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Abstract: Natural disasters affect hundreds of millions of people worldwide every year. The impact
assessment of a disaster is key to improve the response and mitigate how a natural hazard turns into
a social disaster. An actionable quantification of impact must be integratively multi-dimensional.
We propose a rapid impact assessment framework that comprises detailed geographical and temporal
landmarks as well as the potential socio-economic magnitude of the disaster based on heterogeneous
data sources: Environment sensor data, social media, remote sensing, digital topography, and mobile
phone data. As dynamics of floods greatly vary depending on their causes, the framework may
support different phases of decision-making during the disaster management cycle. To evaluate its
usability and scope, we explored four flooding cases with variable conditions. The results show
that social media proxies provide a robust identification with daily granularity even when rainfall
detectors fail. The detection also provides information of the magnitude of the flood, which is
potentially useful for planning. Network analysis was applied to the social media to extract patterns
of social effects after the flood. This analysis showed significant variability in the obtained proxies,
which encourages the scaling of schemes to comparatively characterize patterns across many floods
with different contexts and cultural factors. This framework is presented as a module of a larger
data-driven system designed to be the basis for responsive and more resilient systems in urban and
rural areas. The impact-driven approach presented may facilitate public–private collaboration and
data sharing by providing real-time evidence with aggregated data to support the requests of private
data with higher granularity, which is the current most important limitation in implementing fully
data-driven systems for disaster response from both local and international actors.

Keywords: natural disasters; climate change; floods; resilience; mitigation; social impact; social
media; mobile phone data; remote sensing; data privacy

1. Introduction

Natural disasters such as floods, storms, or earthquakes affect hundreds of millions of people
worldwide every year [1–3]. Local and national civil protection and international humanitarian
action mechanisms can be potentially improved with dynamic in-situ timely information across the
disaster timeline. We generally consider disaster management for floods as a cyclic process comprising
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preparedness, warning, mitigation, response, evaluation, and relief. Impact assessments can help in
quantifying needs, planning strategies, and resource allocation, and can provide a tool for evaluation
and monitoring [4]. Rapid response is currently designed by combining an impact model and needs
analysis to estimate requirements of the response [5]. From this perspective, new data sources can
help implement a dynamic and more optimized response based on population dynamic patterns
and evolution of the disaster. In summary, data-driven mechanisms throughout the management of
disasters could improve decision-making, monitoring, evaluation, and learning activities [6]. A deeper
understanding of the behavior during different disasters at different scales is necessary to build up
more resilient communities and societies. Recently, the use of mobile phone data has allowed the
quantification of behaviors and patterns caused by disasters by characterizing hotspots of mobility
and social network behavior spatially and temporally [7,8], although these studies are mainly focused
on small temporal intervals due to the availability of data. These studies are not real-time due to
the same limitations in access to data. A comprehensive framework addressing both the necessary
methodologies to generate actionable insights and the data access and privacy limitations is required
for the implementation of real-time systems that also enable recovery monitoring.

The high penetration of mobile phones and the use of social media has motivated the analysis
of these data sources to better understand natural disasters, giving rise to new opportunities [9].
Anonymized and aggregated Call Detail Records (CDRs) have enabled large-scale analysis of social
patterns, especially studies on human mobility [10–13]. Humanitarian applications based on this
data cover the monitoring of disease outbreaks [14,15], the detection of social crises and riots [16],
monitoring of social integration [17] including homophily [18] or the quantification of social patterns
and mobility during disasters. Information spreading has been analyzed to find characteristic patterns
in social networks during disasters [19], Mobile phone data have also been used to predict movements
during large disasters, such as the Haiti earthquake [20]. Similar solutions have been applied for
fast analysis in other contexts to help deployment of operations [21], but no solution has prevailed.
A first approach to combining remote sensing and mobile phone data was proposed using fine-grained
mobile phone data, but scalability problems prevented it from becoming a standard solution [22].
The public availability of social media data has allowed their beneficial use for social purposes,
such as unemployment estimations [23], understanding political conversation [24], measuring social
segregation [25], or assessing the damage during natural disasters [26]. Satellite imagery has been
used extensively for disasters and climate monitoring [27]. In recent years, it has been used to estimate
poverty proxies using Machine Learning techniques applied solely to satellite data [28] or integrating
these data with mobile phone data through a spatial model to increase geographical resolution of
poverty indexes [29,30]. The trend in data for development has been to show potential applications
and create indicators; however, the scope of the projects is very limited by the availability of data to
transform studies into operational mechanisms.

In this work, we propose a framework to make a rapid multi-dimensional assessment of impact
of floods by integrating data from heterogeneous sources. This framework is a module of a larger
system, depicted in the Methods section, to frame the need. Social data with high spatio-temporal
resolution complement environment sensors and satellite imagery to have a set of impact indicators
reflecting population dynamics. We foresee that social-data-based proxies can trigger and optimize
the response from the local and national mechanisms (e.g., civil protection, national emergency
teams, etc.) and facilitate the intervention of international humanitarian actors when needed in a
transparent way based on quantitative parameters. In addition to the first response, a dynamic impact
assessment can be potentially useful for all phases of the disaster management cycle with a specific
utility and scope depending on the nature of the flood. Furthermore, the framework intends to advance
towards standard public–private partnerships during disasters to leverage high-value data and feed
operational mechanisms to transform data into action. A major requirement for using fine-grained
private data is to have evidence of need, so we propose several layers of granularity, starting from
real-time data aggregates that are privacy-conscious, can be used in systematic operations without
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high privacy risks [31,32], and are well suited for unlocking more privacy-sensitive data [33,34].
These indicators were implemented using data made available for the UN Data For Climate Action
(D4CA) Challenge [35] and other open data sources described in the Methods section. The Results
section illustrates the approach in four different floods. The discussion provides details of how the
framework helps improve disaster management and its limitations. The conclusion summarizes the
contributions of the work and proposes future improvements.

2. Materials and Methods

2.1. Study Composed of Four Floods

We selected four floods to make a study. CDR data were available for France in 2014–2015,
so we selected two consecutive floods occurring in southern France (Montpellier area) in September
and November 2014, where people were forced to use shelters and overnight flash floods occurred.
We have previously worked with CDR data in Senegal, so we chose a flood that occurred in Dakar in
the rainy season of 2013, from which little information could be found; even a precise date for the flood
was missing, which highlights the need to having new data-driven systems. The other two floods
happened the same year of the D4CA Challenge (2017) in Mocoa, Colombia (April 2017) and Houston,
USA (August 2017), and had a great impact. The flood in Mocoa caused more than 1400 deaths and
hundreds of disappeared people; sixteen neighborhoods were destroyed by the flow and the materials
transported by the water. This flood was investigated and the rainfall occurred from 9.30 pm until
11.30 pm, when the flood took place, so it can be considered a flash flood. The flood in Houston was
caused by Hurricane Harvey, which produced important damages, producing massive evacuations
in several regions, such as Bay City, fortunately with few fatalities. Several flash floods were also
identified in Houston.

The severity of the physical impact of the floods depends on several natural factors and the
infrastructures of the location. The natural factors are the climatological dynamics, time of the
flood (with more impact during night hours), proximity of rivers or other bodies of water that may
overflow, the topography, the type of soil, including the presence of rocks and other materials that
can be transported, and the state of conservation of the area, including landcover or deforestation.
The infrastructural factors that can affect are mainly the general urban development, the type of buildings
and pavement, the water canalization, and the soundness of dams and bridges. The topography and
the presence of currents of water increase the spatial scope of torrential rainfalls, which makes it more
difficult to detect floods using weather stations located in cities or other types of settlements. For this
reason, we consider overflow as a primary cause of floods, along with rainfalls concentrated in the
affected area.

The physical impact can be influenced and mitigated partially by an effective human response
that depends on the capacities of the local, regional, and national authorities, civil protection, and the
civil society in general. For this reason, measuring social dynamics can be the helpful to improve
response mechanisms. For all of the floods, data from social media and weather estimations from
stations were collected. Conclusions are drawn from insights across these cases, although not all of the
analysis modules could be applied to all of them due to data availability limitations.

2.2. Data

The data used in this work were made available within the UN Data For Climate Action
Challenge [36]:

Schneider Electric (SE): Hourly and daily weather observations and forecasts from official stations
from 2010 to the present.

Planet: High-resolution multispectral satellite imagery data (PlanetScope product) with a global
geographical scope and a history from 2009 to the present. The Analytic PlanetScope products provided
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by Planet are four-band (RGB, NIR—Near Infrared Reflectance -) high-resolution images, with a ground
sample distance (GSD) of 3 m.

Orange: Call Detail Records are data collected at communication events that store a caller
identifier, a call recipient identifier, the geolocation (the location of the antenna that registered the
event), temporal stamp of each user when performing a call or other type of communication and other
fields to manage the call. For the D4CA Challenge, these data were aggregated to preserve privacy [37]
by providing “presence” data as the count of people per antenna (the exact position was modified to
avoid the allocation of the antennas) at each hour as well as the volume of call data, also with the same
resolution. Data were provided for France between May 2014 and April 2015.

Crimson Hexagon (CH): Social media posts of different platforms (Twitter, Facebook,
Instagram, etc.) with a global scope and with a history from 2008 to the present [38]. Temporal resolution
goes down to the time stamp of the social media post. By default, spatial resolution is at the level of
small administrative regions. Geolocation data are not available for keyword searches, but smaller
areas can be retrieved using longitude and latitude in the query.

Additional open data sources:
DEM-SRTM (Digital Elevation Model Shuttle Radar Topography Mission) NASA: Digital Elevation

Model with 30 meter resolution worldwide [39].
Google trends: The Google trends platform has a worldwide coverage and long-term history.

The spatial resolution is at the level of large administrative regions [40].
LANDSAT: Multispectral, medium resolution (15 to 60 m) ETM+ Landsat7. The temporal

resolution is 16 days [41].
All data sources are summarized in Supplementary Table S1.

2.3. Framework to Interconnect Data Sources throughout Disaster Management

We propose a multi-dimensional impact assessment framework based on proxies implemented
with heterogeneous data sources (Figure 1). The framework has different layers of data depending on
the granularity, availability, and privacy level. The purpose of this design is that upper layers feed the
bottom layers with evidence to unlock mechanisms to access privacy-sensitive and business-sensitive
data. This is a way to favor public–private data collaboratives in a transparent way [42] and promote
an ethical and responsible use of sensitive data for disaster response.

The first layer is composed of social media data and open satellite imagery. Social media data
can be freely retrieved from several platforms, such as Twitter, and analyzed in real-time, so they are
affordable and can be implemented without risks of privacy or ethics. In this work, we used social media
data retrieved from the Crimson Hexagon platform, as described in the previous section. The output
of the social media module provides a temporal landmark, a target spatial region, and proxies of
socio-economic impact of the disaster.

Social media proxies are a product several factors: Awareness of the population regarding the
flood, physical conditions of the flood (e.g., rainfall levels and duration), baseline behavioral patterns,
penetration of social media use, cultural factors in the use of social media, and psychological factors
such as fear. These proxies can be treated statistically to detect hotspots of activity. The dynamics of
the perception characterize the temporal landmark of the flood. This means that the awareness of
danger can anticipate the disaster or can follow it depending on the nature of the disasters. Potentially,
the temporal resolution of this indicator can be hourly or even higher, but the volume of posts may
not be sufficient to provide a robust indicator. The CH platform provided the indicator with a daily
temporal resolution, posing a limitation for the study. A target spatial region can be derived from the
geolocation of the hotspots—sets of coordinates of posts. This spatial characterization is suitable to
identify geoclusters that require further attention, but cannot provide the entire affected region due
to the limited sampling of social media posts. The spatial landmark can be validated with satellite
imagery that has lower temporal granularity (weekly resolution). The proxy of social impact is based
on the magnitude of the hotspots compared to the rest of the volume of posts.
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Social impact proxies are the first step to planning and optimizing response in combination with
needs assessment [5]. In addition, social impact complements the traditional quantification of physical
impact on infrastructures and buildings, but requires more time to be assessed. The spatial region can
help provide a proxy of socio-economic impact by overlaying geospatial resources of distribution of
people, transportation, public services, or buildings.

The first layer provides indicators to trigger response mechanisms as early as the sentiment in
social media reflects the potential impact of the flood (Figure S1). We have implemented this layer
for the four flood cases. The second layer is composed of coarse-grained aggregates of private data,
which are privacy-conscious [34], but require infrastructure and agreements to be used in real-time.
Mobile phone data have proved useful to observe the dynamics of disasters; however, many resolution
and aggregation strategies are possible. In this framework, the second layer is based on “presence” data
that aggregate individual data at the level of geolocated antennas to avoid privacy and reidentification
risks. These data are the simplest data aggregate that can be produced with sufficient temporal and
spatial resolution at the cost of population aggregation. Mobile phone data aggregates can be used to
confirm the detection, assess the distribution of people, and calibrate the proxies of impact. In addition,
high-resolution images from private sector organizations help refine the results of flood segmentation
provided by the first layer. We have implemented this second layer for the flood case of Montpellier,
where Orange data were available within the D4CA Challenge.
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Figure 1. Framework of impact indicators divided into three different layers of data according to
granularity, availability, and privacy risk of the date required to implement the indicators. Dark boxes
summarize indicators and light boxes show analysis steps.

Finally, the third layer would be composed of fine-grained private data. The results from the
second layer would provide evidence to unlock this data, which implies higher risk and cost, but is
justified based on its utility for a better response against the disaster [33]. This layer would enable the
analysis of the impact of the disaster in different population groups and track the affected population to
estimate the resilience against the disaster [43]. In other words, this layer would help in implementing
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mitigation, relief, and recovery plans, as well as allowing evaluation of and learning from the disaster.
This layer was not implemented in this work due to the lack of data availability in the cases studied.

2.4. Proxy Indicators

2.4.1. Rainfall Levels

The historic profiles of rainfalls in the affected areas were built using the Schneider Electric
web service. For a given geolocation provided in a query, the service selects the closest station with
a distance criterion and returns the data along the time interval requested with a daily resolution.
We defined an approximate reference geolocation for each flood case using Geographical Information
System (GIS) and built a time series with daily resolution for an interval of time of several years for
each location.

2.4.2. Social Media Activity

We used Google trends to assess the representativeness of flood-related keywords at a country
scale within a given temporal window (Figure S2). The results showed that when a large disaster occurs,
such as the one in southern France in 2014, the use of specific keywords is sufficiently representative to
be used as the basis of a detector of the disaster in providing temporal and spatial detail. In Google
trends, the keywords “meteo”, “inonder”, and “assurance” were used for a national-level search in
France that highlighted the region of Montpellier as expected (Figure S2).

Data provided by Crimson Hexagon were used to make social media analysis during floods.
The social media platforms available via CH are Twitter, Google+, Blogs, Reddit, Forums, and Tumblr.
However, only data from Twitter and Google+ were retrieved for this study. No metadata of users
were collected. We used “buzz monitors” from the “ForSight” tool of the CH platform to retrieve posts
according to geolocations and keywords. We describe the proxies used below:

Flood detection proxy: This proxy represents the volume of posts over time after filtering posts by
region and keywords. We used simple and very specific keywords to avoid retrieving posts not related
to floods: Flood, weather, rain, water, and river. The translation from Spanish and French was used
for the floods occurring in non-English-speaking countries. The location was filtered using the CH
platform filters to the smallest region available that enclosed the flood, which was at the level of the
department. The social media platform with the most collected posts was Twitter (Figure S6).

Damage proxy: This proxy represents the volume of posts over time after filtering posts by
region and keywords. Again, we used a small set of keywords to be restrictive in the posts retrieved:
Insurance, property, and damage. The translations from Spanish and French was used for the floods
occurring in non-English-speaking countries.

Keywords are summarized in Supplementary Table S2. Additionally, the total volume of posts
was computed by filtering posts by geolocation using a bounding box and the longitude and latitude
parameters as keywords for the search in the CH platform. Of note, the Global Positioning System
(GPS) search was not compatible simultaneously with the keyword search.

The social media proxies were normalized by the total number of posts in the same region and the
same temporal window for all cases. Additionally, when mobile phone data were available and to
compensate for potential people distribution changes between normal periods and the disaster period
that affect the representativeness of the proxy, the proxy was also normalized by the dynamic census
computed from the CDRs.

The representativeness was assessed by gathering the posts one day before and after the day of the
peak in the detection proxy. We used this temporal interval to normalize in time the number of posts
containing target keywords compared to the total number of posts. Demographic representativeness
was qualitatively assessed by filtering the number of unique users from the total number of posts
during the interval of time of three days compared to available open data from census.
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Sentiment and emotion analysis was performed using the readily available modules of the
“ForSight” tool of CH (Figure S7).

2.4.3. Social Network Analysis from Social Media Posts

The CH platform allowed the retrieval of the original contents of posts, limited to a random
sample of 10,000 posts for each case study. Although posts from some social media platforms can be
openly accessed via APIs (e.g., Twitter), they are limited in time. The historic database of CH allowed
retrieval of posts for all of the cases considered.

We modeled the interactions through social media posts as a network. A time series of graphs was
built by creating a graph for each day during the 30 days after the detection of the flood by the detection
proxies. Two types of nodes were differentiated: Users making posts and users being retweeted or
mentioned in the posts. The number of posts referenced between users defined the weights of the links
between the nodes. We used these graphs to measure the dynamics of the links established through
the posts. We introduced directionality in the links by differentiating the posting nodes (sources of
information) and the mentioned or retweeted nodes (sinks of information). We also differentiated each
node by the gender of the user so the dynamics of the network could be disaggregated by gender
(Figure 4 and Figure S8).

We then vectorized the pattern of activity of each user to have a time-evolving vector of connections
established by him/her as a poster or retweeting user. We also performed this vectorization for nodes
classified by gender to characterize potentially different patterns between female and male users.
In order to provide a suitable classification, we performed k-means clustering based on the distance
between vectors for male- and female-labeled nodes. The result was three different profiles, as the
average of each cluster resulted in a single characteristic vector for each type of node (male and female)
that summarized the characteristic temporal patterns.

2.4.4. Population Concentration

Mobile phone data (Orange) were fully anonymized and aggregated at the level of antennas for the
D4CA Challenge so that they were privacy-secured, and the re-identification of users was not possible.
The data consisted of both volume of calls and presence data aggregates. Of note, this aggregation of
Call Detail Records does not allow the reconstruction of social networks or mobility of users [13].

In order to understand the impact of the flood on population distribution, we built a temporal
multi-resolution description of people concentration based on the presence data at the antenna level
with two different temporal resolutions based on the z-score of the presence time series.

Daily resolution: This resolution was used to assess the dynamic population changes due to
mobility caused by the disaster. It serves as an initial timely proxy of the number of affected people as
an alternative to surveys. The daily aggregation of the presence data was computed in two different
ways: (1) By averaging the presence within a day and (2) by selecting an interval of hours (e.g., home
location during 20:00–23:00) to accumulate the presence data. The computation based on the daily
average was finally used in this work. This resolution was also used as a dynamic census to normalize
social media proxies, introducing a geo-temporal correction factor of the population concentration.

Hourly resolution: This resolution was suitable to estimate the anomalies in the population
movements immediately caused by the flood. Once the reference day of the flood was detected using
proxies, we selected a temporal window (from two prior to two posterior days) to measure population
movements during the disaster. Night hours of inactivity (1 am–8 am) were discarded.

2.4.5. Physical Impact

Physical impact is here characterized in terms of the flooded area and the level of water. We made
a segmentation in quasi-3D in two steps: First, an area extraction based on satellite images (Planet
data) and, then, a depth estimation crossing the extracted area with the relief determined by a standard
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Digital Elevation Model (DEM-SRTM Nasa). The quasi-3D segmentation was visualized as a 2D area
with samples of depth in selected points.

2.5. Flooded Area Estimation through Satellite Imagery Analysis

The satellite images (Planet) were collected through an interactive platform made available for
the D4CA Challenge. Images were downloaded upon request interactively by drawing a polygon as
the region of interest. The analytic PlanetScope products provided by Planet are four-band (RGB, NIR)
high-resolution images, with a ground sample distance (GSD) of 3 m [44]. These characteristics, along
with the rather low cloud cover rate (0–25%), allowed for direct photointerpretation. The temporal
resolution depended on the geographical locations, ranging from two to four weeks between consecutive
images. To estimate the flooded area, we selected two images, before and after the dates registered for
the floods, thus making change detection between the pre- and post-event situations.

The images were analyzed within a Geographical Information System, ESRI arcGIS [45]. Two band
combinations were interchanged, as is needed for photointerpretation: True color (Red = band 3;
Green = band 2; Blue = band 1) and infrared (Red = band 4; Green = band 3; Blue = band 2).
The infrared combination highlights water bodies in light blue, making it easier to identify flooded
areas. Water bodies were digitized in pre- and post-event images to create two hydrography polygon
layers. Then, the flooded area was obtained by overlaying both polygons and performing a subtraction
so that its surface could be measured.

2.6. Flooding Depth Estimation Using Digital Elevation Model (DEM)

We fed the GIS with the open Digital Elevation Model SRTM (Shuttle Radar Topography
Mission—NASA) with 30 meter resolution to estimate the depth of the flooding based on the
topography. This DEM was available as raster data, pixel-level image data with a georeference,
that were downloaded from the USGS Earth Explorer.

The hydrography layer was obtained by analyzing satellite data pre-event with the GIS to segment
the normal hydrography as a geometry. The hydrography layer (pre-event) and the flood area layer
(post-event) were projected over the DEM to convert them into 3D data by adding the z-component
to the x,y data of the layers. Then, both 3D layers were superimposed to compare their depth in
order to estimate the flood elevation. For visualization, the z-components were extracted to obtain the
mean, maximum, and minimum altitude of each river course and flooded area at specific geographical
samples. Thus, by comparing pre- and post-event images and depth estimations, we could evaluate
the river rise and water body levels.

3. Results

3.1. Detection and First Assessment of Impact

We compared the rainfall estimation obtained from the SE service with the detection proxy
computed from social media data extracted from the platform of CH (Methods). Peaks in the rainfall
estimation and the detection proxy were synchronized for floods due to torrential rainfalls in the
affected areas: Montpellier (France) in September and November 2014 and Houston (USA) in August
2017 (Figure 2, Figure S3). The detection proxy of the floods in Montpellier was improved by the
normalization with the dynamic census computed from presence data at a daily resolution derived
from the CDRs (Methods, Figure S4). The population significantly changed between the two floods,
so the normalization allowed for the compensation of the population distribution and the detection
proxy provided a clear detection of the second flood as well (Figures S4 and S5).



Sustainability 2020, 12, 4246 9 of 20
Sustainability 2020, 12, x FOR PEER REVIEW 9 of 21 

 

Figure 2. Left: Historic profiles of rainfall (Schneider Electric (SE) data) in the four study cases 

selected. Dark blue indicates the year of the flood in comparison to other years, and the vertical 

dashed lines indicate the day of the flood as retrieved from news. Right: Detection proxy (red) over 

rainfall measurement (blue). The awareness proxy for the Montpellier flood was normalized by the 

Call Detail Record (CDR) aggregate, as indicated in the Methods section. Vertical dashed lines 

indicate the occurrence of a flood. Study cases (a) Monpellier, (b) Houston, (c) Mocoa and (d) Dakar. 

Peaks in the detection proxy were present during floods due to overflow (Mocoa, April 2017), 

where no rainfall measurement could provide a timely detection (Figure 2). In Dakar (Senegal), a 

peak on August 7th 2013 and other peaks during September were observed, indicating potential 

floods, although there was no evident peak in the rainfall estimation throughout the year as well. 

This observation was consistent with humanitarian reports in the area [46], but they did not provide 

Figure 2. Left: Historic profiles of rainfall (Schneider Electric (SE) data) in the four study cases selected.
Dark blue indicates the year of the flood in comparison to other years, and the vertical dashed lines
indicate the day of the flood as retrieved from news. Right: Detection proxy (red) over rainfall
measurement (blue). The awareness proxy for the Montpellier flood was normalized by the Call
Detail Record (CDR) aggregate, as indicated in the Methods section. Vertical dashed lines indicate the
occurrence of a flood. Study cases (A) Monpellier, (B) Houston, (C) Mocoa and (D) Dakar.

Peaks in the detection proxy were present during floods due to overflow (Mocoa, April 2017),
where no rainfall measurement could provide a timely detection (Figure 2). In Dakar (Senegal),
a peak on 7 August 2013 and other peaks during September were observed, indicating potential
floods, although there was no evident peak in the rainfall estimation throughout the year as well.
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This observation was consistent with humanitarian reports in the area [46], but they did not provide
a clear temporal mark, as shown by the detection proxy. Overall, it was observed that the detection
proxy derived from social media posts was a suitable warning indicator that can be used in floods
produced by localized rainfalls or by overflows of water bodies and currents. Thus, the proxy is
suitable to trigger a response and call the second layer of data described in the framework.

The representativeness of the proxies was analyzed by considering the number of detected posts
around the peaks detected and performing a normalization in time (Methods). It was found that the
detection proxy had 30–50% of representativeness, except for Mocoa, where very few posts could
be retrieved (Table S3). The representativeness of the users compared to the total population was
assessed by filtering the number of posts in comparison with the census. It was concluded that the
representativeness varied depending on the location.

The ratio of volume of posts in the detection proxy is itself a proxy of impact. However, we proposed
another proxy, the damage proxy (Methods), to distill complementary and fast information of the
socio-economic impact of the flood [26]. The damage proxy was used to observe how many people
were concerned about insurance or damages to properties because of the floods. As shown in Figure 3,
this proxy revealed larger variability depending on the location compared to the detection proxy.
The Montpellier floods caused a slight increase in the proxy 10–15 days after the floods. The damage
proxy during the Mocoa flood featured noisy behavior with apparently random peaks, as well as
during the flood in Dakar area. The Houston flood showed a clear peak in the damage proxy that
was nearly synchronized with the awareness proxy. These results suggested that the damage of the
flood as perceived by the population depends on many factors, especially economic and cultural;
for instance, the number of insurance policies or the existence of heterogeneous uses of social media
depending on the location. Compared to the detection proxy, presumably triggered by immediate
fear of lives, the concern about property damage and its timing largely depends on the cultural and
socio-economic factors of the country where the flood occurs. We also performed sentiment analysis
(Figure S7), but due to the short lengths of posts and the types of words used, the results showed that
there was not a specific sentiment—neither positive nor negative.
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Figure 3. Floods of the (a) Montpellier, (b) Mocoa, (c) Houston and (d) Dakar areas. Blue: Rainfall
measurement. Red: Awareness proxy. Yellow: Damage proxy.

3.2. Social Network Short-Term Dynamics

We performed a network analysis to measure the dynamics of the social net as seen from the
activity of social media users (see Figure 4). Posts allowed the reconstruction of the links created by
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the social media users as they were posting, replying, and retweeting. For the Montpellier floods,
we gathered 8128 valid posts from the 11,123 available from the CH platform during a period going
from the peak in the flood detection proxy to one month later (Methods). A total number of 1922 users
posted those 8128 posts, from which 545 were female users.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 21 
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Figure 4. (A) Network model for interactions analyzed from posts. Blue for posting users and orange
for retweeted or mentioned users. (B) Time series of interactions between all of the nodes. The time
interval for profiling is marked with vertical lines in magenta. (C) Left: Profiling of all posting users;
right: Profiling of mentioned and retweeted users. (D) Left: Profiling of all posting female users;
right: Profiling of mentioned and retweeted female users. (E) Left: Profiling of all posting male users;
right: Profiling of mentioned and retweeted male users.

A network model differentiating between posting users (blue) and mentioned or retweeted
(orange) users (Methods, Figure 4A) was used to analyze the linking dynamics in the month after the
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flood (Figure 4B). We performed a profiling of users by taking their individual temporal profiles for
both posting behaviors and retweet/mention profiles over time and applying unsupervised clustering
to the profiles to find similar behavioral patterns (Methods). The result is a classification of temporal
sinks (retweeted) and sources (posting) of post activities referred to the users.

Figure 4C showed the classified temporal profiles (blue and orange with different color levels) of
posting users (blue-scale) and also the mentioned and retweeted users (orange-scale) for the Montpellier
floods. Blue profiles represented temporal sources of activity, whereas orange profiles represented
temporal sinks of activity. Profiling was also disaggregated by gender (Figure 4D for female and
Figure 4E for male users). We observed that the profiles of both types of nodes are very similar
(Figure 4C left and right), indicating some level of collective network response where the increasing
activity is distributed in specific user groups. Narrowing down to the gender disaggregation, the
interconnections created by the female users and male users showed some variability. While links
by male users were more concentrated as temporal peaks, the links created by female users spanned
more days. In both cases, blue and orange profiles are rather similar, supporting the hypothesis of
concentration of activity in specific users. These results suggested some level of collective intelligence
and gender-related behavioral patterns in how society reacts to disasters. However, the results are also
very dependent on the geolocation, the culture, and the user patterns (Figure S10). These results could
be used to create social safety nets by using major information hubs supported by leading nodes of the
networks (user groups) to increment resilience.

3.3. Multi-Scale Population Distribution Dynamics During Floods

Daily aggregates of presence data provided by Orange were used to obtain a baseline of the
dynamic census for the flood in Montpellier. These data were provided for the D4CA Challenge;
however, their coarse aggregation makes them reasonable to be streamed in real-time if the detection
proxy highlights a potential disaster. This would be a second layer of data in the early warning
mechanisms and implies stable data-sharing agreements for coarse-grained data between humanitarian
stakeholders and mobile phone operators.

The region of interest was selected by filtering antennas using a geo-polygon selected with a
graphical interface provided by Planet (Figure 5A). The daily aggregated signal was used to observe
large-scale variations in the populations due to seasonal behavior and also potential reallocation
produced by the floods, as shown in Figure 5B. Once the floods in Montpellier were detected,
higher granularity (hourly) presence data were used for monitoring the movements of affected
population during the disasters two days before and after the date indicated by the awareness proxy
(Figure 5C,D)). Presence data during the night (1–8 am) were disregarded because they introduced
noise in the computation of the z-scores due to the very low activity.

We observed a very different behavior during the first and the second floods in Montpellier,
which may be influenced by the large-scale modulation in the population and also by the
short lapse between the two floods (Figure 5C,D). During the first flood, we observed that the
population concentration decreased as opposed to the behavior observed in other flood studies [22].
The socio-economic level of the region and the transportation infrastructure level seemed to be
determining factors for the underlying mobility during the disaster. Ground transportation collapse
could easily happen in developing countries, whereas the developed transportation infrastructure
allowed a fast evacuation of the region. Fast mobility to regions away from the disaster could only
be measured using trajectories crossing the affected area [43,47]. However, trajectories cannot be
reconstructed from presence data. This means that a third layer of data to reconstruct fine-grained
mobility should be accessed if proofs of impact and large-scale displacement are provided from
coarse-grained data.

During the second flood, we observed a slightly increasing concentration of people around the
day of the flood and for a few antennas (Figure 5D). Because of the difficulties in obtaining a physical
impact map of the flood due to the heavy clouds in the satellite data retrieved, it was not possible to
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make a hypothesis about the causes of this different behavior. The socio-economic profile of population
staying in the region could be an important factor for this difference, since people with more resources
could easily move away from the affected area as well.
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Figure 5. (A) Antenna map from Orange with the selected area to analyze the floods, highlighted in
green. (B) Daily resolution aggregated presence data in Montpellier during 2014–2015. (C) Hourly
resolution aggregated around the days of the first flood. (D) Hourly resolution aggregated around the
days of the second flood. Map of the z-score for (E) one day before the flood and (F) the day after the
flood in both cases.

3.4. Physical Impact through Remote Sensing

An assessment of the physical impact of floods can be made in situ or through remote sensing
data (see Figure 6). This analysis is key to calibrate the impact measured from social data proxies
and make early impact assessments that can be translated to parameters handled by humanitarian
stakeholders and policy makers more robust.

Satellite imagery from Planet was used here to assess the area impacted by the flood in Mocoa
(Figure 6). Integrating the segmented area from images with a Digital Elevation Model (DEM),
we computed a 3D characterization of the flood, providing both surface and elevation at different
points of the flood (Methods, Figure 6). River and flood segmentations were computed from image
data that were available from March 14th (pre-event) and April 10th (post-event), while the flood
happened on April 1st according to the news and the detection proxy (Figure 2). This delay is critical
for early warning and is an accurate assessment of impact at the peak of the flood. The segmentation
was compared with a segmentation made by UNITAR (LANDSAT data) available for April 4th and
April 10th (Figure 7). The flooded area on April 4th was smaller. The area on April 10th was similar,
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but with additional segmented water bodies, were considered to be mis-segmented due to clouds
(Figures S9 and S10).
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Figure 6. (a) Segmentation of the flood in Mocoa (right) compared to a baseline segmentation of the
Mocoa River (left) over satellite data provided by Planet. (b) Segmentation and elevation of the flood
in both situations over satellite data provided by Planet. (c) Segmented flooded area overlaid with
a population density map extracted from worldpop.org. (d) Segmented flooded area overlaid with
infrastructure data (shapefiles from Humanitarian Openstreetmaps Team). Planet data were provided
as part of the UN Data For Climate Action (D4CA) Challenge and were approved for peer-reviewed
publication (www.dataforclimateaction.org).
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A main source of segmentation errors is the presence of clouds during storms and floods. This is
a limiting factor in assessing the impact through satellite imagery, leading to over-segmentations by
considering cloud shades as water bodies. Satellite data for the other flooding cases were analyzed,
but the difficulties in the characterization of water in urban areas or the presence of dense clouds
prevented the reproduction of equivalent results. Regarding the 3D segmentation, the geospatial
resolution of the SRTM-DEM, 30 m, and the lack of standards across available DEMs for elevation
values hampered a full 3D reconstruction of the flood. There are existing open data satellite imagery
resources, such as LANDSAT or COPERNICUS data, that will confirm part of the first layer of data.
These sources can help confirm the geographical spot initially approximated by social media proxies.
A better characterization to build 3D models would require higher-resolution data, such as Planet data,
which would be part of a second layer of data that could be unlocked after clear evidence from the first
data layer.

Sustainability 2020, 12, x FOR PEER REVIEW 16 of 21 

Satellite imagery from Planet was used here to assess the area impacted by the flood in Mocoa 
(Figure 6). Integrating the segmented area from images with a Digital Elevation Model (DEM), we 
computed a 3D characterization of the flood, providing both surface and elevation at different points 
of the flood (Methods, Figure 6). River and flood segmentations were computed from image data that 
were available from March 14th (pre-event) and April 10th (post-event), while the flood happened 
on April 1st according to the news and the detection proxy (Figure 2). This delay is critical for early 
warning and is an accurate assessment of impact at the peak of the flood. The segmentation was 
compared with a segmentation made by UNITAR (LANDSAT data) available for April 4th and April 
10th (Figure 7). The flooded area on April 4th was smaller. The area on April 10th was similar, but 
with additional segmented water bodies, were considered to be mis-segmented due to clouds 
(Figures S9, S10). 

  
(a) (b) (c) 

 
Figure 7. (a) Comparison of the segmentation performed in this work (blue—left) against (b) the 
segmentation performed by UNOSAT (pink—middle). (c) both segmentations are overlaid along with 
the damaged buildings in yellow (right). The underlying satellite images were provided by Planet as 
part of the UN D4CA Challenge (Methods) and were approved for publication 
(www.dataforclimateaction.org). The segmentation of the flooded area was performed as explained 
in the Methods section using GIS. The segmentation produced by UNOSAT and the layer with 
affected buildings were directly downloaded from UNOSAT . The composition images were made 
using GIS by overlying the geoshape layers on top of the raster data provided by Planet. LANDSAT 
data are open and available from https://earthexplorer.usgs.gov/. 

A main source of segmentation errors is the presence of clouds during storms and floods. This 
is a limiting factor in assessing the impact through satellite imagery, leading to over-segmentations 
by considering cloud shades as water bodies. Satellite data for the other flooding cases were analyzed, 
but the difficulties in the characterization of water in urban areas or the presence of dense clouds 
prevented the reproduction of equivalent results. Regarding the 3D segmentation, the geospatial 
resolution of the SRTM-DEM, 30 meters, and the lack of standards across available DEMs for 
elevation values hampered a full 3D reconstruction of the flood. There are existing open data satellite 
imagery resources, such as LANDSAT or COPERNICUS data, that will confirm part of the first layer 
of data. These sources can help confirm the geographical spot initially approximated by social media 
proxies. A better characterization to build 3D models would require higher-resolution data, such as 
Planet data, which would be part of a second layer of data that could be unlocked after clear evidence 
from the first data layer. 

Overall, remote sensing data can help to accurately characterize a spatially accurate affected 
region depending on the presence of clouds (Figures S9, S10). However, the temporal resolution of 
publicly available earth observation data is not sufficient for standalone early warning as it is 
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Figure 7. (a) Comparison of the segmentation performed in this work (blue—left) against (b) the
segmentation performed by UNOSAT (pink—middle). (c) both segmentations are overlaid along
with the damaged buildings in yellow (right). The underlying satellite images were provided by
Planet as part of the UN D4CA Challenge (Methods) and were approved for publication (www.
dataforclimateaction.org). The segmentation of the flooded area was performed as explained in the
Methods section using GIS. The segmentation produced by UNOSAT and the layer with affected
buildings were directly downloaded from UNOSAT. The composition images were made using GIS by
overlying the geoshape layers on top of the raster data provided by Planet. LANDSAT data are open
and available from https://earthexplorer.usgs.gov/.

Overall, remote sensing data can help to accurately characterize a spatially accurate affected region
depending on the presence of clouds (Figures S9 and S10). However, the temporal resolution of publicly
available earth observation data is not sufficient for standalone early warning as it is implemented in
many current systems. Remote sensing data, especially with high resolution, can be related to a social
dimension to obtain socio-economic impact proxies by overlaying the segmentation with geographical
information, such as population density, location of public services, or public buildings (Figure 6).

4. Discussion

A prompt and planned response to a flood is key for optimizing the necessary aid and for a
rapid recovery and relief. A timely and effective early response can save lives and also large amounts
of resources compared to a delayed response. Considering that response planning is guided by a
qualitative assessment of needs and a quantitative assessment of impact [5], the framework presented
is well suited to be the basis for improvement of current mechanisms for floods to be more real-time,
accountable, efficient, and socially inclusive.

www.dataforclimateaction.org
www.dataforclimateaction.org
https://earthexplorer.usgs.gov/
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The first layer, which is composed of social media proxies, derived especially from Twitter, can be
implemented in real-time. These proxies provide a temporal landmark, a spatial characterization of the
hotspots, and an initial assessment of the socio-economic impact based on users’ behaviors, emotions,
and concerns. Thus, their utility is conditioned by several factors: Awareness of the population
regarding the flood, physical conditions of the flood (e.g., rainfalls level and duration, topography,
area conservation, etc.), baseline behavioral patterns, penetration of social media use, cultural factors
in the use of social media, and psychological factors such as fear. However, in spite of the potential
factors of variability, a consistent spike of the detector proxy was observed, which can be used for
triggering response, calibrating social impact, and requesting more data to better characterize the
disaster. The damage proxy was proposed to estimate the impact of disasters on properties; however,
its applicability seems to depend on the social context where the disaster occurs (types of properties,
culture, types of insurance, social media activity patterns, etc.). A network-based analysis of posts has
shown to be useful to shed light on the social organization of the affected community, which is critical
for planning response or for understanding the spread of information through specific population
groups. For instance, network structure description can be applied to understand and promote
resilience and safety nets.

The applicability of this layer as an early warning process is limited by the temporal resolution of
the series, although it can be incremented to an hourly resolution. The suitability of this layer also
depends on the nature of flood and its speed, which depend on the factors enumerated in Section 2.1.
People’s fear reflected in social media can anticipate impact when there is a reasonable interval between
the rainfalls and the damage. Spatially, the spots provided by social media are just seeds to focus the
acquisition of better spatial data from imagery techniques (e.g., satellites, drones, etc.). In general,
patterns in social media seem to be useful for measuring social structure and opinion and short-time
dynamics of the population, but not long-term effects of the disaster.

The second layer, consisting of coarse-grained aggregates of private data and only applied to
the floods in Montpellier, allows the refinement of the first layer as well as a better assessment of
impact of the flood in terms of mid-and long-term population dynamics. It can also be used to allocate
resources better with a detailed geo-temporal map and to have a better estimation of long-term effects.
In addition, this layer would allow timely monitoring and evaluation of the actions taken. In addition
to the “presence” data available for this work, data of user-to-user communication can be useful to
measure dynamics of the social network on different scales [18] beyond the network derived from
social media. This layer also comprises high-resolution satellite imagery that is available on demand
with a cost. We used Planet data with high spatial resolution to characterize the flooded area in Mocoa,
although the temporal resolution was coarse. Some resources provide a daily resolution that is suitable
to better track the flooded area and could be explored [48].

The third layer was not implemented in this work, but it was still presented for the sake of
completeness of the whole view. The framework shown was designed by considering the need for a
new generation of data-driven mechanisms for disaster management. As mentioned, one of the most
acknowledged challenges is the real-time access to privacy-risky data [33,34]. The higher the utility,
the more confident humanitarian stakeholders can be using fine-grained data. The utility has to be
proven through evidence; thus, it will unlock more data sources incrementally and in a transparent
and accountable way (Figure S11).

Regarding physical indicators, we found a severe demand for ad-hoc sensing for estimating
physical impact, as periodic satellite observation is not sufficient for the timely assessment of the flood
dimensions. Disasters such as the earthquake in Haiti triggered, for instance, the remote crowdsourcing
of geo-resource mapping or the release of very high-resolution data, such as Google eye or LiDAR (Laser
Imaging Detection and Ranging). It may be necessary to have on-demand multi-modal imagery of
affected areas for very high-impact disasters [49]. Depending on the presence of clouds, imagery should
be provided by satellites or drones [50]. Reducing the temporal gap to image the disaster is critical, as is
resolving the detection of water bodies in adverse environmental conditions or in complex geographical
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locations, such as cities. We also consider that current open DEMs, such as SRTM, are not sufficient
for a precise segmentation of floods that may affect small villages. Future systems will be 3D with
high resolution and will allow rendering of environments for the digital reconstruction of the floods,
also allowing simulations of impact on infrastructures.

The ultimate goal of data-driven policymaking is to build up resilience, especially in vulnerable
regions. This requires indicators across the whole cycle of disaster management [51]. Indicators have a
utility beyond supporting decision-making. They can be used to generate actionable knowledge and be
the driver for multi-stakeholder collaboration and civil society’s participation. In this light, we designed
the proposed framework and integrated different data sources. These proxies are also necessary to
evaluate aid and financial systems from two sides: Objective indicators of impact (e.g., physical impact,
mobility, and networks) and subjective impact as felt by the local population (e.g., from social media
and surveys). Aligning these variables would lead to a faster recovery from disasters and would avoid
potential long-term damage in the society nets, such as increased vulnerability or inequalities.

5. Conclusions

This work showed that social media in combination with satellite imagery, environmental
data, and real-time presence data aggregates of Call Detail Records could enhance current disaster
management and provide an assessment of impact. The three layers proposed form a connected system
that can increment its power by plugging in more data sources. The first and second layers were
tested to assess their utility, showing important benefits for planning response, designing mitigation,
and monitoring the disaster.

The third layer, which was not implemented in this work, would comprise the fine-grained data
necessary to assess disaggregated behaviors in order to monitor vulnerable locations and populations.
These data would also help improve all phases along the disaster management cycle: Preparedness,
warning, mitigation, response, evaluation, and relief. Fine-grained analysis is also the basis of
learning factors of disasters’ impacts across several situations and of improving the preparedness of
humanitarian stakeholders.

Future work aims at long-term observation of social patterns to understand resilience. Important
challenges are the large variability observed across cases that requires new models and the further
social and analytical research needed in order to find systematic global approaches. The availability of
timely data and socio-economic contextual factors was very important, but the intrinsic behavioral
dynamics also prompted further study. For instance, the initial results of this work suggested that
the recursiveness or the periodicity of disasters in the same region largely affected the behaviors and,
therefore, the way they should be monitored to support humanitarian action.

Operationally, we work towards engaging different stakeholders using the framework as an
incentive and proof of need for sharing private data. Data indicators adapted to the different phases
of the disaster management cycle are the basis for a collective intelligence for disasters. We consider
that civil society must play a key role in the recovery and configuration of the new social state
after the crisis. This demands not only analytical tools, but also tools to interact with the society,
providing key actionable insight and leveraging the analysis to understand how to spread these
insights. Finally, work has to be done towards facilitating and evaluating financial streams based on
evidence to stimulate the society for self-organization and recovery.
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corrected with CDR aggregates, Figure S5: Volume of flood detection proxy during Montpellier floods, Figure S6:
Share of social media posts, Figure S7: Sentiment analysis during floods from Crimson Hexagon, Figure S8:
Network dynamics comparison in several floods, Figure S9: Satellite data of flooded area, Figure S10: Clouds in
satellite data during floods, Figure S11: Protocol for data access during disasters, Table S1: Datasets, Table S2:
Keywords per proxy, Table S3: Representativeness of awareness proxy, Movie S1: Mobility with weekly resolution
along the floods in Montpellier, Movie S2: Mobility during Montpellier flooding 1 using Call Detail Records,
Movie S3: Mobility during Montpellier flooding 2 using Call Detail Records.
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