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Abstract: The large-scale implementation of electric vehicles involves many challenges, including the
stress on electric distribution networks. In order to quantify this impact, an input–output methodology
applied to a case study in a representative urban context is proposed. The analysis shows that,
on average, a standard distribution network can withstand 40% electric vehicle penetration without
an increase in its capacity, always in the case of slow night charging. Higher levels of penetration are
difficult to obtain without electric grid reinforcements because both lower energy prices and usual
transport habits create a strong peak power demand during the night. The study also confirms that
semi-fast or fast charging systems are not acceptable as domestic technologies due to the lack of
capacity in transformation centers and their unsuitability for standard low voltage lines.
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1. Introduction

The reduction of air pollution is a global priority due to its impact on human health, climate
change, and the destruction of the ozone layer. Although it is difficult to quantify the number of victims
of air pollution, according to the World Health Organization (WHO), in 2004, premature deaths from
particles resulting from air pollution exceeded 1% of the total [1]. Currently, researchers are working to
establish the more precise impacts of air pollution on human health. Some studies indicate that its
effects are beginning to spread beyond large cities [2,3].

Transport in its different modes contributes to 27% of the total greenhouse gas (GHG) emissions,
among which 72.9% comes from road transport [4]. This percentage is even higher for cities [5]. In the
specific case of Almeria (the municipality object of the current case study), the Sustainable Urban
Mobility Plan shows that 40% of trips within the municipality are made by private vehicles, of which
almost 99% are powered by internal combustion engines (ICEs). The consequences of the large-scale
use of these fuels are well known. The emissions of particulates, and GHG and noise pollution are the
economic and strategic focus of non-producing countries. In this context, the promotion of electric
vehicles (EVs), accompanied by an increase in the use of renewable energy via electricity generation,
might offer a solution to these shortcomings.

However, the large-scale penetration of EVs may exert stress on both the transport and electric
distribution networks. In the case of urban distribution networks, whose capacity is intrinsically
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difficult to increase due to a lack of vacant space, this problem is more serious. In addition, since
the potential users of EVs prefer home charging [6], it is crucial to determine whether current urban
infrastructures are ready for large-scale EV penetration.

The aim of this article is to answer this question by analyzing the impact of large-scale EV
penetration on a standard electric distribution network through a case study. We also propose a
methodology based on the demand, estimated using fiscal databases and an assessment of the supply
capacity through real data provided by the electric grid operator. The results obtained should be
applicable to other similar socio-economic situations, while the methodology can be used in a broader
range of urban contexts.

The article is structured as follows. Section 2 provides a summary of the state-of-the-art of electric
mobility, ranging from the different types of vehicles and their charging modes to the procedures used
for studying their impacts at the infrastructure level. In Section 3, the methodology used in the study
and the origin of the data are presented. The fourth section presents the results, which is followed by a
discussion of the findings in Section 5. Finally, the main conclusions of the research are highlighted.

2. Background

There is an increasing need to implement EVs on a larger scale. For this reason, several studies have
tried to forecast their implantation possibilities based on different scenarios and public policies [7,8].
One of the main barriers to EV penetration lies in the well-known “chicken and egg paradigm”.
For more charging stations to exist, those stations must be profitable, which is difficult while the
demand remains low [8]. However, because there are few charging stations, people are reluctant to buy
an EV. In addition, potential customers prefer to use cheaper home-charging systems [9]. For a better
understanding of the subject, it is necessary to briefly describe the roles of the stakeholders involved in
the penetration of EVs, the current stage of the technology at both the vehicle and infrastructure levels,
and the techniques being used to facilitate EV studies.

2.1. Stakeholders

Three stakeholders can be distinguished in the issue of EV penetration: potential customers, public
administrations, and private companies. (i) Potential clients: this category includes “early adopters”,
including those who are environmentally conscious and those who see EVs as a form of investment by
reducing their total vehicle ownership costs (TOCs). Another group includes “performance seekers”,
who see EVs as a more avant-garde technology than conventional vehicles. The third group is composed
of “late-adopters”, who follow trends and determine vehicle reliability based on the experiences of
other drivers. Finally, there are those who are reluctant to change or are unaware of environmental
considerations and the advantages that EVs have over ICE vehicles. (ii) Authorities: at the national level,
governments can establish global strategies in favor of the implementation of EVs, thereby promoting
incentives for their acquisition or the use of renewable energy. These types of measures are usually
harmonized through international treaties [7]. At the local level, municipalities play a very important
role in both the regulation of atmospheric and noise pollution and in the regulation and supervision of
the charging infrastructure, especially for stations located in public roads. Since the time necessary
for an electric vehicle to recharge is much longer than that for an ICE vehicle, the space needed for
a future EV pool could increase the problem of parking in cities, an aspect that should be properly
managed. These authorities can also provide tax incentives for the acquisition of EVs by reducing road
taxes. In addition, municipalities may manage municipal utilities to provide public services such as
electricity supply, the operation of distribution systems, the management of parking lots in garages
and public spaces, and public transport. (iii) Companies: this category includes electricity distributors
and suppliers, the manufacturers of charging systems, the installers of charging infrastructure, vehicle
manufacturers, passenger transport companies, private parking operators, and gas stations.

Apart from the traditional relationships between these stakeholders, new relationships must be
established between the electricity and the transport sectors (i.e., the local authorities), who have already
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been working with both agents in a privileged position, to guarantee proper coordination. Potential
customers experience barriers to the rapid growth of EVs, such as costs (if they do not receive incentives),
the availability of information, poor autonomy, technological uncertainty (generally due to batteries),
the current strength of the ICE vehicle industry, and, above all, the charging infrastructure [10,11].

2.2. The Current State of Electric Vehicle Technology

EVs can be classified into hybrid electric vehicles (HEVs) and fully electric vehicles (FEVs). HEVs,
which can be pluggable or not, have a series configuration (also known as extended-range) in which
the combustion engine, which works at its optimal point to charge the batteries, is not coupled to the
propulsion system, and a parallel configuration, where the combustion engine is connected to the
propulsion system [12]. HEVs have the advantage of greater autonomy, even though they have certain
drawbacks, such as GHG emissions and more complex mechanics. FEVs do not emit GHGs and have
simpler mechanics since they neither incorporate an internal combustion engine nor the elements
associated with it. In addition, they have no access restrictions to low emission areas [12]. Conversely,
they have the disadvantage of low autonomy. However, research is enabling the improvement of
batteries and the search for new ways to use them, such as leasing [13]. There are other types of
electric vehicles, such as fuel cell vehicles, but their high cost and premature state of technological
development indicate less penetration than the types mentioned above [14].

As indicated above, one of the key aspects that might condition the degree of EV penetration
in the following years is the sum of their acquisition and maintenance costs compared to traditional
ICE vehicles. For this reason, we apply the concept of TOCs, which allows for a comparison of both
alternatives from a purely economic point of view. This criterion takes into account aspects such as
(i) energy consumption, which is considerably lower for EVs; (ii) maintenance costs, which are usually
lower for EVs [14]; (iii) the rental costs of the battery, in the case of a leasing regime; (iv) the costs
of periodic inspections, which are lower for EVs because exhaust gases do not have to be measured;
and (v) taxes, which are usually lower for EVs. Considering all the previous variables, a study can be
designed based on the profitability of EVs for a given time horizon and mileage, which can also be
used to design public incentives for the acquisition of such vehicles.

Another aspect that could determine the level of EV penetration is the speed and method
of the battery charging process. Considering charging speed, in Spain there are three charging
technologies [13]. In the first, called slow charging, the EV is charged using a 230 V single-phase
alternating current at maximum intensity of 16 A. The second is called semi-fast charging and can
use both single-phase and three-phase alternating current, reaching up to 63 A intensities. The third
and last type of charging, called fast charging, is carried out using direct current at voltages of up
to 500 V and intensities ranging from 5 to 550 A. The average duration of slow charging ranges
between 6 and 8 h, while semi-fast charging can be completed in less than two hours and fast charging
from 5 to 30 min [15]. The different durations of these three charging systems result in very different
peak power demand, which is a paramount aspect from the perspective of the electric network
capacity. Another important aspect that affects the charging infrastructure is that there is currently no
standard in Spain for connectors and the rest of the elements involved [13]. Thus, in slow charging,
the EV is connected to a domestic installation using a standard 16 A cable. In the semi-fast charging
mode, when the vehicle is connected to the network using standard plugs of up to 32 A per phase,
electronic units in charge of verifying the correct state of certain parameters during charging are usually
incorporated. In fast charging, the EV is connected to the electric network via external equipment.
In Spain, fast charging is the mode with the greatest presence in public charging stations. Finally,
there are three fundamental ways to manage charging. In the dumb load mode, users are allowed
to charge their vehicles indiscriminately, as if they were just another load at home. This absence of
management produces what is known as the “worst case scenario” since the charging process is usually
carried out after the last use of the car at the end of the day, thereby inducing high simultaneity with
other users. To avoid this situation, there are two different management modes: time discrimination
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and smart charging. Time discrimination is based on agreements between the electrical operators and
users ensuring that a part of the charging takes place during off-peak hours. This allows users to save
money and the electric grid operators to optimize their infrastructure. Smart charging is a step forward
for time discrimination, with more sophisticated management due to the use of real-time information
on the power demands of the electric network. This charging management system is usually integrated
into so-called smart grids that use control algorithms to optimize the efficiency of all elements that
comprise the electric system and may include micro generators. In this type of network, the level of EV
penetration plays a key role, with the network able to act as a regulatory agent through what is known
as vehicle-to-grid (V2G) technology [16].

2.3. Previous Research on the Impact of the Electric Vehicle on the Electric Network

To evaluate the impact of a significant penetration of EVs on an electric network, it is necessary
to analyze both the energy demands and the infrastructure offered in different scenarios. Thus,
for demand, the vehicle pool should be characterized together with vehicles’ current patterns of use.
For example, the electric network scope, topology, capacity, and resilience must be assessed through
parameters such as the medium voltage to low voltage (MV/LV) transformers load, voltage drops,
phase balancing, or thermal limitations [17–25]. By comparing the two factors, the authors of [26]
compared the impacts of different scenarios of EV penetration in five European countries. The increase
in the energy peak of demand in Spain would be 0.45%, 0.90%, and 2.3% for realistic, aggressive,
and very aggressive scenarios of penetration and dumb management. These percentages would place
Spain in third place behind the United Kingdom and Germany. In order to assess the demand increase,
vehicles were divided into categories, and a specific average consumption value was proposed to
define the energy consumption ratio for each kilometer travelled. This procedure was also used in [27].
In [28], this classification was reduced to three types of vehicles that charge at 1.5 kW, 3 kW, and 6 kW
power peaks, respectively, assuming an equal daily distance travelled for each category, with two
specific consumption levels, and a four-hour charging time. According to the simulations, the EV
penetration level for dumb management could reach 10%, while that under a smart charging system
could reach 52%. The key to these increases in the level of penetration lies in the ability to implement
management strategies in real time [29]. Most of these studies used the commercial PSSE software to
carry out electric network simulations, although ad-hoc tools, such as those found in [30], were also
applied. In [31], a reinforcement percentage between 10% and 15% was estimated for the MV/LV grid
under a scenario with a high EV penetration level. With transformer substations, this percentage could
exceed 30%. Each of these reinforcements might involve a cost of €400 for each vehicle. Regarding the
estimation of demand, most previous research has used simulations based on stochastic models to
predict the increase in energy demand under different levels of EV penetration. However, estimation
models based on machine learning [32] and the application of big data techniques from empirically
obtained information [33] have also been developed, as well as those based on information from the
real-time locations of users while they remain in their charging stations [34].

3. Materials and Methods

The aim of this study was to determine whether a conventional electric distribution network can
support the increase in demand resulting from a complete transformation of an urban settlement’s
vehicle pool from ICE vehicles to EVs. Instead of using a typical macro or statistical analysis [35–39],
this research was carried out using an input–output study at a micro level, based on the exhaustive
estimation of potential EV demands and the capacity of the electric distribution network in a standard
urban settlement—in this case, La Cañada de San Urbano (Almeria, Spain), with a population of about
6000 inhabitants (2019). This village was chosen due to several considerations. Firstly, it has a historical
population with complex internal patterns, both from a morphological (an average housing density of
45 dw/ha with a mixture of multi-family and single-family buildings) and socio-economic (a mixture
of residential, commercial, and industrial activities) perspective. Its global motorization rate (although
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in this study, only passenger cars were considered) is around 550 vehicles per 1000 inhabitants based
on the Spanish average. In addition, according to the electricity operator, the curve of electricity
demand is similar to that of the Spanish standard. Secondly, from a practical point of view, this city
has well-defined physical limits that allow for the accurate characterization of both its vehicle pool and
the electric network that would serve it.

The data necessary to characterize La Cañada de San Urbano’s electric network were supplied by
the exclusive grid operator, in this case, from the company called e-distribución, according to the 24/2013
Electric Spanish Law. To carry out this study, only the power available in the MV/LV transformers
(20 kV/400 V) and the area supplied by each transformer were considered. The distribution of the loads
among the different low voltage (LV) lines was not taken into account. This simplification is admissible
since both the modification of the topology and the reinforcement of LV lines across a public space is
relatively simple as long as there is vacant power in the ML/LV transformers. However, building or
expanding transformers in dense urban areas is much more complicated. The area’s infrastructure is
accordingly represented by the MV/LV transformers with their location, power, and range of action,
which is understood as the maximum envelopment (with small adjustments) of the associated LV lines.
A representation of the electric infrastructure in La Cañada de San Urbano is shown in Figure 1.
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Figure 1. La Cañada de San Urbano’s electric network.

Obviously, not all the MV/LV transformers’ power was available since the demand from electric
mobility must be added to pre-existing loads. As indicated, according to the data provided by
e- distribución, the demand curve in La Cañada de San Urbano does not differ from the Spanish
standard, which is represented in Figure 2 [40,41].
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Taking into account the aforementioned factors, we assumed that the three charging modes
(slow, semi-fast, and fast) were applied during the night period. This agrees not only with the electric
grid’s capacity but also with the habits of the citizens and electricity pricing (see Appendix B). Thus,
comparing the maximum daily demand shown in Figure 2 (34 GW) with the maximum load during
the 0–8 h period (around 27 GW), it was possible to deduce that at least 21% of the power in the
MV/LV transformers should always be available to perform slow charging during the night. Doing the
same operation for semi-fast (3 h duration) and fast (30 min) charging, the minimum vacant power
with respect to the daily maximum would be 30% (24 GW vs 34 GW between 3:00 and 6:00 a.m.).
In all three situations, the MV/LV transformers’ overcapacity above the maximum daily load could
be added, but this factor was not considered in this study in order to avoid biases resulting from
unique situations.

For demand, we considered a scenario where 100% of passenger cars become EVs simultaneously
while maintaining their ICE-equivalent characteristics. In the case of trucks and buses, conventional ICE
traction was maintained since there are no equivalent EVs on the market. Starting from this foundation,
to forecast the total energy demand, it was necessary to carry out two operations: (i) characterize the
current pool of vehicles in La Cañada de San Urbano; and (ii) convert that pool of vehicles to equivalent
electric models. The source used to estimate the number and characteristics of the vehicles was the City
of Almeria Vehicle Census (the administrative municipality of La Cañada de San Urbano). This census,
which was elaborated for fiscal purposes (Mechanical Traction Vehicle Tax), was especially suitable for
this study since it provided data not only on the number of vehicles but also about their fiscal power
and address, which allowed us to assign each vehicle to a specific MV/LV transformer. The fiscal power
was converted to real engine power following the methodology indicated in the 2822/1998 Spanish
Vehicle Regulations. The expression applicable to electric engines is as follows:

Fiscal Power (FHP)= Electric Engine Power (HP)/5.152 (1)

The equivalence of each fiscal power range with its equivalent EV model is shown in Table 1.
The models were chosen from among those with the ghest number of sales.
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Table 1. Electric and conventional vehicle equivalences [42].

Fiscal Power
Range (FHP)

Electric
Model

Power
(kW)

Model Fiscal
Power (FHP)

Battery
(kWh)

Range
(km)

Energy Comp.
(kWh/km)

<8 Renault
Twizy 4 0.78 6.1 100 0.06

8–11.99 Citroën
C-Zero 49 9.51 15.2 150 0.10

12–15.99 Nissan Leaf 80 15.53 24 200 0.12
16–19.99 Volks. eGolf 100 19.41 35.8 300 0.12

>20 Tesla Model 3 379 73.56 80.5 530 0.15

It should be noted that the range of all vehicles was greater than the average daily distance
statistically travelled by each vehicle, which ranged between approximately 46 and 65 km [43–45].

Once the energy demand was known, to calculate the maximum peak power stressing the electric
grid, it was necessary to estimate the load’s simultaneity coefficient [46], which was representative
of the maximum percentage of vehicles connected to the electric network simultaneously. From this
perspective, we analyzed two extreme situations: i) the most unfavorable for the electric grid, where all
the vehicles are charging simultaneously during the same night; and 2) the most favorable, where the
loads are spaced as much as possible according the capacity of their batteries and average mileage.
To consider both factors, an average mileage of 55 km per day was considered (Table 2).

Table 2. Maximum interval between charges.

Electric Model Battery Range (km) Interval Between Charging (days)

Renault Twizy 100 1.81
Citroën C-Zero 150 2.72

Nissan Leaf 200 3.63
Volks. eGolf 300 5.45

Tesla Model 3 530 9.63

Once both the electric network possibilities and the energy demand resulting from the vehicle pool
conversion were estimated, the viability of large-scale EV penetration was determined by taking into
account the different peak power demands of each charging technology (i.e., slow, semi-fast, and fast).

4. Results

4.1. Global Data

A comparison between the power available in each MV/LV transformer and the potential demand
from the conversion to EVs for all of Cañada de San Urbano’s passenger vehicles is shown in
Table 3. For clarification purposes, the simultaneous aggregate energy demand and each charging
technology power demand are reflected without considering the average daily mileage or a coefficient
of simultaneity that diminishes the demand. A value of cosϕ = 0.85 was applied to convert the value
from kVA to kW. The disaggregated data for the number of vehicles in each category assigned to each
MV/LV transformer are shown in Appendix A.

Table 3 represents the worst-case scenario from the perspective of the electricity network, where
all vehicles are charged simultaneously during the same night. The opposite case would involve
considering the relationship between the capacity of the batteries and the daily mileage (Table 2).
In this situation, the maximum time gap between charging was obtained, which operated in practice
as a coefficient of simultaneity for the energy and power demand. In this way, the obtained results
reflect the minimum demand hypothesis (Table 4).
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Table 3. Maximum power offered and demanded in each MV/LV transformer.

MV/LV
Transfer
Number

Power Installed
(kVA)

Max. Power
Available

Slow Charge
(kW)

Max. Power
Available

Fast Charge
(kW)

Max. Daily
Energy

Demand
(kWh)

Max. Power
Demand

Slow Charge
(kW)

Max. Power
Demand

Semi-Fast
Charge (kW)

Max. Power
Demand

Fast Charge
(kW)

103.385 1260 225 321 2655 332 885 5310
33.757 800 143 204 1672 209 557 3344
102.743 1260 225 321 208 26 69 416
103.386 1260 225 321 24 3 8 48
34.312 1260 225 321 6165 771 2055 12.331
71.925 1260 225 321 1699 212 566 3398
33.766 1260 225 321 4404 551 1468 8809
104.387 1260 225 321 40 5 13 78
33.850 630 113 160 3715 464 1239 7432
82.663 1260 225 321 63 8 21 126
33.855 1260 225 321 9029 1129 3010 18.059
82.526 1260 225 321 6825 853 2275 13.651
33.765 400 72 102 2650 331 884 5301
64.183 630 113 160 2388 298 796 4776
91.791 1260 225 321 924 116 308 1849
34.316 630 113 160 1498 187 499 2997
AVER. 1060 189 270 2747 343 916 5495

Table 4. Minimum power offered and demanded in each MV/LV transformer.

MV/LV
Transfer
Number

Power Installed
(kVA)

Max. Power
Available

Slow Charge
(kW)

Max. Power
Available

Fast Charge
(kW)

Max. Daily
Energy

Demand
(kWh)

Max. Power
Demand

Slow Charge
(kW)

Max. Power
Demand

Semi-Fast
Charge (kW)

Max. Power
Demand

Fast Charge
(kW)

103.385 1260 225 321 816 102 272 1633
33.757 800 143 204 502 63 167 1004
102.743 1260 225 321 62 8 21 124
103.386 1260 225 321 7 1 2 13
34.312 1260 225 321 1880 235 627 3760
71.925 1260 225 321 507 63 169 1015
33.766 1260 225 321 1334 167 445 2668
104.387 1260 225 321 12 2 4 25
33.850 630 113 160 1130 141 377 2259
82.663 1260 225 321 19 2 6 38
33.855 1260 225 321 2722 340 907 5443
82.526 1260 225 321 2047 256 682 4095
33.765 400 72 102 772 97 257 1545
64.183 630 113 160 737 92 246 1473
91.791 1260 225 321 269 34 90 539
34.316 630 113 160 465 58 155 930
AVER. 1060 189 270 830 104 277 1660

Based on a comparison between the results of Tables 3 and 4, the minimum energy (and power)
demand would be 30.3% of the maximum, which represents a coefficient of simultaneity of 0.303 (0.3)
compared to the worst-case scenario. This is an interesting result because it determines the level at
which demand would move under any hypothesis.

However, the average values reflected in Tables 3 and 4 must be analyzed with caution.
Transformers No. 103.386 and No. 104.387 MV/LV experience minimal loads because they are
intended to supply new urban developments, which are currently mostly unbuilt. Transformer
No. 91.791 is partially in the same situation. Transformer No. 82.663 can be considered a singularity
within the electric grid due to its low range of LV lines. These singularities have been considered in the
analysis of the three charging hypotheses presented below.

4.2. Slow Charging Hypothesis

The analysis in Table 3 shows that, in the event of the simultaneous slow charging of all vehicles
during a given night (and excluding the four MV/LV transformers with singularities), only two
transformers would be able to supply the new load. By eliminating these MV/LV transformers with
singularities, the average power demand would increase from 343 kW to 447 kW, a power that is much
higher than the average available in the transformers, which is around 177 kW at 0:00 and 8:00 a.m.
(once the same correction has been made). This hypothesis of a fully concurrent load, although unlikely,
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is not impossible and must be analyzed to show the maximum stress that the electrical system could
face under full penetration of slow or dumb charging technology.

Under a maximum time gap between EV charging sessions (Table 4) (a highly improbable
hypothesis that represents the minimum demand for the electric distribution network), and ignoring
the four MV/LV transformers with singularities, seven transformers would have the capacity to supply
the night-time demand. In this case, the average demand (135 kW) would be below the capacity
available in the transformers (177 kW).

These two extreme hypotheses indicate that, for slow charging, the average power offer (177 kW)
would equal the average power demand under a simultaneity coefficient of 0.396 (0.4) for the
simultaneous charging hypothesis. This can be observed in Figure 3.
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Figure 3. Power demand for different simultaneity coefficients: slow charging.

Although, as indicated, the limitations derived from the particularities of the LV lines were not
considered, the MV/LV standard transformer’s power is usually divided into 8 LV lines, each one
composed of 3 × 240/150 mm2 Al protected with 160 A fuses and featuring a capacity around 150 kW.
Since the average slow charging load for each LV line ranges between 17 kW and 56 kW, in the case of
simultaneity coefficients over 0.57, the LV lines should be reinforced. Nevertheless, since a standard
MV/LV transformer can be electrically amplified to as many as 16 LV lines, the LV network is not a
critical potential issue in the implementation of this charging system.

4.3. Semi-Fast Charging Hypothesis

In the case of semi-fast charging under the hypothesis of complete simultaneity, only one
MV/LV transformer would be able to supply the increase in power demand. Moreover, the average
power demand (1192 kW) would far exceed the average capacity during the most favorable period
(3:00–6:00 a.m.), which is around 253 kW. In the least-demand hypothesis, logically, the demand would
fall and approach the MV/LV transformers’ capacity, five of which would have enough capacity to
cover the demand increase. However, the average demand, 360 kW, would remain 42% over the
vacant capacity.

4.4. Fast Charging Hypothesis

Although the short duration of this type of charging, which has been estimated at 30 min, might
lead to lower simultaneity coefficients than the previous situations, the daily average power demand
in the most favorable case (concurrence of the minimum number of vehicles charging during the
same night) is more than 8.50 times the average offer. Thus, even with a staggered charge during the
complete interval between 0:00 am and 8:00 a.m., it is unlikely that this charging technology could be
implemented without reasonable uncertainty from a theoretical perspective.
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5. Discussion

As shown, the use of real data to estimate the capacity of the electric distribution network and
the fiscal census to characterize the vehicle pool composition was especially effective since it allowed
for an individualized analysis of the three charging alternatives under two different hypotheses.
Thus, this case study provided results that can be extrapolated to similar urban contexts, while the
methodology itself has been explained in detail to facilitate its use in different geographical or
socio–economic situations.

From the results obtained, it can be deduced that the complete transformation of the ICE vehicle
pool into equivalent EVs using a slow charge system during the night would be theoretically feasible
without special reinforcements in the electric distribution network (at least at the MV/LV transformers
level) under certain conditions. These conditions would depend on the consecution of a load coefficient
of simultaneity around 0.4, which could be somewhat higher if the MV/LV transformers overcapacity
is considered. However, this value is not realistic since the simultaneity coefficients for the LV loads
supplied from the same transformer are not usually below 0.7 [47] and can even reach values above
0.9 [48]. Indeed, for specific types of consumption, such as vehicle charging, the coefficients could be
close to unity [49]. Therefore, a standard distribution network would not be able to cover the demand
derived from a 100% penetration of EVs with the current composition of the vehicle pool. In other
words, considering a simultaneity coefficient close to 1.0 as feasible for the slow charging situation
(dumb charging), the maximum penetration that EVs could reach is approximately 40%. This value is
similar to the results of other works using case studies with similar characteristics [24,50], providing
values of penetration between 30% and 40%.

To achieve higher penetration percentages, it would be necessary to change some of the parameters
of the current mobility patterns. For example, the composition of the vehicle pool could evolve to
different models, or the average daily mileage could decrease. However, based on the research data,
not all the measures would be equally effective. For example, inducing a decrease in daily mileage
from 55 km/day to 45 km/day (the lowest value in the reference range) with the same vehicle pool
would have practically no effect on the penetration percentage, which would remain at around 40%
due to the restrictive hypothesis of simultaneous charging. However, if the average mileage remained
at 55 km/day, but the vehicle pool changed, the result would be very different. Table 5 provides a
sensitivity analysis considering the sizes of the batteries (Table 2) with all vehicles included in the
same category.

Table 5. Penetration percentages considering vehicle pool changes.

Electric Model Battery Range
(km)

Interval Between
Charging

(days)

Maximum Power
Demand (kW)

Minimum Power
Demand (kW)

% EV
Penetration

Renault Twizy 100 1.81 135 75 100
Citroën C-Zero 150 2.72 336 123 53
Current Pool 447 135 40
Nissan Leaf 200 3.63 531 146 33
Volks. eGolf 300 5.45 792 145 22

Tesla Model 3 530 9.63 1782 185 10

Thus, to reach higher EV penetration values, it is necessary for the current vehicle pool to
transition to smaller models. For instance, if all the vehicles were those with the lowest engine power
(a Renault Twizy or equivalent), the energy demand under slow charging would be below the capacity
of all the MV/LV transformers. Even if one power step were to rise (Citroën C-Zero), the result would
be 53% penetration. If we look at the current composition of the pool (Figure 4), the first objective
might seem complicated, but the second appears relatively feasible given the concentration of vehicles
in the second and third range of fiscal power.
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Figure 4. Vehicle pool composition according to fiscal power.

Although an increase in the size of batteries produces smaller simultaneity coefficients, the biggest
vehicles have the poorest behavior from an electricity network capacity perspective because of their
peak power demand, even in the optimum scenario, due to higher average energy consumption
(Table 1). In order to quantify the profitability of using EVs instead of equivalent internal combustion
engine vehicles (ICVs) for a given driving scenario, a comparative study is included (Figure 5).
The results show that the TOCs of EVs could be lower than those for equivalent ICVs in each fiscal
power group if charging is performed during off-peak hours. Only for the second range should the
incentive of 29% the EV acquisition cost be considered due to its high difference in price compared to
the equivalent ICVs with low mileage. Further details on this study can be found in Appendix B.
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Figure 5. Disaggregated ownership costs of the electric vehicles (EVs) under study and the equivalent
ICVs grouped by their fiscal power. The results refer to a time horizon of 15 years.

For these reasons, public policies should not only promote EVs as a friendly product with inherent
advantages in air quality, urban noise, and environment impact, but should also promote more efficient
vehicle models capable of decreasing overall energy demands under the existing infrastructure.

For fast and semi-fast charging, the results are much more accentuated Although the power
demanded by these charging systems is excessive for domestic installations (which are usually between
5 kW and 10 kW), without ignoring this issue, we focused on the MV/LV transformers’ capacity as the
foundation of the distribution network. The average power demand for semi-fast charging greatly
exceeds the offer, even in the most favorable situation (+42%), which makes this charging system
unfeasible as a global solution for domestic purposes even when using intelligent charging systems [51].
For fast charging, the results show total infeasibility for users served from an LV line; thus, this charging
technology is limited in practice to specific facilities for public supply [13]. Considering these issues,
the methodology used to carry out this study would not be effective for analyzing the possibility to
implement fast and semi-fast charging technologies in cities.
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The other method to increase EV penetration is by reinforcing the electrical grid. Two different
scenarios were analyzed: i) an increase in the existing MV/LV transformers’ capacity up to its maximum
level; and ii) the construction of new MV/LV transformers with a standard capacity. According to
e-distribución, the maximum capacity for a simple MV/LV is 1000 kVA, and 2000 kVA for a double
one. The results show that if the current MV/MV transformers were increased up to their maximum
capacity and this increase was fully devoted to EV necessities (i.e., the rest of the LV loans remain
stable), the new average power available during the night period would be around 679 kW. Thus,
the maximum average demand (447 kW) would be matched with a reinforcement of two-thirds of the
MV/LV transformers’ capacity. In the second situation, new standard-capacity MV/LV transformers are
built, which allows us to redistribute the same EV demand among more supply centers (the rest of
the LV loans also remain equal). In this situation, three new MV/LV transformers would be necessary
(each MV/LV transformer increases the EV penetration by 20%) to meet the demand (25% over the
existing transformers). The first situation is more feasible due to the difficulty of finding vacant lots to
allocate new MV/LV transformers in consolidated cities. In addition, no further LV lines would be
necessary. However, grid operators are usually reluctant to increase the MV/LV transformers’ capacity
up to the maximum level. From an economic point of view, both solutions are almost equivalent since
the cost of the current MV/LV transformer reinforcements for each EV is €58.88/vehicle (€16.000 for each
1000 kVA transformer), and the cost per EV in the second situation would be around €48.57/vehicle
(€35.20 for each new 2 × 630 MV/LV transformer). The latter should be increased alongside the LV line
redistribution cost.

Although only the limitations of the electrical distribution network’s capacity on the penetration of
EVs were considered in this study, other aspects closely related to this public infrastructure might affect
the large-scale commercialization of EVs. Apart from the topology of LV lines, which in many cases
would have to be reinforced or expanded, the crucial limiting factor could be the lack of a fixed private
parking allowing for slow charging over eight hours as a form of domestic consumption. In many cities
as a whole or in particular areas within them (historical centers, over-densified areas, etc.), this lack
of private parking could be the main limitation, due to electric infrastructure considerations [52,53].
This limitation is very difficult to overcome with public parking areas, since allowing a car to be
parked in a public space for eight hours would be irrational from the perspective of mobility policy,
which, in the long term, must be based on a solid commitment with public transport combined with a
deterrent policy for private transport supported by a strong rotation of the few public spaces available
for parking purposes [54]. However, even in these cases, EV penetration must be promoted, albeit
with part of the demand fulfilled by public fast or semi-fast charging stations, possibly connected to a
specific network.

6. Conclusions

This study has offered interesting results from two different perspectives. From a methodological
point of view, the estimation at a micro level of both the electric network’s capacity and the potential
demand of a pool composed exclusively of EVs was very productive, allowing the simultaneous
analysis of three charging situations under two different hypotheses. In this sense, the use of the
municipal fiscal vehicle census was very effective for assessing not only the energy demand but also its
concrete location. The applied methodology can thus be used in analyses of a similar nature, even in
different physical or socioeconomic contexts.

From a substantive point of view, this study has shown that the capacity of a conventional electric
distribution network can withstand up to 40% penetration of EVs under slow-charge conditions at
night and an EV pool similar to the current ICE pool. Additionally, this work has highlighted the
infeasibility of the implementation of domestic fast or semi-fast technologies for domestic purposes.
This investigation has also shown that penetration percentages above 40% are difficult to obtain since
the charging process is prone to simultaneity coefficients close to unity. Thus, the only way to improve
the EV penetration averages using slow charge (where permitted by private parking availability)
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would be by changing the composition of the vehicle pool to lower power models. In this case, the
study has shown that penetration values up to 55% or even higher could be reached. In addition,
moderate MV/LV electric network reinforcements would allow the full penetration of EVs in our cities.

For all these reasons, the capacity of the electric distribution network would not be in the short or
medium term an obstacle to public policies promoting electric mobility.
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Abbreviations

EV electric vehicle
FEV fully electric vehicles
FHP fiscal power
GHG greenhouse gas
HEC high electricity price charging
HEV hybrid electric vehicles
ICE internal combustion engine
ICV internal combustion engine vehicle
LEC low electricity price charging
LV low voltage
MV/LV medium voltage to low voltage
NEDC new European driving cycle
TOC total vehicle ownership costs
VAT value-added tax
V2G vehicle-to-grid
WHO World Health Organization

Appendix A

Table A1. Current vehicles for each fiscal range and MV/LV transformer.

MV/LV
Transformer Number

Fiscal Power (FHP)
<8 8 – 11.99 12 – 15.99 16 – 19.99 >20

103.385 2 65 60 6 0
33.757 3 38 37 3 1

102.743 0 5 4 1 0
103.386 0 0 1 0 0
34.312 16 166 116 10 5
71.925 1 39 38 3 1
33.766 12 100 97 9 2

104.387 0 1 1 0 0
33.850 5 93 79 6 2
82.663 0 1 2 0 0
33.855 15 195 212 18 3
82.526 12 157 145 18 3
33.765 4 46 65 8 1
64.183 5 63 49 4 1
91.791 0 20 21 1 1
34.316 1 39 33 3 0

TOTAL 76 1028 960 90 20
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Appendix B

This appendix corresponds to a simulation analysis conducted to compare the TOCs of the vehicles considered
in this work with respect to the equivalent ICVs in terms of power, size, and equipment. Moreover, the influence
of the charging hour was addressed since two different electricity prices were considered, depending on the period
of the day. The TOC was calculated as

TOC(n, d)= p+(e + b + m + s + i + t) ×
1

1 + r
×

1−
(

1
1+r

)n
1− 1

1+r

(A1)

where n is the time horizon in years, e is the energy cost per year, p is the vehicle price, m is the maintenance cost
per year, s is the technical inspection cost per year, t is the tax cost per year, and r is the discount rate.

For the simulation, the data represented in Table A2 were considered. Moreover, the following parameters,
common for all the vehicles, were used: electricity costs of 0.1688 and 0.0737€/kWh during peak and off-peak
hours, respectively [55]; a gasoline price of 1.1570€/L; an average maintenance cost of €182 and €228 for electric and
internal combustion engine vehicles, respectively, without considering the replacement of tires [56]; an average
technical inspection cost of €27.50 per year, corresponding to nine inspections across the 15 years of the simulation
for the ICV and €18.00 for the EV; an insurance cost of €348 per year; a tax cost between €50 and €130 per year,
which is not applicable to the EVs, and a discount rate of 2%. Thus, the annual energy costs for each EV were
obtained as the product of the mileage. The specific consumption depicted in Table A2 increased by 25% based
on the new European driving cycle (NEDC) specifications [56], a charging losses factor of 1.05 [56], and either
the low or high electricity price mentioned before. Analogously, the energy cost of the ICVs was calculated as
the product of mileage. The specific consumption depicted in Table A2 increased by 25% with respect to the
NEDC specifications [55], with a gasoline price of €1.1570/L. Finally, the value-added tax (VAT) in Spain is 21%,
which impacts the vehicle acquisition price and the electricity and gasoline prices of this simulation.

The results obtained for the simulation with a time horizon of 15 years are shown in Figures 5 and A1.
Figure 5 shows the contribution of each of the terms included in Equation (A1) in a cumulative way. The TOC
of each vehicle is presented by groups of FHP. In the first group, despite the low intensive use of the compared
vehicles, the TOC of the electric vehicle is lower than that of the equivalent ICV. This is due mainly to its lower price,
although the influence of the lower cost of energy consumption and (to a lesser extent) the lower maintenance cost
and tax exemptions are also important. In the second group, the EV’s TOC is higher than that of the equivalent
ICV. This is mainly due to the high difference between their prices, which cannot be compensated with the rest of
the costs due to the low annual mileage, which is mostly accrued under urban driving conditions. In order to
make investment in EVs profitable, EV purchases should be incentivized by a discount of 29%. In the third group,
the TOCs are approximately the same. This is due to a lower difference in prices and higher annual mileage. In the
fourth group, the EV is clearly the most economical alternative since the energy consumption cost drastically
decreases as the annual mileage exceeds 20.000 km. Finally, the same considerations are applicable to the fifth
group, whose annual mileage exceeds 30.000 km and whose specific gasoline consumption is 0.074 L/km, resulting
in a much lower EV TOC.

Table A2. Electric vehicles and their equivalent gasoline vehicles considered for the TOC analysis [42].

Fiscal Power
(FHP) Vehicle Model

Consumption
Distance
(km/year) Price (€)Electricity

(kWh/km)
Gasoline

(L/km)

<8
Renault Twizy Life 45 0.06 - 3650 5800

Aixam City Pack - 0.031 3650 9082

8–11.99
Citroen C-Zero 0.10 - 7300 23.900

Citroen C1 1.2 VTI - 0.054 7300 11.800

12–15.99
Nissan LEAF 0.12 - 9855 22.600
Nissan Micra - 0.050 9855 16.300

16–19.99
Volkswagen eGolf 0.12 - 21.535 27.700

Volkswagen Sportsvan 1.5 TSI - 0.051 21.535 19.100

>20
Tesla Model 3 80.5 kWh 0.15 - 32.485 66.300
BMW 340i xDrive G21 - 0.074 32.485 58.600

Figure A1 shows the annual TOCs of the compared vehicles throughout the analyzed period of 15 years.
In this case, the TOCs corresponding to peak hour charging are included. Figure A1a shows that the TOCs of the
EVs of the first group remains lowest during the entire simulation. Analogously, Figure A1b shows that the TOCs
of the ICVs of the second group remains lower at each moment. However, Figure A1c show that the TOCs of the
EVs of the third group become lower than the TOCs of the ICVs after year 11 for low electricity price charging
(LEC), whereas the TOCs of the EVs under high electricity price charging (HEC) remain higher during the entire
simulation. For the fourth group, Figure A1d shows that the EV TOC becomes lower than the TOC of the ICV
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in years 8 and 11 for LEC and HEC, respectively. The same occurs in years 5 and 8 for group 5, as depicted in
Figure A1e. The reductions in the cost of energy consumption between LEC and HEC by group are €496, €1417,
€2296, €5018, and €9462, respectively, which highlights the importance of charging the vehicles during the periods
of the day when the price of the electricity is lower (usually night).
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