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Abstract: Air transport provides important transportation services for economic development; 

meanwhile, its operation requires massive resource inputs into the air transport sector (ATS). In 

order to ensure sustainable development of air transport industry, improve the utilization 

efficiency of resources, and coordinate the development of the ATS and the macroeconomy, the 

operational efficiency of the industry should be evaluated accurately. However, few studies have 

analyzed the operational performance of ATSs across different regions. This study therefore 

constructs an index system and applied a three-stage data envelopment analysis (DEA) approach, 

which considers various regional environmental factors and statistical noise, to evaluate regional 

ATS operational performance. China’s 30 provincial ATS operational efficiencies in year 2017 are 

empirically evaluated using the proposed model. The empirical results show that different levels of 

environmental factors, such as regional GDP, openness, technical markets, technological 

development, and consumption, pose various influences on provincial ATS operational efficiency 

in China. Operational performance evaluation results eliminating these environmental effects in 

the third stage show considerable differences with that stage 1 results. In addition, corresponding 

development strategy implications in different provinces and regions are put forward according to 

the evaluation results. 

Keywords: air transport sector; operational performance; three-stage data envelopment analysis; 

regional efficiency 

 

1. Introduction 

Air transport generates benefits to passengers, shippers, and the wider economy by providing 

speedy connections between cities, which enable the flows of goods, investments, people, and ideas 

that drive the economic growth. According to the International Air Transport Association (IATA), in 

2017, 557 million passenger journeys in China were carried out by air transport, which accounted for 

a majority of air passenger journeys worldwide. Additionally, China’s air transport sector (ATS), 

including airlines, airport operators, airport on-site enterprises, aircraft maintenance, and air 

navigation service providers, is estimated to support US $104 billion of the national GDP. China’s air 

transport market is forecast to grow by 173% in the next 20 years, which will bring 1519 million 

passenger journeys in 2037. 

Rapid expansion of air transportation is accompanied by a large amount of resource inputs. 

Although the air transport industry provides services with public goods attributes and significant 

externalities, problems can rise when its development is carried out at excessive costs, or in an 
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inefficient and unproductive way [1]. As the importance of an efficient use of public resources and 

high-quality fiscal policies for economic growth and stability has been brought to the forefront, the 

adequate measurement of such public sectors’ efficiency becomes an essential problem but the 

literature on it is rather scarce [2]. The operational efficiency of transport sectors should have a 

significant impact on future transportation planning and the budgets of central and local 

governments [3]. Considering the fact that air transport is such a capital-intensive sector and is often 

heavily subsidized in many countries, it is necessary to frame an economic efficiency evaluation into 

a transport planning perspective, to help conduct a forward-looking planning processes, and to 

ensure the utilization efficiency of the resources invested into the industry. Meanwhile, since air 

transport sectors in various regions are affected by different external macroeconomic and social 

environment factors, the “real” efficiency of inter-regional air transport can be evaluated correctly 

only on the premise of taking these external factors into consideration, in order to provide references 

for future sustainable development of the industry. 

In practice, China’s aviation authorities have recognized the importance of enhancing the 

resource utilization efficiency and expanding air transport in a fiscally responsible manner. China’s 

Strategic Plan for Civil Aviation Development (Civil Aviation Authority of China, 2016) has 

emphasized improving the efficiency of the whole air transport sector and ensuring its sustainable 

development across different regions. Additionally, it is necessary for air transport administrations 

to benchmark each region’s ATS production performance in order to determine resource utilization 

efficiency, find the efficient regions, propose improvement directions for less efficient regions, and 

support air transport development strategy. Besides, performance evaluation results of ATS can also 

help ATS participants, such as airlines, airport operators, air traffic control, airport on-site 

enterprises, aircraft maintenance and air navigation service providers with their investment 

decisions. For example, airports in different regions in China are requested to prove the eligibility 

and feasibility to expand infrastructure capacity, because of the vast resource input demand, 

competition among airports for additional capacity, and the regulatory laws by which the air 

transport industry operates. Assessment of ATS performance would appear to help provide answers 

to such concerns. With aforementioned theoretical and practical concerns in mind, the measurement 

and analysis of air transport sector efficiency and the productivity changes of the 30 provinces across 

China has become the research objective of this paper. 

There are many data envelopment analysis (DEA)-based efficiency studies in the field of civil 

aviation, as improving operational efficiency has become the management focus of many airlines, 

airport companies, and civil aviation administrations. The Malmquist productivity index was 

applied to analyze the operational efficiency of Turkey airports using panel data [4]. Previous 

literatures also applied the network DEA (NDEA) model, which considers undesirable outputs and 

intermediate product, to model and benchmark Spanish airport operations [5], East Asia airports [6], 

and European airlines [7]. The authors of [8] used a dynamic by-production model to measure the 

dynamic efficiencies of airlines considering the requirement of carbon emission reduction. Another 

kind of relevant research literature focused on air transport networks (ATNs) comprises 

multi-airports as well as flights between them as research objects, and evaluates the efficiency and 

robustness of ATNs [9–11]. Previous studies mostly focused on the efficiency evaluation of airports 

or airlines, or on some more comprehensive objects such as ATNs. However, all participants in the 

air transport sector work together to ensure air transport performance and its sustainable 

development. To improve ATS’s comprehensive benefits and ensure its sustainable development, it 

is necessary to evaluate and improve the efficiency of the whole ATS [12,13]. Though entire-industry 

efficiency studies have drawn much research attention in other sectors, studies on the operational 

performance of the overall air transport sector are still extremely scant. This is probably because of 

the lack of appropriate indicators and data for ATS efficiency evaluation. 

Another defect of previous air transport industry performance studies is that few of them 

considered the impact of various exogenous economic and social factors in different regions. Some 

literatures on airport efficiency have used DEA model combined with a second-stage regression to 

identify some endogenous factors affecting airport performance, such as location, hub status, and 
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degree of privatization [14,15]. However, few literatures have considered the exogenous 

socio-economic factors that are beyond the management control of airports or outside of the airport 

industry itself [16]. However, such exogenous socio-economic factors have been argued to actually 

influence the air transport performance and efficiency in various ways. For example, 17 national 

macro-environmental factors such as innovation, living standards of citizen, technological readiness, 

financial market development, macro-economic environment, and goods market efficiency were 

proposed to influence regional air transport volume and performance [16]. The economic and social 

effects of the population have been considered as environmental factors that influence the 

performance of Spanish and Turkish airports [17]. 

Three-stage data envelopment analysis (DEA) [18] is an efficiency evaluation method that can 

account for environmental effects and statistical noise, and has been used in efficiency evaluation in 

a range of industries, such as hotel management [19,20], the banking industry [21], the cultural 

industry [22], and the electric power industry [23]. This model was also applied to study energy 

efficiency in the manufacturing sector [24], construction sector [25], transportation sector [26], and 

the overall economy [27]. However, few studies applied this method to efficiency evaluation in the 

civil aviation industry. To fill the above-mentioned gap in ATS performance researches, this study 

applies the Fried three-stage DEA method and constructs the corresponding input–output and 

environmental indexes, so as to evaluate China’s provincial ATS efficiency while considering social 

and economic environments of different regions. 

It is worth noting here that previous to the three-stage method, Fried et al. [28] proposed a 

similar four-stage DEA-based method that can account for environmental factors, which has also 

been applied in industrial efficiency analysis, such as in the service sectors [29]. Both methods firstly 

carry out the traditional DEA analysis and then use the slacks obtained by the first stage of the DEA 

analysis to calculate the environmental impact and adjust the input or output by using an 

econometric model. Finally, the adjusted input or output data are used for DEA analysis. Formally, 

in the 2002 paper, Fried et al. combined the second stage, which can identify the influences of 

operating environment factors on the inefficiency, and the third stage, which aims to predict the total 

input slack or output surplus and calculate the adjusted input or output values, of the four-stage 

method in the 1999 paper into one stage (the second stage) of the three-stage method. The more 

substantial difference between the two methods is that, in the second stage in the 1999 paper, the 

equations used to quantify the effect of external conditions on the excessive use of inputs can be the 

specified according to the econometric technique that is adopted, such as ordinary least squares 

(OLS), a Tobit model, or a seemingly unrelated regression (SUR) system; while the Fried three-stage 

method [18], in particular, adopts stochastic frontier analysis (SFA) to regress first stage slacks 

against a set of environmental variables in the second stage. The shortcoming of the four-stage 

method [28] approach is that the data adjustment accounts for environmental impacts, but not for 

the impact of statistical noise [18]. Additionally, that is the reason why in the second stage of the 

three-stage approach, SFA is used to attribute variations in the first stage producer performance to 

environmental effects, managerial inefficiency, and statistical noise. Therefore, the third-stage 

method [18] can be viewed as an extension and a special case of the four-stage method [28]. 

The remainder of the paper is structured as follows. Section 2 presents a brief introduction to 

the methodology applied in this research. Section 3 describes the indicators and data sources, 

including the input, output and environmental variables. The empirical results are presented in 

Section 4. Section 5 is the discussion. 

2. Methods 

This research applies the three-stage DEA-based approach proposed by Fried et al. [18] to 

evaluate operational performance of air transport sector. At the first stage, the initial efficiency based 

on variable returns to scale (VRS) is evaluated with a Banker, Charnes, and Cooper’s DEA 

(abbreviated as BCC model based on the names of its proposers) analysis [30], using input and 

output quantity data only. 
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The BCC model is modified from the Charnes, Cooper, and Rhodes’ linear program [31] 

(abbreviated as CCR model based on the names of its proposers). The CCR linear programming 

formula can be expressed as Equation (1): 
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where ijx  is the amount of ith input to unit j, rjy  is the amount of rth output from unit j, n is the 

number of decision making units (DMU), m is the number of inputs, and q is the number of outputs. 

ikx  and rky  are the ith input and rth output of the kDMU  being evaluated, respectively. j  is 

the j dimensional weight vector of the jDMU . The CCR optimal solution value indicates the 

estimation of technical efficiency (TE) of the DMUs. 

Compared with the CCR model, which is based on constant returns to scale (CRS), the BCC 

model only adds the convexity constraint of 
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Since our concern is the extent to which resource inputs can be reduced in order to achieve technical 

efficiency without any reduction in air transport capacity, the input orientation BCC DEA model 

was adopted. The BCC model can be expressed as Equation (2): 
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The ' s  objective value of the liner program (2) indicates the pure technical efficiency (PTE). 

Based on the TE value calculated from the CCR linear program and the PTE value from the BCC 

model, scale efficiency (SE) can be calculated by /SE TE PTE . 

According to Banker and Thrall [32], under the setting of multiple-input-multiple-output and 

multiple optimal solutions, the following procedure can be employed to estimate returns to scale of 

each DMU in the BCC model. Let 
 be the optimal vector for the CCR linear program specified in 

(1), if 1SE  , then constant returns to scale (CRS) prevail at kDMU . If 1SE   and 
1

1
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some optimal solutions, then increasing returns to scale (IRS) prevails at kDMU . If 1SE   and 

1

1
n

j
j




 ＞  in some optimal solutions, then decreasing returns to scale (DRS) prevails at kDMU . 

Note here that the CCR model is used only for the separation of scale efficiency and the estimation of 
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the DMUs’ returns to scale. Due to the assumption of various returns to scale in this research, in the 

first and third stages of the three-stage model in this research, the BCC DEA model was employed to 

evaluate the ATS efficiency.  

Subsequently, the quantities of ith input factor’s total slack (radial plus non-radial) to unit j, ijs  

can be gained from the results of the BCC model in the first stage. ijs  illustrates the difference 

between the existing inputs and the ideal inputs to achieve the optimum operational efficiency of 

each DMU.  

At the second stage, the input slacks ijs  gained from the first stage BCC analysis are regressed 

against observable environmental variables and a composed error term by stochastic frontier 

approach (SFA) regression analysis. In such an SFA regression model, the regression equations can 

be expressed as Equation (3): 

 ,ij j i ij ij

ij ij ij

s f Z u v

u v




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 
 (3) 

where jZ  is a vector representing the t environmental variables of the jth DMU, 

1 2( , , , )j j j tjZ z z z  . i  is the coefficient vector of the environmental variable. 

 ,j i ijf Z Z    can calculate the environmental values that affect each DMU’s inputs, 

ij ij iju v    is the composed error term, iju and ijv  are uncorrelated variables, iju  reflects the 

managerial inefficiency component for the ith input of the jth DMU and 
2  (0, )ij uiu N  , and ijv  

reflects statistical noise for the ith input of the jth DMU and 
2  (0, )ij viv N  . Therefore, through 

the stochastic frontier analysis (SFA), the slacks obtained in the first stage are decomposed into 

three components, namely environmental influences, managerial inefficiencies, and statistical noise. 

Using the results of SFA, each DMU’s adjusted inputs can be calculated by Equation (4): 
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where 
A
ijx  and ijx  are adjusted and observed input variable values, respectively, and ˆi  is the 

estimated values for i  obtained by the SFA analysis. On the right side of Equation (4), 
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puts all DMUs into the similar “luck”. In order to obtain estimates of îjv  for each DMU, according 

to the methodology of Jondrow et al. [33] and Fried et al. [18], estimators of statistical noise residual 

can be calculated by Equation (5): 
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where the estimators for managerial inefficiency are given by ������|��� + ����. Then, adjusted inputs 

can be obtained by Equation (6): 
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(6) 

-In stage 3, using adjusted input data, BCC DEA is performed again to evaluate the “real” 

operational performance, removing the effects of environmental factors and statistical noise.  
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3. Data 

In this research, the DMUs of the DEA model refer to China’s 30 provincial ATSs. Consistent 

with China’s Industrial Classification for National Economic Activities (GB/T 4754-2017), the air 

transport sector in this paper consists of air passenger and freight transport and general aviation 

services, plus air transport support activities, which include airports, air traffic control, and other air 

transport auxiliary activities, as shown in Figure 1. The important fact to note here is that according 

to accounting standards in ATS, the major investments in the air transport industry, such as the 

purchase of an aircraft fleet by airlines, and the construction of airports and related facilities, are 

listed as fixed asset investments, which will serve as an important basis for our selection of input 

indicators later. 

 

Figure 1. Components of the air transport sector (ATS). 

The index system including inputs, outputs, and external factors developed for the three-stage 

approach is shown in Table 1. 

Table 1. Input, output and environmental factors specified for the three-stage approach. 

Input indicators Output indicators Environmental Variables 

Capital Stock Volume of Passenger Gross Domestic Product per Capita 

Number of Employees Volume of Freight Actual Utilization of Foreign Direct Investment 

Infrastructure Construction Level Aircraft Movements Transaction Value in Technical Markets 

  Three Kinds of patents Granted per 10,000 People 

  Household Consumption Expenditure 

3.1. Input and Output Indicators 

Inputs in this research are defined as the resources that the air transport sector takes to generate 

air transport capacity. The capital (rolling stock and infrastructure) and the number of employees (or 

hours of work) are the mostly considered variables, since they represent the main inputs in the 

transport industries production process [3]. 

3.1.1. Capital Stock 

Air transport is a capital-intensive industry. Investments in infrastructures and aircrafts 

account for the major part of its input resources. Therefore, it is necessary to accurately measure the 

capital input to analyze its efficiency. Capital input may be considered as either a flow or a stock 

variable, since using stock rather than flow can give more robust results and reduce the reverse 

causality in the empirical models [34]. In previous studies, capital stock was often used as an input 

indicator. Furthermore, capital stock can be measured in monetary terms or in physical terms; for 

example, the length, area, or density of road and railway networks [35,36]. However, measuring 

capital inputs in physical units has been accused of posing several issues, since authors use a vast 

range of variables and it is quite hard to define a unique unit of measure [3]. Thus, in this research 
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we used the monetary measure of capital stock as an input indicator. However, there is no such 

indicator in presently available statistics. Hence, we applied the perpetual inventory method [37,38], 

which is most widely used and considered as the most correct approach in measuring stocks of fixed 

assets [3], to estimate ATS capital stock in each province. For each province, the net ATS capital stock 

at the end of current period tK  can be calculated by Equation (7): 

1(1 ) 2003, 2004, 2017.t t tK K I t     ，  (7) 

where tI  is the ATS fixed-asset investment in the current period, while   is the depreciation rate. 

Each province’s annual data on tI  comes from the China Statistical Yearbook of 2003–2018. 

In this research, we assumed ATS capital stock depreciates at a constant rate  . As to the value 

of  , we used the comprehensive China’s infrastructure depreciation rate estimated by previous 

studies [39–41], which is 0.0921. In addition, according to the perpetual inventory method, the 

estimation of the initial capital stock 0K , in our case the capital stock at the end of 2002, is calculated 

by Equation (8): 

0
0

I
K

g



 (8) 

where 0I  is the gross investment in initial year 2002 and g  is the geometric average growth rate 

of fixed asset investment to the ATS between year 2002 and 2012. The value of g  is 0.15607. 

3.1.2. Labor Input 

In terms of labor input, the number of full-time employees in ATS is selected as the indicator. 

This index shows the number of full-time employees in a province’s civil aviation industries, 

including airlines, airports, air traffic control, and other auxiliary service. Data on this index come 

from the Year Book of China Transportation and Communications. 

3.1.3. Infrastructure Level 

In this study we propose to construct an indicator that can reflect the level of air transport 

infrastructure. Specifically, the Federal Aviation Administration (FAA) and International Civil 

Aviation Organization (ICAO) have both introduced airport design standards [42]. Although the 

FAA standards are mandatory for airport certification in the US, whereas ICAO standards are 

adopted by the majority of aviation authorities elsewhere, both standards are very similar in nature 

and are based on the size of the largest aircraft that is allowed to operate at an airport. Airports are 

assigned a reference code, which ultimately determines the types of aircraft that the airport can 

handle [42]. This reference code thus represents the construction level of an airport’s airfield and 

various other airport components. A higher code shows more construction cost in the airport and 

other aviation support facilities. Thus, the reference code can be used as an infrastructure 

measurement to reflect the input level of air transport. Due to the application of ICAO standards in 

Chinese airports, ICAO’s aerodrome code is used in this research. It is composed of a number 

designating the runway length available and a letter representing the size of the aircraft the airport 

can handle in terms of wingspan and wheel track. The codes and their correspondent runway 

lengths and aircraft sizes are shown in Table 2. 

Table 2. Aerodrome reference codes by International Civil Aviation Organization (ICAO) . 

Aerodrome code 

number 

Reference field 

length (m) 

Aerodrome code 

letter 

Wingspan 

(m) 

Outer main gearwheel 

span (m) 

1 0~800 A 0~15 0~4.5 

2 800~1200 B 15~24 4.5~6 

3 1200~1800 C 24~36 6~9 
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4 ≥1800 D 36~52 9~14 

  E 52~65 9~14 

  F 65~80 14~16 

We constructed an infrastructure construction level (ICL) index that reflects both the number 

and level of airports (LoA) in a province: 

1

1,2,...,,
jN

j n jICL LoA n N   (9) 

where jN  is the number of airports in jth province and nLoA  is the interval variable constructed 

based on the ICAO’s aerodrome code of each airport in jth province. Specifically, an airport’s 

1, 2,3, 4nLoA   if the airport’s ICAO’s aerodrome code is 4C, 4D, 4E, and 4F, respectively. 

3.2. Output Indicators 

In previous studies, output variables of the transportation sector were mainly classified into 

two main categories: transportation services (volume of passenger, freight, and vehicles) on one 

side, and transportation value added (GDP of the sector) on the other [43–45]. Considering that the 

output value of air transport is not only reflected in GDP in the transportation sector, but also lies in 

the indirect and catalytic effects of passenger and freight movement on other industries, in this 

research the volume of passengers, freight, and vehicles were therefore used as three output 

variables of provincial ATS. Starting from 2017, the Civil Aviation Administration of China (CAAC) 

has begun to report each province’s annual air transport passenger and freight throughput and the 

aircraft movements volume. Thus, the output data were collected from the CAAC. 

3.3. Environmental Indicators 

The operational efficiency of the air transport sector is also affected by some other economic 

and social factors, which are referred to as environmental variables in this study. According to 

previous literatures, it has been theoretically and empirically demonstrated that some social and 

economic factors affect the demand for air transportation. Firstly, since an increase in economy 

income leads to an increase in economic activity and boosts the demand for air passenger and freight 

transport [46], the level of regional income was selected as an environmental variable. Gross 

domestic product (GDP) per capita was used as a proxy for income. Secondly, because corporations 

with foreign capital often need air transport to maintain contact with their domestic and foreign 

organizations, and the production and sales processes of their products and services usually need to 

be based on air transport, regional openness to foreign investment is related to the air transportation 

demand and the performance of air transport [47–50]. Therefore, the actual utilization of foreign 

direct investment (FDI) was selected as an environmental variable. Thirdly, due to the high 

dependence of R&D intensive industries, consulting industries, and other “on-time” industries on 

air transport [51], we chose the transaction value in technical markets (TVTM) as an environmental 

variable, so as to reflect various development levels of such industries across regions. Fourthly, 

regional technological readiness is of universal importance to all industries in a region [16], 

including the air transport sector, and considering high-tech manufacturing companies’ dependence 

on air transport, in this research three kinds of patents granted (TKPG) per 10,000 people was 

selected as an environmental variable, as the proxy of regional technological readiness. Finally, air 

transport services have relative high prices in China compared to other modes of transportation, and 

air transportation is usually associated with high-end consumption on high value-added goods, 

entertainment, and tourism [52,53]. Therefore, the regional consumption level and living standards 

will significantly influence air passenger and cargo transport volume [54,55]. For this reason, we 

chose household consumption expenditure (HCE) as the fifth environmental variable. All five 

environmental variables are posited to influence ATS operational performance. But there is no need 

to assume the directions of their impacts [18]. 



Sustainability 2020, 12, 4220 9 of 16 

The data of input, output, and environmental variables are from the China Statistical Yearbook, 

the Statistical Yearbook of the Chinese Investment in Fixed Assets, the Year Book of China 

Transportation and Communications, and statistics released by the Civil Aviation Administration of 

China (CAAC). 

4. Results 

According to the first stage DEA analysis, the average pure technical efficiency (PTE) and scale 

efficiency (SE) of 30 provincial ATSs are 0.894 and 0.915, respectively (Table 3). The PTE of 16 

provincial ATSs achieve complete efficiency (the value of PTE equals 1), while 14 provincial ATSs 

are inefficient (the values of PTE are less than 1). The ATSs of Tianjin, Guangdong, Sichuan, and 

Qinghai are purely technically efficient and scale inefficient (the PTE equals 1 and the SE is smaller 

than 1). The ATSs of Shandong, Guangdong, Hainan, Sichuan, Yunnan, and Xinjiang are at the 

phase of decreasing returns to scale (DRS), which illustrates that the growth proportion of output is 

less than that of input into their ATS. Meanwhile, the other provinces remain at the phase of 

constant or increasing returns to scale (CRS or IRS), demonstrating that the increment proportion of 

output equals or exceeds the input scale expansion rate. 

Table 3. The first stage and the third stage analysis results. 

Region 

The first stage The third stage 

PTE SE 
Return to 

Scale 
PTE SE 

Return to 

Scale 

North China 

Beijing 1 1 CRS 1 0.955 IRS 

Tianjin 1 0.838 IRS 1 0.682 IRS 

Hebei 0.733 0.787 IRS 0.828 0.678 IRS 

Shanxi 1 1 CRS 1 0.859 IRS 

Inner 

Mongolia 
1 1 CRS 1 1 CRS 

Northeast China 

Liaoning 0.678 0.975 IRS 0.787 0.957 IRS 

Jilin 0.687 0.791 IRS 0.751 0.718 IRS 

Heilongjiang 0.784 0.961 IRS 0.863 0.871 IRS 

East China 

Shanghai 1 1 CRS 1 1 CRS 

Jiangsu 1 1 CRS 1 1 CRS 

Zhejiang 1 1 CRS 1 1 CRS 

Anhui 0.821 0.838 IRS 0.817 0.69 IRS 

Fujian 0.751 0.995 IRS 0.754 0.999 DRS 

Jiangxi 1 1 CRS 1 0.829 IRS 

Shandong 0.959 0.721 DRS 1 0.735 DRS 

Central and Southern 

China 

Henan 1 1 CRS 1 1 CRS 

Hubei 0.754 0.995 IRS 0.799 1 CRS 

Hunan 0.825 0.999 IRS 0.897 0.956 IRS 

Guangdong 1 0.766 DRS 1 0.777 DRS 

Guangxi 0.827 0.995 DRS 0.839 0.963 IRS 

Hainan 0.688 0.977 DRS 0.743 0.99 DRS 

Southwest China 

Chongqing 1 1 CRS 1 1 CRS 

Sichuan 1 0.791 DRS 1 0.882 DRS 

Guizhou 0.619 0.967 IRS 0.651 0.947 IRS 

Yunnan 0.952 0.689 DRS 1 0.695 DRS 

Northwest China 

Shannxi 1 1 CRS 1 1 CRS 

Gansu 1 1 CRS 1 1 CRS 

Qinghai 1 0.52 IRS 1 0.496 IRS 

Ningxia 1 1 CRS 1 0.733 IRS 

Xinjiang 0.772 0.901 DRS 0.737 0.983 IRS 

 Mean 0.894 0.915  0.916 0.880  

Note: PTE means the pure technical efficiency; SE means the scale efficiency. IRS, CRS, and DRS represent 

increasing returns to scale, constant return to scale, and decreasing return to scale, respectively. 
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At the second stage, the SFA regression was applied to regress slacks of the capital stock (CS), 

number of employees (NoE), and air transport infrastructure construction level (ICL), respectively, 

against five environmental variables, including the GDP per capita, actual utilization of FDI, 

transaction value in technical markets (TVTM), three kinds of patents granted (TKPG) per 10,000 

people, and household consumption expenditure (HCE). 

The SFA results are shown in Table 4. These results demonstrate the significant influences of 

the chosen environmental factors on ATS operational efficiency.  

Table 4. The second stage stochastic frontier analysis (SFA) results. 

Independent Variable 
Dependent Variable 

CS Slack NoE Slack ICL Slack 

Constant term 
−33.31 

(−11.07) * 

−0.42 

(−3.70) * 

−2.79 

(−1.65) 

GDP per capita 
47.26 

(34.60) * 

−0.40 

(−0.59) 

8.07 

(6.47) * 

Actual utilization of FDI 
−44.38 

(−40.88) * 

2.61 

(12.49) * 

−6.57 

(−4.39) * 

Transaction Value in Technical Markets (TVTM) 
−42.91 

(−40.60) * 

2.33 

(3.63) * 

8.55 

(5.88) * 

Three Kinds of patents Granted (TKPG) per 10,000 people 
111.69 

(92.33) * 

0.41 

(0.61) 

7.07 

(5.89) * 

Household Consumption Expenditure (HCE) 
−117.64 

(−97.72) * 

−3.49 

(−14.24) * 

−27.29 

(−12.07) * 
2
i  20546.49 10.17 258.27 

i  0.99999 0.99999 0.99999 

LR test of the one-sided error  24.29 19.52 13.23 

* Significant at the 1% level or better. Data in brackets represent t-statistics of the coefficients. CS Slack, NoE Slack, 

and ICL Slack represent the slack of capital stock, number of employees, and air transport infrastructure 

construction level, respectively. 

In accordance with Table 4, likelihood ratio test values of the SFA regressions for all three input 

slacks are all higher than the threshold value of the mixed chi-square distribution examination and 

significant under the 1% confidence level, rejecting the hypothesis that the one-sided error 

component makes no contribution to the composed error term, implying the rationality of the 

stochastic frontier specification. And in all three SFA regressions,  i  values are close to 1, 

indicating the input slacks are mainly attributed to the managerial inefficiency instead of the 

statistical noise. 

By viewing the second row in Table 4, the coefficients under the GDP per capita are positive 

and significant at the 1% level in the regressions of CS Slack and ICL Slack (47.26 and 8.07, 

respectively). Similarly, the third row shows that coefficients under TKPG per 10,000 people are 

positive and significant at the 1% level in the regression of CS Slack and ICL Slack (111.69 and 7.07, 

respectively). Because of the increase of the GDP per capita and technology-intensive industries, air 

transport demand will increase, resulting in the increase of ATS investments and expansion on 

airport infrastructure construction. As the inputs increases, it will become more challenging to 

improve operational performance. Therefore, the increase of GDP per capita and 

technology-intensive industries may bring about increasing air transport demand, but will not 

necessarily lead to the improvement of operational efficiency of ATSs. For the number of employees, 

the coefficients of the GDP per capita and TKPG per 10,000 people (−0.40 and 0.41, respectively) are 

insignificant at the 1% level. The negative and significant coefficients of actual utilization of FDI in 

the regressions of CS Slack and ICL Slack (−44.38 and −6.57, respectively) indicate that more actual 

utilization of FDI and a higher degree of openness are beneficial to ATSs so as to enhance the 

utilization of capital input and infrastructure. Similarly, the negative and significant coefficients of 

household consumption expenditure (HCE) in the regression of the CS Slack and ICL Slack (−117.64 
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and −27.29, respectively) show that a higher consumption level is beneficial to ATS operation. The 

decrease in the input slacks of capital stock and infrastructure construction is attributed to a 

benevolent environment for ATS supported by vigorous consumption.  

The inputs were then adjusted to offset the effects of environmental factors and in statistical 

noise. To be specific, values of
2
i  and i  were replaced by Equations (3) and (4), and then the 

values of three input variables were adjusted by Equation (5). Through this adjustment, provinces 

with relatively unfavorable ATS operating environments and relatively bad luck had their inputs 

adjusted upwards, while provinces with relatively favorable operating environments and relatively 

good luck had their inputs adjusted upwards [18].  

At the third stage, using the adjusted inputs data, we could estimate the operational 

performance again with the BCC DEA model. This final evaluation puts all provincial ATSs on a 

level playing field and can reflect the actual ATS operational performance, since the effects of 

environmental factors and the statistical noise have been accounted for. 

Table 2 listed the polished pure technical efficiency of the 30 provincial air transport sectors. 

After the adjustment, the mean values of PTE and SE changed from 0.894 and 0.915 to 0.916 and 

0.880, respectively, implying that the effects of environmental factors and statistical noise resulted in 

the underestimation of PTE and overestimation of SE from an overall perspective. The average PTE 

score is 0.916, illustrating that under the VRS assumption, the pure technical efficiency gap is 8.4 

percent and the industry could reduce inputs by 8.4 percent (=1.000–0.916) of their current level if the 

operational practices of the most efficient provincial ATSs (those with PTE scores of 1.000) were 

applied throughout the industry. The average SE score is 0.880, suggesting that inputs can be 

reduced by 4.9 percent through enhancing the scale of the air transport industry using the current 

best practice. 

The ATS PTEs of 12 provinces, including Hebei, Liaoning, Jilin, Heilongjiang, Fujian, Shandong, 

Hubei, Hunan, Guangxi, Hainan, Guizhou, and Yunnan, increase after eliminating the impacts of 

environmental factors and statistical noise, indicating that the macroeconomic factors of these 

provinces exert negative influences on the PTE of ATSs. This result may indicate that these 

provincial ATSs would be more productive if the administrations take measures to forge an 

economic and social environment that is more beneficial to air transport. On the contrary, Anhui and 

Xinjiang have lower PTE after adjustment, demonstrating that they have relatively favorable 

environments for ATS operation. 

The number of the pure technical efficient ATSs, with a PTE that equals 1, became larger in the 

third stage (18 DMUs) compared to the first stage (16 DMUs). Shandong and Yunnan newly 

achieved completely pure technical efficiency (at the PTE frontier). Beijing, Shanxi, Jiangxi, and 

Ningxia became no more scale efficient (with SE values less than 1). 

It was further found that after the adjustment, evaluation of the returns to scale of ATS was 

dramatically altered after controlling for the impacts of the environmental factors and statistical 

noise. The number of DMUs that operate at the stage of increasing returns to scale (IRS) expanded to 

15 from 10 in the third stage, with Beijing, Shanxi, Jiangxi, and Ningxia shifting from CRS (constant 

returns to scale) to IRS, and Guangxi and Xinjiang shifting from DRS to IRS. Nine provinces are 

technically inefficient and indicating IRS at the same time, and they should try to improve ATS 

performance to BCC technical efficiency with increasing returns to scale before additional resource 

inputs are considered [56]. Tianjin, Shanxi, Jiangxi Qinghai, and Ningxia are BCC efficient while 

indicating IRS, which means that with additional resource inputs, ATS in these provinces can 

generate outputs under most productive scale size (MPSS) if they can keep away from falling into a 

region of being inefficient at CRS. With Fujian going from IRS to DRS in the third stage, six provinces 

are identified as operating with DRS, which indicates that their ATS is being overcapitalized and 

spending more resource inputs than required to generate outputs. 

The CAAC has divided the civil aviation of China into six regions, including North China, 

Northeast China, East China, Central and Southern China, Southwest China, and Northwest China, 

and has set up regional administration for each region. By calculating the mean PTE value of each 

region, it was found that the ATS PTE of North China, East China, and Northwest China goes lower 
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by the third stage evaluation than by the first stage, indicating these regions have a favorable 

environment for ATS operation (Figure 2). 

 

(a) 

 

(b) 

Figure 2. (a) Pure technical efficiency (PTE) estimation results of six regions at the first and third 

stages; (b) scale efficiency (SE) estimation results of six regions at the first and third stages. 

As shown in Figure 2 and Table 5, at the third stage, after the separation of environmental 

effects and statistical noise, North China, East China, and Northwest China have relatively high PTE 

(0.9596, 0.9387, and 0.9474, respectively). However, North China and Northwest China have the 

lowest SE values (0.8348 and 0.8424, respectively). Meanwhile, most of the provinces in these two 

regions are at the stage of increasing returns to scale (4 IRS and 1 CRS in the 5 DMUs of North China; 

3 IRS and 2 CRS in the 5 DMUs of Northwest China). Operating at IRS means that a more than 

proportional increase in outputs can be gained given an increase in inputs, while operating at DRS 

means that a less than proportional increase in outputs can be gained given an increase in inputs. 

Therefore this result indicates that most provincial ATSs in these two regions are operating at too 

small a scale and could gain enhancement by moving towards the scale-efficient size under the 

currently available technology. That is to say, the North China and Northwest regions can adopt an 

expansionary strategy in ATS development to improve the returns to scale, under the premise of not 

making currently technically efficient provinces fall into an inefficient condition. 
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Table 5. PTE (pure technical efficiency) and SE (scale efficiency) estimation results of six regions in 

China. 

Rank PTE SE 

1 North China 0.9656 Central and Southern China 0.9477 

2 Northwest China 0.9474 East China 0.8933 

3 East China 0.9387 Southwest China 0.8810 

4 Southwest China 0.9128 Northeast China 0.8487 

5 Central and Southern China 0.8797 Northwest China 0.8424 

6 Northeast China 0.8003 North China 0.8348 

The region of Central and Southern China has the highest scale efficiency (0.9477). However, 

among the six provinces in Central and Southern China, Hubei and Henan are at the stage of CRS, 

while Guangdong and Hainan are at the stage of DRS. Therefore, it would be sensible to be prudent 

in the expansion of the air transport industry and enhance the utilization of input resources. 

The lowest ATS PTE (0.8003) exists in Northeast China. Although Liaoning, Jilin, and 

Heilongjiang are all at the stage of IRS, authorities in this region should put an emphasis on technical 

progress, management improvement, and productivity increase in the air transport industry instead 

of mass additional expansion in scale, in order to ensure the ATS efficiency and sustainability in the 

long run. PTE and SE values in Southwest China are in the middle level. Resources input into this 

region’s ATS and its output also maintain a relatively balanced state. However, due to the remote 

geographical location plus complex topographic features in Southwest China provinces (Sichuan, 

Yunnan, Guizhou), a large number of airports has been built in this region. Sichuan and Yunnan 

operate with DRS, and Guizhou has the lowest PTE in 30 provinces. Thus, it is necessary for 

Southwest China to optimize inputs utilization in Sichuan and Yunnan, and improve management 

and technical efficiency in Guizhou. 

5. Discussion 

The operational performance evaluation of ATS is not only determined by controllable inputs, 

but also affected by the exterior economic and social environment and statistical noise. To overcome 

the drawbacks of the traditional deterministic DEA method, this study applied a three-stage model 

to evaluate provincial ATS operational performance. This model takes variable measurement errors 

and unobserved but potentially relevant variables into consideration by using a stochastic 

disturbance term in SFA. Meanwhile, features of the operating environment are taken into 

consideration by the introduction of environmental variables.  

Five socio-economic indicators were selected as environmental variables. In order to more 

accurately measure the resource input and evaluate the operational performance, a perpetual 

inventory method was used to calculate the capital stock of the air transport sector, and the index of 

infrastructure construction level (ICL) of each province was constructed. 

Coefficients that are significant at the 1% confidence level in the SFA model at the second stage 

illustrate that environmental variables indeed have critical influences on the input slacks and 

therefore on the operational efficiency of provincial ATSs. After adjustment for the influence of 

environmental factors and statistical noise,  the average PTE and SE values computed in the third 

stage DEA were 0.916 and 0.880, respectively. The different efficiency evaluation value variations of 

different provinces before and after the adjustment indicate that the socio-economic environment 

conditions for ATS operation are different among provinces. 

The PTE and SE values of six regions show us the provincial ATS efficiency differences. North 

China and Northeast China have the highest and lowest PTE, respectively. Central and Southern 

China has the highest scale efficiency, while North China has the lowest scale efficiency. Meanwhile 

PTE and SE values in Southwest China are in the middle level. 

The returns to scale analysis show significant differences between stage 1 and stage 3 results. 

North China and the Northwest region can adopt an expansionary strategy in ATS development to 

improve the returns to scale. 
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The above results can help us get an accurate evaluation of provincial ATS operational 

performance excluding exterior environmental variations. A specific direction to improve 

operational performance of provincial ATSs is also gained as previously mentioned. Additionally, it 

can also contribute to the feasibility research of national and regional air transport sector investment 

decisions. Although the air transport sector of China is taken as an example in this study, the 

three-stage DEA-based model and the research process can be applied to efficiency evaluation 

studies among different regions, due to the similarity of the relations between air transportation and 

regional socio-economic environments all over the world. 
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