flaps caused by prefix instability [16]. Additionally, there may be 

network destabilization because of routing conflicts owing to the autonomous system (AS) [17]. 

Consequently, there is a lack of optimum decisions due to the unavailability of the global statistics of 

the network. These problems exist in traditional internet architecture because of two reasons: First, 

because implementing changes in the traditional routing protocols is difficult owing to the software 

being embedded in the firmware; and second, the internet companies feel at risk and shy away from 

implementing any new proposals, even if it can increase the performance of the network, as this will 

also increase the network complexity and, consequently, the maintenance cost. 

Fast failure recovery within a fixed time interval is vital for providing a service guarantee in 

next-generation technologies. In literature, several architectures [18–20] have been proposed for 

enabling the fast recovery of networks. The architecture proposed in [18] consists of an automatic 

failure recovery or fault management framework. The research conducted in [19] leverages 5G, secure 

Internet-of-Things (IoT), and unmanned aerial vehicle (UAV) swarms to ensure service in mission-

critical infrastructures. Likewise, a platform for virtualization of services based on SDN and network 

function virtualization (NFV) was proposed in [20], which enables the development, implementation, 

and functioning of media services over 5G networks. 

Moreover, the nodes may operate in remote and harsh environments with a possibility of 

frequent failures. Therefore, consecutive changes are essential to discover an alternative path for the 

nodes that have experienced failure [21]. In addition, the SDN handles the link failures using one of 

two main approaches, proactive and reactive [22]. In the proactive approach, the alternate paths are 

preconfigured, and in the case of a link failure, the disrupted flows are forwarded to the backup path. 

In contrast, in the reactive scheme, the controller is approached for finding an alternative path and 

the flow rules for the new path are inserted when the controller calculates the path. The SDN 

controller, which has access to the global topological information, will search the optimum alternative 

path for the failed link and will push the flow rules to it. Hence, the data plane is not interrupted. 

Consequently, the packets, are not broadcasted to the network here due to the centralized control 

architecture, which leads to a performance improvement in the network. However, both schemes 

have their pros and cons along with a trade-off in performance and efficiency.  

Link failure recovery in SDN was overviewed in [23,24]. In this survey, we investigate the link 

failure detection and recovery approaches in SDN. A demonstration of the SDN-based failure 

recovery with proactive and reactive approaches is presented with pictorial diagrams. We compare 

the proactive and reactive schemes in terms of latency, scalability, routing updates, ternary contents 
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addressable memory (TCAM) space, flow operations matching, configuration, robustness to backup 

path failures, routing information access, processing of switches, as well as the routing, controller, 

and switch overheads. The research issues in SDN-based link failure recovery schemes for large-scale, 

hybrid, inter-domain, in-band, and machine learning (ML) approaches are discussed and 

summarized. We simulate two application scenarios in a Mininet testbed for Naval tactical and 

datacenter networks (DCN) and evaluate the recovery time and throughput when using the proactive 

and reactive schemes. 

The rest of the paper is organized as follows. In Section 2, an overview of SDN architecture is 

presented and the importance of SDN for achieving the recovery is explicated. In Section 3, we discuss 

the various link failure detection techniques. In Section 4, the two most common methods for 

searching the alternative paths, i.e., proactive and reactive, are described, in addition to failure 

recovery approaches in large-scale networks, inter-domain architecture, hybrid SDN, in-band 

environment, and ML-based techniques. In Section 5, we discuss SDN application scenarios, 

experimental setup and an experimental demonstration of the proactive and reactive approaches in 

Naval tactical and DCN operations. In Section 6, a summary is provided based on the findings in 

various research studies. Finally, in Section 7, we conclude the paper and highlight the main points 

of the survey. 

2. SDN Architecture 

2.1. An Overview of SDN  

Figure 1 [25] shows the different layers of the SDN architecture and the way the devices in the 

data plane interact with those in the control plane through an SB-API. The SB-API provides an 

interface for interaction between the data and control planes. Several protocols are available for the 

interaction of the two planes, such as OpenFlow and Netconf [26]. The control plane is implemented 

through SDN controllers, e.g., POX [27], OpenDaylight (ODL) [28], open network operating systems 

(ONOS) [29], Floodlight [30], and RYU [31]. The northbound API (NB-API) is an interface between 

the control and management planes. The SDN controller acts as a bridge between the management 

and data planes leveraging the representational state transfer (REST) API. Similarly, the statistics 

about the data plane such as the flows are gathered through REST API.  

 

Figure 1. An overview of SDN (software-defined networking) architecture. 
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The programmability and orchestration in SDN, which is at the top of the control plane, are 

implemented through the management plane. Different applications are executed for performing the 

versatile and dynamic operations needed for an efficient link failure recovery. The switches in the 

data plane leverage the flexibility and programmability features of the management plane through 

the abstractions offered by the control plane. For example, network monitoring and failure detection 

can be thoroughly performed by developing and deploying snipping and failure detection 

applications in the management plane.  

2.2. A Global View of the Network 

There is a large recovery delay in classical IP networks owing to the flooding of packets, the 

increased time for failure detection, computation of alternate paths, and updating of the routing table. 

However, in SDN, the controller has a global view and control of the network. Therefore, it decides 

optimally while searching an efficient alternate path for the disrupted flows. In addition, the 

controller monitors the end-to-end connectivity, and therefore, when a link is broken, the controller 

can reconfigure the network to re-establish the end-to-end (E2E) connectivity for all paths. 

In contrast to traditional networks where every node floods the network with packets to find an 

alternate path, the SDN provides the solutions with less complexity and flexibility. The 

programmability and flexibility can be used to dynamically apply policies in the network through 

the control plane, according to the changing QoS requirements as soon as the link failure occurs. 

Consequently, the cost, time, and workforce is reduced.  

2.3. The Low Complexity of Data Plane 

SDN shifts the data plane complexity to the centralized controller; therefore, the nodes react 

efficiently by utilizing the SBI (e.g., OpenFlow/Netconf) unique features for automatic failure 

recovery and load balancing. Additionally, applications can be executed with more flexibility in the 

data plane, resulting in improved QoS and quality of experience (QoE), and the fulfillment of the 

requirements of carrier-grade networks (CGNs). Furthermore, OpenFlow provides fast detection 

mechanisms that reduce the link failure recovery delay and packet loss. Similarly, backup paths can 

be easily configured on the switches, and the match and forwarding features can help achieve high 

network throughput and QoS. 

3. Link Failure Detection Mechanisms 

The failure recovery process in SDN starts with a detection of the failed links. If the detection is 

swift, then the overall delay of the recovery will be small, which is why detection schemes are so 

crucial to the overall process. Table 1 gives an overview of the link failure detection mechanisms, the 

detection methodology for the failed links, and the related problems in the detection schemes. 

Modern-day networks leverage the SDN centralized control and flexibility of managing the data 

plane in the link failure recovery. A global view of the network, facilitated with central control, 

provides several possibilities in the failure identification process [32–34]. The schemes proposed in 

[32,33] used the concept of monitoring cycles to reduce the link failure recovery time. The monitoring 

circle paths detect and locate link failures in the SDN. However, the problem of minimizing the 

number of hops and monitoring cycles is vital. Therefore, in Reference [32], a binary search technique 

was introduced to minimize this overhead. Similarly, in Reference [33,34], the monitoring assignment 

was formulated as the postman problem with a heuristic method [35] for the assignment of the 

monitoring cycles. However, the detection process was still observed to be slow. 
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Table 1. An overview of link failure detection schemes in SDN. 

Failure Detection Schemes Mechanism for Detection Problems 

Circle paths monitoring 

[32,33] 
Monitoring cycles 

Minimizing the number of 

hops on the paths 

Monitoring cycles [34,35] Heuristic Detection process is slow 

OpenFlow based [36,37] Heartbeat messages 
Cannot ensure a delay of 

<50 ms 

STP or RSTP [38] Port status updating 
Cannot ensure delay for 

modern technologies 

Bidirectional forwarding 

detection (BFD) [36,39–41] 
Exchange of hello packets 

Large number of hello 

packet exchanges  

FDLM [42] Heartbeat messages 
Cannot ensure a delay of 

<50 ms 

MPLS BFD [43,44] Packet generators 
Large number of packet 

generators 

Recovery in smart grids [45] 
Packet tagging/BER threshold 

monitoring using OpenFlow 
OpenFlow limitations 

SDN-EON [46] BER threshold monitoring/alarms 
Applicable for optical 

networks only 

SFD [47] Packet loss ratio Limited to node failures 

Quick detection of the failed links improves the performance of the link failure recovery 

techniques; therefore, the failed links must be detected efficiently before the recovery process. Several 

mechanisms are available for link failure detection; a few of them are mentioned in [36]. The 

OpenFlow implementations use the same tool of heartbeat messages for detection as that in Ethernet. 

A heartbeat message is exchanged between the nodes at regular time intervals, which determines the 

status of the network. The liveliness is checked by the rate of exchange of hello packets between the 

nodes; therefore, if a node does not receive a hello packet within the regular time interval of 16 ± 8 

ms, the controller is notified about the failed link. If a node does not receive a response within the 

time of 50–150 ms, the link is considered disconnected [37]. Due to the slow detection rate, the 

Ethernet cannot meet the CGNs delay demands (< 50 ms). 

The spanning tree protocol (STP) [38] and reverse spanning tree protocol (RSTP) have also been 

used on data link layers for link failure detection. However, their detection period spans in seconds 

and cannot guarantee the delay requirements of modern technologies. Similarly, OpenFlow fast 

failover (FF) group [1] and Bidirectional Forwarding Detection (BFD) [39] are also routinely available 

in the SDN community [36,40–41] for link failure detection and recovery. Additionally, a failure 

detection mechanism known as failure detection service with low mistake rates (FDLM), which uses 

heartbeat messages to minimize the errors in detection, was proposed in [42].  

The failure detection method for transport networks in the E2E path, described by Kemp et al. 

[43], used multiprotocol label switching (MPLS) BFD [44]. The scheme utilizes packet generators 

implemented in the switches by sending probe messages along with the data packets. A link failure 

is detected when there is a gap between consecutive probe messages. The proposed methodology 

was able to achieve scalability because different network elements can utilize identical packet 

generators, which can be separated later through MPLS.  

A failure detection approach using a counter mechanism based on the outgoing packets was 

proposed in [45]. The flow rules installed on the link were tagged and monitored, and the packets 

were then counted at the destination. The error rate calculated by looking at the difference between 

the sent and received packets was compared with a threshold value. For a given link, if the error rate 

exceeded the threshold value, the link was assumed to have failed. 

The SDN elastic optical network (SDN-EON) is described in [46], which also uses a threshold 

mechanism using the bit-error-rate (BER). An OpenFlow agent deployed on the data plane nodes 
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periodically monitors the BER. The BER ratio is compared with a threshold to decide whether the 

link or node on the path has failed. In case of failure, an alarm message is sent to the controller.  

The failure detection scheme at the switch level [47], known as switch failure detection (SFD), 

uses the failed link and the network topology as an input. To identify a failed switch, the algorithm 

first finds the source and destination of the failed link. Then, it discovers all the hosts connected with 

the switch and computes whether the packet loss ratio is 100%. If so, the switch is assumed to have 

failed. Thus, the failed switch is identified as the one initiating the recovery process.  

In the current study, we elaborate on the use of these schemes in SDN. The utilization of each 

failure detection scheme depends on the particular demands of the network where it will be used. 

For example, the circle paths monitoring [32,33] and monitoring cycle failure detection [34,35] 

methods are slow due to the presence of many hops on the E2E path and the heuristic algorithm. 

Hence, these schemes are not favorable for networks with low latency requirements such as CGNs. 

However, the OpenFlow [36,37], STP or RSTP [38], and FDLM-based [42] schemes that leverage the 

periodic heartbeat messages and port status updates are relatively faster. The BFD [36,39–41] and 

MPLS BFD [43,44] approaches are comparatively fast in failure detection. Hence, modern 

technologies can leverage these schemes because of their low latency. A few schemes [45,46] are 

limited to particular networks in SDN, such as link failure recovery in smart grids, SDN-EON, and 

node failures only.  

4. Link Failure Recovery Approaches 

The various link failure recovery approaches in SDN can be broadly divided into two categories: 

proactive and reactive [22]. To understand the working of these two techniques, a background 

knowledge of the data and control planes, as well as how these planes interact with each other, is 

necessary. Therefore, we have described the SDN paradigm here in detail. Table 2 lists the 

classification of various link failure approaches with respect to reactive (R) and proactive (P) 

mechanisms.  

Table 2. Classification of link failure recovery approaches. 

Papers 

Reference 

Proactive 

(P) 

Reactive 

(R) 

Large-

Scale  
Hybrid 

Inter-

Domain  

In-

Band  

Machine 

Learning 

P R P R P R P R P R 

[48–62] √            

[63–69]  √           

[70–73]    √         

[74–84]     √        

[85]       √      

[86,87]        √     

[88–91]          √   

[92,93]         √    

[94–98]            √ 

[99,100]           √  

4.1. Proactive Approaches in SDN for Link Failure Recovery 

As discussed earlier, when a link failure event occurs in the SDN, it is handled either with a 

reactive or proactive approach. During the normal operation of the network, the flows are forwarded 

from source to the destination node on the primary path. However, when a link fails, the two schemes 

handle the failures differently. In proactive recovery, the alternate backup paths are preconfigured. 

Therefore, the detection normally takes place locally and the flows from the failed link are forwarded 

to the alternate path immediately without interacting with the controller. Figure 2 shows the 

management of a link failure with the proactive mechanism. When the link in path#1 fails, the flow 

rules for the backup path are already configured on the switch. Hence, the packets from the failed 
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link are redirected to the alternate path defined on the switch. The advocates of proactive recovery 

claim that proactive recovery is more efficient in terms of recovery time because the paths are 

preconfigured and the control plane need not be consulted for finding an alternative path. 

Consequently, the stipulation for CGNs can be fulfilled, i.e., the paths are recovered in less than 50 

ms. The proactive approach, therefore, provides faster recovery without controller intervention. 

Consequently, any delay caused by consulting the controller and finding an alternative path will be 

minimized. However, in the proactive approach, an alternate path for the failed link must be 

configured for every flow on the failed link, which is not only impractical but may also exceed the 

flow table entries limitation of the data plane switches. Furthermore, the proactive scheme will also 

entail additional processing for matching the incoming flows with numerous flow entries because of 

the additional flows for the alternate paths. In the following subsections, we investigate several 

momentous proactive approaches in SDN: 

 

Figure 2. Proactive link failure recovery in SDN. 

4.1.1. Link Status Detection with OpenFlow 

OpenFlow version v1.1 and onward supports group table functionality, which overcomes the 

limitations of the flow table entries. Hence, complex packet operations that are not possible through 

flow entries can be performed. Among the four group types, i.e., ALL, SELECT, INDIRECT, and 

FAST-FAILOVER (FF), the last type is specifically used for the detection of port failures. Group tables 

are used to perform a set of actions defined in an OpenFlow bucket. Thus, each group table has a list 

of buckets as shown in Figure 3. The liveliness of the port/group is monitored from the watch 

group/port included in the bucket. When a link failure occurs, the status of the bucket watch 

group/port is flagged as down; therefore, another bucket whose status is up is used. Consequently, 

only one bucket will be in use at a time. Therefore, the disrupted flows are routed to the alternative 

path without consulting the control plane, i.e., this is a recovery approach in the data plane. 

This approach of utilizing the FF group has been used by several researchers [36,40,41,44]. The 

FF group can work only if a local secondary or backup path exists at the switch which detects the 

failure; even if such a path does not exist, the controller must be contacted to find an alternate path 

to reroute the packets. However, the advocates of data plane recovery solutions contend that recovery 

should be attempted in the data plane to minimize the recovery delay.  
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Figure 3. The FF (FAST-FAILOVER) group is designed to detect and respond to port failures. 

4.1.2. BFD 

The BFD protocol was adopted in SDN from a concept used in legacy technologies that detects 

the liveliness of the paths, i.e., detects failed links between two endpoints through packet loss 

detection via an echo and control messages. The link’s current state is monitored by checking the 

control messages transferred by each node. The nodes receiving the control messages send the status 

of their sessions through echo messages. The schemes that utilize the FF group do not need to consult 

the controller for link failure recovery after the initial configuration. However, the alternate paths 

cannot be used in case the first backup path fails if they have not been preconfigured.  

4.1.3. SPIDER 

A project named SPIDER, which fills the deficiencies in the FF group, was presented in [48]. 

SPIDER recovers the failed links without consulting the controller in case of alternate path 

unavailability. SPIDER uses link probing for the detection of failed links and can re-route the packets 

quickly even without controller availability in case of failures. Hence, it is a complete data plane 

solution.  

4.1.4. Path Priority-Based Scheme 

A meek proactive solution described in [49] provides a backup path, where each SDN switch 

has two flow entries for the path associated with an incoming packet to the switch: an active path 

and an alternate path in case of a failure. When a failure is detected, the packets are traversed to the 

backup path associated with the switch. However, the scheme uses a small network emulated with 

Mininet. Therefore, the solution is not feasible for large-scale SDN due to TCAM space limitation 

caused by increased match and forwarding actions of the switch.  

4.1.5. Congestion-Aware Proactive Schemes 

Congestion is an important factor while searching an alternate path for the failed link. Any 

congestion in the alternate recovered path will cause a loss of packets. Therefore, a congestion-aware 

scheme was provided in [50], which proposed a data plane proactive recovery technique where a 

backup path is preconfigured for every active path. All the disrupted flows are re-routed through the 
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backup paths for a failed link through source routing. Although several schemes described in the 

literature [51–53] deal with combating the congestion problem, where multiple objectives were 

proposed, such as (1) recovering the local data plane without involving the controller, (2) reducing 

the number of flow entries, (3) considering the congestion while re-routing the traffic for the failed 

link, and (4) recovering the single link as well as the single node. To evade congestion, the source 

routing explained in [54–56], tags per-hop, and flow spreading were implemented. The proposed 

scheme effectively achieved a congestion-aware failure recovery with minimum overhead and 

fulfilled the four objectives.  

4.1.6. Challenges in Proactive Recovery 

 TCAM flow entries limitation: SDN switches have a limitation on the number of entries in their 

flow tables. State-of-the-art switches in the market can store up to 8000 flow rules. Therefore, the 

cost for TCAM [57] space can increase. 

 Process of matching: In the proactive approach, the backup paths are preconfigured. Thus, it 

increases the number of flow entries in the switches, with a greater number of flow entries 

especially in large-scale networks. As discussed earlier, when a packet arrives at the data plane 

switch, it is matched with the flow entries to find the destination of the incoming packet. 

Consequently, this approach affects the process of matching the incoming packets to the 

switches. 

 Configuration: Currently, the networks are highly dynamic, and consequently, the 

configuration changes and link failures in a single day are also high [8,58–61].  

 Large-scale networks: The proactive approach is not suitable for large-scale networks because 

of the enormous increase in the number of flow entries as the network scales upward caused by 

the presence of a preconfigured backup path for each switch in the data plane.  

 Dynamic network conditions: There is a possibility that the backup path may fail earlier than 

the primary path owing to dynamic network updates. Therefore, when a link fails, the path 

configured proactively will not be available for routing the packets on the alternate path. 

4.2. Reactive Approaches for Link Failure Recovery in SDN 

Reactive failure recovery mainly relies on the SDN controller, as described in [62]. Figure 4 

shows a reactive link failure recovery scenario. The following steps are performed for the link failure 

recovery in case of failure detection. 

1. The controller monitors the status of the network by sending periodic heartbeat messages. 

2. The controller detects any case of failure. 

3. The controller searches an alternate path for the failed link.  

4. The controller deletes the old flow entries and adds new flow entries for the updated path in the 

SDN switches. 
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Figure 4. The reactive mechanism for link failure recovery in SDN. 

Although reactive techniques find the alternate path dynamically, the controller intervention 

causes a large recovery delay. This is due to the communication overhead between the switches and 

the controller, the extra time spent for the alternate path discovery, and the insertion of flow entries 

for the new path. Hence, the opponents of this approach claim that reactive schemes cannot satisfy 

the delay bounds of the CGNs, i.e., 50 ms. 

4.2.1. Reactive Approaches with the Shortest Path First 

A reactive link failure recovery approach based on the shortest path first algorithm was 

proposed in [63]. Packets on each path are divided into high and low priority packets. The proposed 

system ensures minimum delay for high priority packets. However, the approach can only be applied 

to a small-scale network and is not feasible for large-scale SDNs. The scheme also avoids congestion 

by distributing the traffic equally over the available paths. Therefore, the complexity of the algorithm 

increases when the network scales. Another drawback of the proposed method is the insufficient 

information provided for the implementation mechanism. Additionally, the technique has not been 

tested on standard internet topology datasets. 

4.2.2. Reactive Approaches that Consider the Number of Flow Operations 

A delay due to the insertion of flow operations by the controller increases the average recovery 

delay. Thus, to minimize the flow insertion time, the number of flow operations must be minimized 

as described in [64]. Consequently, in case of a failure, the selection of an alternative path with low 

cost will minimize the number of flow operations by the SDN controller, which will consequently 

lead to an overall reduction in delay. Therefore, the overall link failure recovery delay will be 

minimum if the number of flow operations from the SDN controller are reduced. A comparison of 

the issues in proactive and reactive schemes is listed in Table 3. 
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Table 3. A comparative overview of proactive and reactive link failure recovery techniques in SDN. 

Issues Proactive Reactive 

Routing updates Periodic advertisements 
Requested when a failure occurs in 

the data plane 

TCAM space TCAM space limitation More TCAM space 

Match flow 

operations 
More flow matching Fewer flow entries matching 

Configuration 
Hard, because of the large 

number of backup paths 
Easy 

Dynamic network 

updates 
No Yes 

Flow entries 

matching 
More, because backup paths exist 

Less, because the path is discovered 

on failure 

Switches 

processing 
High, due to more flow matching Low 

Controller 

overhead 
Low High 

Switches overhead High Low 

Latency Small, due to preconfigured path More, due to flow insertion delay 

Routing overhead 
Proportional to the number of 

switches in the data plane 

Proportional to the number of nodes 

on the communication path 

Routing 

information access 

From the switches in the data 

plane 

With controller interruption, 

discovery by the routing algorithm 

Scalability Not scalable for large networks Scalable for large networks 

Examples Provided in [48–61] Provided in [62–67] 

The SDN controller will also have to install the flow entries for the alternative path. Most of the 

techniques do not consider the extra delay incurred due to flow operations by the SDN controller in 

case of link failure recovery. According to this study in Reference [65], the latency induced by the 

SDN controller due to flow insertion is 0.5 to 10 ms. Similarly, in Reference [66], the authors reported 

that the minimum time needed for a flow rule addition and deletion is 11 ms. Therefore, in large-

scale networks, the minimum delay needed for CGNs (50 ms) cannot be achieved as described in [40]. 

The authors in [22] proposed that due to this constraint, a delay of 200 to 300 ms is within the realistic 

range. Hence, the advocates of reactive approaches claim that this delay is not negligible in large-

scale SDN failure scenarios and should be minimized because the delay will increase as the SDN 

scales.  

The authors in [67] proposed a single link failure reactive recovery approach based on the graph 

theory for E2E path computation. A path is split from the source node to half of the total length and 

then to the destination node. The longest shortest path is then used from the source to the destination. 

Hence, when a link fails, any other path shorter than the longest shortest path is used for 

communication. The proposed algorithm in [67] searches the path only between the failed nodes; the 

remaining flow entries are not removed, which results in minimizing the number of flow operations. 

Figure 5 shows the longest shortest path between Dublin and Sofia, calculated in the European 

reference network (ER_Net) [68]. The algorithm returns the set of all paths, i.e., the longest shortest 

path and the other shortest paths. In case of a link failure between Hamburg and Berlin, the shortest 

path between Hamburg and Berlin is chosen only between the two failed routers of these cities; 

therefore, flow entries are inserted only for this portion of the path and the remaining flow entries 

are preserved. Consequently, the insertion delay of the flow entries is low compared with other 

schemes that consider the source to destination flow installations for the whole path using the 

Dijkstra algorithm. 
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Figure 5. Link failure recovery by minimizing the number of flow operations [67,68]. 

The proposed scheme results in a significant reduction in the number of flow entries by 

considering an alternate path only between the nodes within the failed link. The algorithm has 

demonstrated a maximum reduction of 85.69% in the flow entries of the SDN. However, the 

algorithm neither guarantees the shortest path nor considers the congestion. Thus, the overall E2E 

delay might be large despite a reduction in the number of flow entries. It is mentioned in Reference 

[66] that the insertion of a flow entry in a switch takes 0.5 to 10 ms of processing time. Therefore, the 

overall recovery delay will increase.  

4.3. Large-Scale SDN 

In the case of reactive failure recovery, the SDN controller must find an alternative path after a 

link failure. Therefore, the existing proposed schemes have focused only on determining the shortest 

alternative path for the failed flow and neglected the flow insertion time in the flow table of the 

switch. The proposals presented in [69,70] indicated that restoration approaches that followed the 

shortest path technique only are not suitable for large-scale SDN and may fail to restore the flows 

efficiently. 

Pruned searching using the graph theory approach was introduced by [71] for a quick recovery 

of link failures in large-scale SDN. The proposed algorithm shows swift performance even in large-

scale networks and guarantees the shortest path. Additionally, the technique has been compared with 

Dijkstra to demonstrate its lesser complexity. Furthermore, the algorithm implemented in C++ has 

shown scalability and robustness when tested in a topology comprising over 25,000 nodes and also 

with some standard internet topologies. Moreover, the idea of prune searching avoids the 

unnecessary path search operation, which results in lesser complexity of the algorithm and is 

therefore scalable. However, the author did not discuss the number of flow operations required 

(addition and removal of flow entries) for link failure recovery. 

A distributed controller placement approach has been presented in [72] that utilizes three 

controllers, one in an active state and two for backup. Therefore, in case of controller failure, the 

control plane operations continue uninterrupted with less packet loss. According to the findings of 

the study, the packet loss reduces from 5.22% to 4.15% with distributed controller architecture. 

Similarly, delay with a distributed control plane reduces from 8.1% to 6.1%.  
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4.4. Hybrid SDN 

In a hybrid SDN, the SDN and traditional routers co-exist simultaneously [73]. According to the 

authors in [74], a proposal was presented that used a global topology view for controlling the external 

traffic routes. The routers obtain the route information from the centralized controller. However, the 

controller cannot gain control of traffic information from legacy devices. A proposal described in [75] 

utilizes the OpenFlow protocol for obtaining the route statistics from the SDN and legacy nodes. 

Likewise, the approach in [76] leverages an SDN controller working in parallel with legacy devices 

for taking routing decisions pretending OSPF link-state advertisements (LSAs). The data and control 

plane communication is conducted through various layers of protocol translation. The advocates of 

hybrid SDN claim that as the SDN is not yet fully deployed, link failure problems related to hybrid 

SDN must be addressed by taking advantage of the strong features of traditional networks. 

A sample architecture for E2E communication in an inter-domain hybrid SDN, illustrated in [77], 

demonstrated that hybrid SDN leverages border gateway protocol (BGP) functionalities for policy 

management, path selection, and security. In Reference [78], a rule update consistency mechanism 

was proposed using legacy and SDN switches for combating security policies. The studies presented 

in [79–81] proposed link failure solutions for a hybrid environment using legacy and SDN switches. 

Likewise, the authors in [82] explained various hybrid SDN types, such as those based on class, 

service, and topology. Similarly, the challenges, opportunities, and trade-off among different types 

were also discussed in [82]. 

A congestion-aware approach for link failure recovery in hybrid SDN proposed the redirection 

of traffic from a failed link to the SDN switches through a pre-established IP tunnel [83]. In the 

proposed methodology, the switches can also discover multiple backup paths by leveraging the SDN, 

which helps in avoiding congestion and in balancing the load that was not achieved with the shortest 

path schemes. Figure 6 shows the general procedure of the approach they followed. However, the 

proposed method only deals with single link failures.  

 

Figure 6. Link failure recovery in a hybrid SDN [77]. 

4.5. Inter-Domain Approaches  

The controllers are an indispensable entity in the SDN, and are utilized either in a central or 

distributed manner, i.e., either a single domain with one controller or multiple domains with a 

separate controller for each domain. A single domain controller is only responsible for one AS in its 

administration. However, the management of different heterogeneous domains is tedious because of 
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a lack of a common northbound interface. Similarly, the network update process may be insecure due 

to communication between different control planes [84].  

Owing to the complexities in the implementation of distributed controller architectures, an SDN 

approach, i.e., software-defined fast re-routing (SD-FRR) for inter-domain link failures was proposed 

in [85]. As E2E performance suffers from the slow response shown by BGP [86], it also leads to 

unreliable delivery of packets. The proposed scheme efficiently recovers the failed link with less 

overhead of the controller due to the distributed architecture. Figure 7 shows a hierarchal control 

plane SDN, with a joint participation of local and global controllers. The local controllers can share 

the network state information with the global controller. Therefore, the E2E service provisioning can 

be ensured in case of a link failure. Despite the existence of various proposals with this approach, 

there are still a few unresolved problems related to interoperability, communication between the 

control plane and the northbound interface, consistency among various domains, and E2E service 

provisioning for various applications. 

 

Figure 7. Inter-domain hierarchal architecture for an E2E (end-to-end) communication in SDN. 

4.6. In-Band Methods in SDN for Link Failure Recovery  

The techniques for link failure recovery discussed so far fit into the out-band SDN methodology, 

i.e., where the data and control traffic have separate channels for transmission. In in-band SDN, a 

common channel is used for both data and control traffic. Therefore, the data and control packets 

compete for shared resources such as bandwidth [87]. In case of a link failure, both the control and 

data plane traffic are affected. Accordingly, recovery must be initiated for both types of traffic to 

ensure the smooth operation of the network.  

In in-band SDN, in case of an outage in the communication link between the switch and the 

controller, the switch waits until the echo request message times out [88]. If the connection 

establishment fails, the switch starts a backup timer and waits for another chance till the timeout of 

the timer. The same process is repeated for each failure. As the time taken by the echo request and 

backup timer is 1 s [88], the recovery delay increases. In [89], the authors proposed a scheme for 

recovery of the control traffic by leveraging the FF group. Using the FF group, the traffic toward a 

failed link is transferred to an alternative link without interrupting the controller. Action buckets 

determine the destination of the packet under both normal and failure conditions. During 

experimental validation, it was observed that the traffic was restored without contacting the 

controller, which means that it can meet the CGN delay limits (<50 ms). However, the scheme has a 

single point of failure (SPOF) problem, i.e., a recovery is not possible in case of a controller or switch 

failure.  
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An in-band SDN plug and play recovery architecture discussed in [90] is based on the OpenFlow 

protocol where controllers themselves can create a communication network. Each controller builds a 

global spanning tree that enables communication among the controllers. Similarly, every switch is 

configured with controller virtual IP address and a set of rules applicable to the control traffic. A 

priority-based scheme described in [91] uses a queuing mechanism with the highest priority given to 

control traffic in an in-band SDN. Consequently, the data packets do not affect the control packets. 

However, the synchronization of the data plane switches in SDN with distributed controllers 

architecture still a problem.  

The synchronization of the distributed control plane was tackled in [92], where the authors 

proposed an in-band synchronization mechanism. Synchronization among the controllers is vital to 

keep the operations of the data plane consistent between distributed controllers. Multiple 

configurations in the data plane were combined as an atomic transaction to avoid the conflicts among 

the transactions. If a transaction leads to inconsistency among the control planes, it is aborted and 

neither of the control planes executes it. Although the described works provide a consistent and 

atomic framework for transactions in distributed control planes, the actual implementation of a 

distributed control plane in SDN still faces several challenges with regard to consistency, reliability, 

and performance.  

4.7. ML in SDN for Link Failure Recovery 

The unprecedented growth and complexity in network traffic have placed limitations on the use 

of conventional recovery schemes in case of link failures. The number of interconnected network 

devices and the Internet of vehicles data are predicted to cross 50 billion [93] and 300,000 exabytes, 

respectively, by 2020 [94]. Hence, the probability of link failures will increase in correspondence with 

the developments in the internet devices. One of the greatest advantages of ML is its ability to provide 

solutions for complex problems [95]. Similarly, traditional recovery techniques may fail while 

handling the exchange of large amounts of data. Therefore, the application of ML algorithms to 

critical traffic attributes can offer useful insights for fault identification and recovery. Consequently, 

ML algorithms are considered for big data management.  

In [96], the authors described the application of ML schemes for self or automated configuration, 

healing, and optimization. The goal of self-healing is the detection, recovery, and analysis of failures 

in the network. Herein, it is important to mention that ML schemes are used for the detection and 

classification of faults. A deep learning-based scheme was proposed in [97] for link failure recovery 

in 5G networks. Here, the signal strength is measured when the mobile stations move between base 

stations. The history of past handovers is collected for training the ML model and for prediction of 

the next handover. Implementing link failure localization in complex networks based on traffic 

attributes using ML is described in [98]. However, these approaches do not provide an adaptive 

recovery of the link failures, i.e., no rerouting of traffic is proposed to the destination from a failed to 

an alternative path after considering traffic conditions.  

The availability of data is very critical for ML schemes. In this context, ML algorithms have an 

advantage that they collect the network traffic data. The SDN controller has a global view of the 

network, which simplifies the monitoring and collection of network statistics. In Reference [99], an 

approach was presented for leveraging the SDN features of centralized traffic engineering and 

network monitoring. The SDN controller monitors the changes in the traffic patterns. Similar to a link 

failure, there is a change in the traffic pattern on the other paths. The controller updates the secondary 

path when it detects the change in network traffic. The ML model is trained with various classification 

algorithms such as support vector machine (SVM), random forests (RF), neural networks (NN), linear 

regression (LR), and decision trees (DT). However, if the number of nodes increases, then the backup 

paths will also increase enormously along with an increase in the flow matching overhead. The deep 

learning-based [97] approaches adapt themselves according to the dynamic changes occurring in the 

network. Hence, they are ideal for self-organizing networks leveraging the programmability features 

of SDN controllers.  
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Table 4 summarizes the issues and disadvantages in an SDN-based link failure recovery schemes 

for large-scale, hybrid, inter-domain, in-band, and machine learning approaches.  

Table 4. Research issues in various schemes for link failure recovery in SDN. 

Failure 

Recovery 

Scheme 

Research Issues Disadvantages 

Large-scale 

SDN 

Flow insertion delay minimization 

[69,70] 
Large recovery delay  

Efficient algorithms for re-routing the 

packets [71] 

Complexity of algorithms 

running on SDN controller 

Synchronization among distributed 

controllers [72] 
Inconsistency of information 

Hybrid SDN 

Communication between traditional 

and SDN-based switches/routers [73–

76,78–81] 

Interoperability 

Congestion and load balancing [77] 

No consideration of a scenario 

with nil link failures in the 

network  

E2E synchronization of different 

domains [83] 

BGP limitations on inter-domain 

co-ordination 

Inter-domain 

Complex network update process [84] 
Distributed control of E2E 

information 

Increased overhead of SDN controllers 

[85] 
High processing overhead  

In-band SDN 

Efficient bandwidth utilization [87] Inefficient utilization of resources 

Increase in recovery delay [88] 
High probability of backup timer 

delay 

Single point of failure [89] 
Low performance, network 

collapse on controller failure  

Synchronization of distributed control 

plane [90,91] 

Separation of control plane traffic 

from data plane traffic  

Consistency, reliability, performance 

[92] 
Large delay 

ML 

Limited to traditional networks [95–98] Vendor interoperability 

SVM, DT, RF, NN, LR [99], the flow 

match in switches will increase  

No assurance of controller service 

in case of anomalies/attacks 

5. Application Scenarios 

5.1. Link Failure Recovery in Tactical Networks 

Tactical networks are more complex due to their unpredictable environment. A scenario 

presented in [100,101], also shown in Figure 8, discusses the application of SDN in Naval tactical 

networks for automatic reconfiguration of the failed links according to the dynamic QoS 

requirements of the applications. The studies show how the Naval tactical networks can use SDN for 

maintaining the QoS of applications in a link failure situation. The applicability of SDN makes the 

Naval tactical networks automatically reconfigurable. An experiment was conducted with the 

FloodLight controller; the ships exchange the information with each other through a line-of-sight 

(LOS) link and network operations center (NOC). The controller updates the policies according to the 

changes in the network. In the next subsection, we define our experimental setup for conducting a 
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link failure recovery based on SDN in Naval tactical and DCN. We record the throughput and failure 

recovery time for both networks.  

 

Figure 8. Network topology for Naval tactical networks [101]. 

5.2. Experimental Setup and Calculation of Recovery Delay 

We used the Mininet [102] Python API for emulating the Naval tactical and DCN fat-tree 

topologies on the ODL [28] controller. The network emulator is widely used for prototyping SDN-

based experiments. Mininet version 2.3.0d1 with an Open vSwitch (OVS) version 2.5.4 was installed 

in Ubuntu 16.04 LTS. Further, the Xming server was used to visualize and generate the traffic between 

the source and destination hosts. The ODL controller is used in two modes: proactive and reactive. 

In the proactive mode, the delay or recovery time is equal to the sum of failure detection delay (���) 

and path calculation (���), i.e., the time required for finding an alternative path for a failed link. 

Hence, the flow insertion delay ��� → 0, as the paths are configured in advance. In the reactive mode, 

the total delay is the sum of the failure detection delay (���), flow insertion (FI) and its delay (���), 

and the path calculation (���) from the source to destination hosts. Thus, 

������� = ��� + ��� + ��� → 0 (1) 

������� = ��� + ��� + ��� (2) 

To simulate the link failure scenario, we performed the following steps: 

1. First, we configured the ODL controller in the proactive mode and then in the reactive mode. 

2. We implemented the Naval tactical and DCN topologies in the Mininet emulator by calling the 

IP address of the ODL controller.  

3. The link bandwidths for the Naval tactical network operation centers (NOC-1 and NOC-2) was 

4 Mbps, whereas it was 6 Mbps for the ships Ship-1, Ship-2, and Ship-3. 

4. The link bandwidth was 10 Gbps DCN core links and was 1 Gbps for the aggregate links.  

5. We then opened an x-terminal (a graphical terminal) on the source and destination hosts. 

6. We defined the traffic parameters to be used to evaluate the recovery delay as shown in Table 5. 

7. We employed a distributed internet traffic generator (D-ITG) [103] to initiate traffic between the 

source and destination hosts using the graphical terminals. 
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8. We induced a link disruption (with link-down command) in the Mininet and recorded the delay 

using Equations (1) and (2) for the proactive and reactive schemes, respectively. 

Table 5. Traffic generation parameters. 

Parameter 
Payload Length 

(bytes) 

Traffic Rate 

(Packets/sec) 

Time (in 

Seconds) 
TCP/UDP 

P1 6000 60,000 100 UDP 

P2 7000 70,000 100 TCP 

P3 8000 80,000 100 TCP 

P4 9000 90,000 100 TCP 

P5 10,000 100,000 100 TCP 

5.3. Evaluation of Proactive and Reactive Recovery in Tactical (Naval) Network 

In this section, we perform a simulation of the topology given in Figure 8 in Mininet. First, we 

introduced a link failure and then applied the SDN proactive and reactive link failure schemes using 

the OpenDaylight controller. The experimental scenario and the results validate how SDN 

automatically reconfigures the network through its programmable interface for forwarding traffic, in 

case of a link failure depending on the availability of alternate paths. The flow rules updated on the 

switches determine the forwarding of the traffic on the alternative path to the destination. There are 

five wide area network (WAN) switches (two NOCs at the shore and three ships). A satellite link 

connects the NOCs at the shore and the ships. The ships can also communicate via an LOS link 

depending on the network and distance conditions. 

The SDN controller discovers the topology by sending link layer discovery protocol (LLDP) [104] 

messages to the switches. We induced a link outage in the network and recorded the throughput 

between the source and destination hosts using the iperf tool [105]. When the link failure occurs due 

to environmental conditions, the controller is notified by the exchange of LLDP messages between 

itself and the switch. Ship-2 can communicate via NOC-2 with Ship-3. However, the satellite 

communications (SATCOM) link between Ship-2 and NOC-2 fails. The SDN controller then re-

establishes the path automatically, i.e., it finds an alternative path to re-route the packets between the 

source and destination nodes. Consequently, a throughput degradation is observed, as shown in 

Figures 9 and 10. We can observe that there is a larger throughput degradation in Figure 10 owing to 

controller intervention for the recovery of the link in the reactive approach.  

 

Figure 9. Link failure recovery in SDN with the proactive approach. 
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Figure 10. Link failure recovery in SDN with the reactive approach. 

Figure 11 shows a comparison of recovery times (in milliseconds (ms)) for the proactive and 

reactive schemes. We calculated the recovery time for different traffic parameters (P1, P2, P3, P4, and 

P5) for the topology shown in Figure 8. For this purpose, we used a distributed internet traffic 

generator tool. The details of these parameters are given in Table 5. We increased the traffic 

generation rate between the source and destination hosts and recorded the recovery times for both 

the approaches. We can see that the recovery time in the reactive approach increases with an increase 

in the traffic generation rate as additional packets are sent to the controller. Moreover, in case of a 

link failure, the SDN controller discovers an alternate path and inserts the flow entries in the path. 

Hence, the recovery time is quicker when compared with the proactive scheme.  

 

Figure 11. Comparison of recovery times in the tactical (Naval) network with different traffic 

parameters. 
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5.4. Link Failure Recovery in a Data Center Network  

The mean time for link failures in a data center [8] is 40.8 per day. Therefore, faster recovery of 

failed links is required to avoid congestion and balance the load. Hence, fast fault recovery 

approaches are vital in DCN for fast failure recovery to improve the QoS and QoE. Figure 12 shows 

a DCN topology with backup paths.  

 

Figure 12. The topology of DCN (data center network) in Mininet. 

5.5. Testing Proactive and Reactive Recovery in DCN Using ODL Controller 

In this section, we describe the simulation of a scenario for a fat-tree DCN [106], as shown in 

Figure 12. The ODL controller is configured in two modes: proactive and reactive. The source (h1) 

communicates with the destination (h8). The link bandwidth is shown in the figure with green (10 

Gbps) and blue (1 Gbps) lines. Then, we induced a link failure, as shown with a red cross sign. The 

path with the red cross sign shows the original link through which the packets are passing toward 

the destination. The throughput before and after the recovery with the two schemes, proactive and 

reactive, is shown in Figures 13 and 14, respectively. In both the proactive and reactive approaches, 

the throughput is almost the same after recovery. However, the average throughput in the reactive 

approach is smaller and the time for recovery is larger when compared with the proactive approach, 

because of controller intervention, i.e., an alarm is sent to the controller immediately after a failure. 

The controller then runs the algorithm for discovering an alternate path for the failed link. Therefore, 

the observed throughput is comparatively smaller in the reactive approach. 
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Figure 13. Link failure recovery in DCN with a proactive approach. 

 

Figure 14. Link failure recovery in DCN with a reactive approach. 

Furthermore, we evaluated the recovery times (ms) when using the proactive and reactive 

schemes in the DCN topology. Figure 15 shows the recovery times (ms) of both the approaches with 

the various traffic generation parameters listed in Table 5. It is evident from the figure that the 

proactive scheme has a lesser recovery time due to predefined alternate paths. Hence, it avoids the 

extra latency caused by the controller owing to the insertion of flow rules and finding of the recovery 

path.  
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Figure 15. Comparison of recovery times in DCN with different traffic parameters. 

6. Summary and Challenges of the SDN-Based Failure Recovery Approaches  

In the proactive method, the backup paths are calculated in advance. Therefore, when a link 

fails, the controller forwards the traffic on the backup path. The method has its pros, such as the 

controller does not need to recalculate the path as the forwarding rules for the backup path already 

exist in SDN switches. However, a disadvantage of this approach is that the TCAM space cost of the 

SDN switches increases. Besides this, the switches have a limitation of 8000 flow entries in the flow 

tables.  

In a few cases, the backup path may fail earlier than the original primary path. If the failure 

occurs early, the performance is affected, because the incoming packets are matched with the flow 

rules due to the redundancy of backup path flow entries in the switches. In the reactive approach, the 

SDN controller installs the flow rules for the alternative path when a link failure event occurs. The 

methodology is economical in terms of TCAM space; however, the calculation of an alternative path 

at run time and the installation of rules for the alternative path incurs an additional delay. 

To summarize, the critiques of the reactive approach argue that the induced delay incurred by 

the controller in finding an alternative path cannot meet the minimum delay requirements of the 

CGNs. However, approaches that have used efficient routing algorithms and minimum flow 

operations have achieved the desired results. There is always a space for future researchers in terms 

of improving the previous works because there is a tradeoff between flow operations, large-scale 

SDN, the minimum shortest cost path, complexity of the algorithm, delay, congestion, load balancing, 

etc. The inter-domain techniques have synchronization, E2E service provisioning, and 

interoperability problems that hamper failure recovery. Similarly, in the in-band schemes, the 

differentiation between data and control traffic is a complex process. Therefore, efficient solutions 

with minimum complexity can be proposed with which the innovative features of southbound 

interface protocols, such as OpenFlow/Netconf, can be combined for achieving efficient results. In the 

end, we discussed ML-based schemes. There is a high probability of the ML-based schemes being 

used in the future because of the increase in the internet nodes and users as well as the enormous 

usage of data. However, the lack of standard datasets for the SDN environment hinders the use of 

ML in SDN research. The development of ML applications with high accuracy for link failure 

detection and the formation of versatile datasets should be considered for using ML in SDN in future.  
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7. Conclusions 

The introduction of SDN for combating link failure recovery is a novel approach that leverages 

centralized control concepts. In this paper, we described the background and importance of SDN in 

link failure recovery by explaining the vulnerabilities of the traditional networking architecture. 

Then, the three SDN planes and their interaction mechanisms were described along with the 

importance of SDN for link failure recovery. The failure recovery speed is dependent on the time 

taken in failure detection. Therefore, we described the state-of-the-art approaches for link failure 

detection with their pros and cons. We described the proactive and reactive approaches. First, we 

explained the link failure detection and recovery process with proactive failure recovery in SDN. 

Then, previous schemes using proactive recovery were described in detail. Similarly, we described 

reactive failure recovery approaches, i.e., the reactive failure recovery mechanism in SDN and its 

related literature. We compared the effectiveness of proactive and reactive failure recovery 

approaches in SDN from the summaries of previous works. A comparison was performed between 

the proactive and reactive schemes in terms of latency, scalability, routing updates, TCAM space, 

flow operations matching, configuration, robustness to backup path failures, routing information 

access, processing of switches, and the overheads of routing, controller and switches. The inter-

domain and intra-domain architectures for link failure recovery were discussed. Finally, the link 

failure recovery in a hybrid SDN environment, large-scale networks, in-band SDN, and machine 

learning schemes were discussed. We simulated two application scenarios of the Naval tactical 

networks and DCN using the ODL controller for proactive and reactive approaches, showing the 

recovery time and throughput comparison. The experimental results after applying the two schemes 

show that flow insertion by the SDN controller, in case of the reactive approach, causes an extra 

burden due to controller intervention. Finally, in the summary section, we listed the problems and 

future directions for SDN-based link failure recovery. Keeping in view the research challenges, this 

study can help in selecting the optimum resilient SDN solutions that can guarantee a smooth 

functioning of the CGNs. 
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Abbreviations 

SDN Software-defined networking 

TCAM Ternary content addressable memory 

API  Application programming interface 

NB/SB API Northbound/Southbound API 

E2E end-to-end 

BFD Bidirectional forwarding protocol 

ODL OpenDaylight 

BER Bit-error-rate  

SD-EON Software-defined elastic optical network 

SD-FRR Software-defined fast re-routing 

BGP Border gateway protocol 

CGN Carrier grade network 

FRR Fast re-routing 

LLDP Link layer discovery protocol 

RIP Routing information protocol 

OSPF Open shortest path first protocol 
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AS Autonomous system 

STP Spanning tree protocol 

NOC Network operations center 

DCN Data center network 

ONOS Open network operating system 

QoS Quality of service 

QoE Quality of experience 

MPLS Multi-protocol label switching 

RSTP Rapid spanning tree protocol 

FDLM Failure detection service with low mistake rates 
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