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Abstract: Hyperspectral remote sensing is widely used to detect petroleum hydrocarbon pollution
in soil monitoring. Different spectral pretreatment methods seriously affect the prediction and
analysis of petroleum hydrocarbon contents (PHCs). This study adopted a combined spectral data
preprocessing technique that improves the prediction accuracy of petroleum hydrocarbons in soil.
We combined continuum removal and wavelet packet decomposition (CR–Daubechies 3 (db3)) to
process the hyperspectral reflectance data of 26 soil samples in the oil production work area in
China and judged the correlation between spectral reflectance and petroleum hydrocarbons in soil.
Partial least squares regression was used to construct an optimal model for the inversion of PHCs
in soil and the leave-one-out cross-validation was used to select the best factor number. The best
model of soil petroleum hydrocarbon inversion was determined by comprehensively comparing the
initial spectrum, db3 to high-frequency spectrum, db3 to low-frequency spectrum, after-continuum
removal spectrum, CR-db3 to high-frequency spectrum, and CR-db3 to low-frequency spectrum
comprehensively. The main contributions of this study are as follows: (1) three-layer decomposition
with CR-db3 can improve the correlation between spectral reflectance and PHCs and effectively
improve the sensitivity of the spectrum to PHCs; (2) the prediction accuracy of the high-frequency
spectrum of wavelet packet decomposition for PHCs in soil is higher than that of low-frequency
information; (3) the proposed petroleum hydrocarbon prediction model based on CR-db3 processed
spectra to obtain high-frequency information is optimal (coefficient of determination = 0.977, root mean
square error of calibration = 3.078, root mean square error of cross-validation = 4.727, root mean
square error of prediction = 4.498, ratio of performance to deviation = 6.12).

Keywords: hyperspectral inversion; petroleum hydrocarbon content; CR-db3; wavelet
packet decomposition

1. Introduction

Petroleum hydrocarbons are a complex mixture of hydrocarbons containing various hydrocarbons
(n-alkanes, branched alkanes, cycloalkane, and aromatics) and a small amount of other organics [1].
With the increasing demand for oil and the gradual expansion of mining areas, oil leakage accidents
have caused the risk of soil oil pollution [2]. Petroleum hydrocarbons will seriously affect the soil
environmental quality, change the physical and chemical characteristics of the soil by reducing soil
permeability, and endanger the development of vegetation roots in soil [3,4]. Therefore, rapidly
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detecting and predicting the content of petroleum hydrocarbons in soil are of great importance to
reduce losses and harm.

Professionals have mainly used field sampling to monitor traditional petroleum hydrocarbon
pollution in soil and measure total petroleum hydrocarbons in the laboratory, which is time-consuming
and difficult, lacks universal applicability, and cannot identify and monitor the petroleum hydrocarbon
contents (PHCs) in soil on a large scale [5]. The rapid development of hyperspectral remote sensing
provides a fast and inexpensive method for petroleum hydrocarbon pollution analysis [6–9]. In the late
1980s, Cloutis used visible–near-infrared spectroscopy to study the reflection spectrum characteristics
of hydrocarbons and proved that a certain relationship is found between petroleum and spectrum [10].
However, the spectral absorption characteristics of petroleum hydrocarbon are weakened because
of the influence of moisture, temperature [11], soils at various particle sizes [12], and other factors.
Scholars have used spectral data processing methods, including continuum removal, standard normal
energy transform, differential derivation, and principal component analysis to extract soil petroleum
hydrocarbon information, amplify the spectral absorption characteristics of petroleum hydrocarbon,
and accurately predict the PHCs [13–16]. Ren [12] chose the 360–600 nm band spectrum for pretreatment
and used the first derivative as spectral pretreatment in building models for predicting soil petroleum
hydrocarbon concentration on the basis of visible–near-infrared spectroscopy and spectral analysis
(coefficient of determination (R2) = 0.65, root mean square error (RMSE) of prediction = 60.58 g/kg).
Scafutto [13] used principal component analysis and partial least squares regression (PLSR) to examine
the near and shortwave infrared spectral data of several mineral substrates impregnated with crude
oils (◦APIs 19.2, 27.5, and 43.2), diesel, gasoline, and ethanol (R2 > 0.9). Chakraborty [14] used both
first derivative of reflectance and discrete wavelet transformations to preprocess the oil soil spectra.
Three clustering analyses and three multivariate regression methods were used for pattern recognition
and to develop the petroleum predictive models, and stepwise multiple linear regression based on
discrete wavelet transformations had the best prediction effect (R2 = 0.94, RPD = 3.97). Most scholars
have used linear models to predict the spectrum of soil petroleum hydrocarbon pollution, where PLSR
has a better prediction effect [17–19].

The absorption characteristics of petroleum hydrocarbons in the soil spectrum are relatively weak,
and the information related to petroleum hydrocarbons is mostly concentrated in high-frequency
data [20]. This study used the soil samples in the oil production area as the research object to
efficiently decompose the high-frequency and low-frequency data of the soil spectral information
and maximize the preservation of the spectral characteristics of petroleum hydrocarbons in soil.
The hyperspectral data were preprocessed by combining continuum removal and wavelet packet
decomposition (CR–Daubechies 3 (db3)). We combined leave-one-out cross-validation to establish
PLSR, and selected the optimal estimation model of PHCs by comparing the accuracy of the spectral
prediction models of different methods to provide a feasible analysis for the subsequent inversion of
large-scale soil petroleum hydrocarbon pollution.

2. Materials and Methods

2.1. Determination of PHCs

The research area was located in Zhaoyuan County, Daqing City, Heilongjiang Province. It is an
intensive oil production operation area in Daqing Oilfield [21]. The soil texture is mainly clay and
sandy soil [22]. Soil organic matter contents are higher than in other places in China, and the contents
mostly range from 2% to 4% [23]. The soil collection area was located in the northwest of Zhaoyuan
County, and the well site soil with oil production wells was selected along the oil production road.
We used the base of the oil production well as the center, set the radius to 50 cm, and collected 26
surface soil samples (0–15 cm) in this area (Figure 1). Soil samples were placed in the laboratory and
were naturally dried. After removing the debris, such as plant roots and gravel, samples were passed
through a 1 mm sieve. PHCs (C10–C14) in soil were determined using a gas chromatograph GC7900
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in accordance with the US-EPA method SW-846-8015B. Table 1 shows the statistical characteristics of
PHCs from 26 soil samples, and the detailed information of the samples are in Appendix A.
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Figure 1. Distribution of sampling points.

Table 1. Statistical characteristics of PHCs from 26 soil samples.

Sample Number Max Min Average Standard Deviation

PHCs (g/kg) 26 85 0.008 15.082 20.569

2.2. Spectral Measurement

The spectral reflectance of the soil samples was determined using an Analytical Spectral Device
(ASD) FieldSpec Pro in the laboratory (Figures 2 and 3). The obtained information ranged from 350 nm
to 2500 nm, the light source was a built-in halogen lamp, the field angle of the probe was 25◦, and the
sampling intervals were 1.4 (350–1000 nm) and 2 nm (1000–2500 nm). The surface of the soil sample
was approximately 10 cm from the probe. Each sample was scanned for 15 times, the average value
was calculated, and the larger noise bands at 350–399 and 2451–2500 nm were removed as the initial
reflection spectrum of the soil samples (Figure 4).
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2.3. Method

2.3.1. Continuum Removal

The soil spectrum is a combination of various information, and continuum removal is introduced
to suppress the background information and highlight the absorption characteristics of the target.
After continuum removal, the spectral reflectance is normalized to 0–1. The principle is described as
follows: A point straight line connects the peak point, and an envelope is a polyline with the outer
angle of the peak point greater than 180◦. Initial spectral reflectance divides the relative reflectance
curve on the envelope to obtain continuum removal reflectance [24,25]. The spectrum after continuum
removal can substantially amplify the spectral absorption bands and enhance the contrast between the
spectral bands [26].

2.3.2. Daubechies 3 (db3) Wavelet Packet Decomposition

Wavelet packet analysis is a detailed signal analysis method based on orthogonal wavelet
decomposition and can characterize the local information in the time and frequency domains [27].
Wavelet packet analysis is more refined for signal extraction, and the resolution of the high-frequency
part of its decomposition is better than wavelet analysis [28]. The smooth error introduced by the
third-order db3 wavelet is difficult to be observed, and beneficial information can be completely
extracted during signal decomposition.

Taking the three-layer wavelet packet decomposition as an example, the high-frequency and
low-frequency parts are obtained after the first wavelet packet decomposition. The low-frequency and
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high-frequency parts are semi-decomposed simultaneously in the second decomposition, as shown in
Figure 5.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 14 
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In this figure, A is the low frequency, D is the high frequency, and the number at the end indicates
the number of layers of wavelet decomposition. Original data S can be expressed as Equation (1):

S = AAA3 + DDA3 + ADA3 + DDA3 + AAD3 + ADA3 + ADD3 + DDD3 (1)

In this study, the initial and after-continuum removal spectra of the soil samples were subjected to
db3 wavelet decomposition to obtain low-frequency and high-frequency components. The data for
one soil sample was used as an example:

Initial and after-continuum removal spectra were used as references (Figure 6a–d) to compare and
analyze the spectral characteristics of different pretreatment methods. These methods included db3 to
low-frequency (Figure 6b) and db3 to high-frequency spectra (Figure 6c) obtained by decomposing the
initial spectrum through db3 wavelet packet decomposition and CR-db3 to low-frequency spectrum
(Figure 6e) and CR-db3 to high-frequency spectrum (Figure 6f) obtained by combining continuum
removal and wavelet packet decomposition.
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2.3.3. Pearson Correlation Analysis

This study aimed to explore the relationship between different spectral data preprocessing
techniques and PHCs, and study the effect of pretreatment methods on the spectral sensitivity of
petroleum hydrocarbons through the correlation analysis of initial spectrum, db3 to high-frequency
spectrum, db3 to low-frequency spectrum, after-continuum removal spectrum, CR-db3 to the
high-frequency spectrum, and continuum CR-db3 to the low-frequency spectrum and the PHCs
in soil. Pearson correlation was used to judge the linear correlation between spectral reflectance and
PHCs (Equation (2)).
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where r is the correlation coefficient, X is the reflectance of the corresponding band, Y is the PHCs, and
σ2

xy is the covariance of X and Y. In this study, the bands with high correlation (r > |0.6|) between the
spectral reflectance of petroleum hydrocarbons were selected for PLSR modeling to predict the PHCs.

2.3.4. PLSR

PLSR analysis is suitable for regression modeling under the condition that the number of samples is
less than the number of variables [29]. The number of bands used to establish PLSR is significantly more
than the sample data and is widely used in the inversion study on petroleum hydrocarbons in soil using
visible–near-infrared spectroscopy. PLSR combines the characteristics of principal component analysis,
canonical correlation analysis, and linear regression analysis methods during modeling. However,
PLSR is relatively different from other regression analyses. The model considers the correlation between
independent variables and the relationship between independent and dependent variables when
extracting principal components [30,31]. PLSR modeling was performed on the “The Unscrambler X
10.4” to predict PHCs [32].

In this study, 19 soil sample data were selected as the test set, and the remaining data were used
as the validation set. PLSR was established by taking the reflectance of each band of the spectrum
(400–2450 nm) as the independent variable and petroleum hydrocarbon content as the dependent
variable, and was evaluated on the basis of R2, root mean square error of calibration (RMSEC), root
mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), and
ratio of performance to deviation (RPD) [33]. The closer R2 is to 1 and the smaller the RMSE, the more
stable the model [5,6]. RPD < 1.4 indicates that the model has poor predictive power, 1.4 ≤ RPD ≤ 2
indicates that the model can roughly estimate the samples, and RPD ≥ 2 indicates that the model has
strong predictive power [34,35]. The formulas are expressed as follows:

R2 = 1−

n∑
i=1

(yib − yia)
2

n∑
i=1

(yib − yi)
2

(3)
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RMSE =

√√√√ n∑
i=1

(yib − yia)2

n
(4)

RPD =
σ√

n∑
i=1

(yia − yib)
2/n

(5)

where n is the number of samples used during the prediction, yia is the prediction value, yib is the
reference value for sample i, and σ is the standard deviation of the measured reference values.

3. Results and Discussion

3.1. Spectral Analysis of Petroleum Hydrocarbons in Soil

By observing initial reflection spectra of the soil samples with different PHCs (Figure 4), we
found that the morphological characteristics of these spectral curves were basically the same. In the
whole wavelengths (400–2450 nm), the reflectance of petroleum hydrocarbons was not high, and
the reflectance significantly decreased with the increase in PHCs in soil. The absorption bands were
apparent after continuum removal to process the initial spectrum (Figure 7). According to the research
of Cécile, the absorption valleys at 1400–1430, 1918–1925, and 2205 nm are related to OH− contained in
clay minerals [25]. Absorption valleys were found near 400–550, 1200–1220, 1700–1730, 1750–1770,
2309–2311, and 2346–2350 nm. At the same time, the absorption valleys moved down with the increase
in PHCs in soil. This finding indicates that these absorption valley bands contained response bands
for petroleum hydrocarbons, and spectral reflectance can reveal the PHCs to a certain extent. This is
consistent with the research findings of Chakraborty [14], Rosa [16], Wang [36], and other scholars,
and the sensitive bands of petroleum hydrocarbons they found were also in these ranges. Using db3
wavelet to perform three-layer decomposition on the initial spectrum and after-continuum removal
spectrum, the low-frequency (Figure 6b,e) and undecomposed spectra (Figure 6a,d) were similar.
This finding is because low-frequency data belong to the image frame and account for most of the
information. The high-frequency information obtained through wavelet packet decomposition was
rich, and the absorption bands were evident (Figure 6c,f) because they reflected the detailed information
of the image.
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3.2. Correlation Analysis of Soil Spectrum and PHCs

This study calculated the Pearson correlation coefficient of PHCs and the reflectance of each band
(400–2450 nm) in terms of the initial spectrum, db3 to high-frequency spectrum, db3 to low-frequency
spectrum, after-continuum removal spectrum, CR-db3 to high-frequency spectrum, and CR-db3 to
low-frequency spectrum to obtain the sensitive bands of PHCs in soil. As shown in Figure 8a,b,
the initial and db3 to low-frequency spectra were inversely related to PHCs. As shown in Figure 4,
the spectral reflectance decreased with the increase in PHCs. After continuum removal, the spectral
noise was largely eliminated, and the correlation between reflectance and PHCs increased (Figure 8d–f).
The sensitivity of db3 wavelet packet decomposition high-frequency spectral information to PHCs
was significantly higher than that of low-frequency information, where CR-db3 to high-frequency
spectrum was the highest (r = −0.809–0.808) (Figure 8f) by comparing Figure 8b,c,e, and f.
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At the same time, referring to Table 2, the set of important variables obtained during the PLSR
modeling process basically corresponded to the bands with high correlation (r > | 0.6 |). It can be seen
that these bands with high correlation play an important role in explaining PHCs.

3.3. Petroleum Hydrocarbons Spectrum Prediction Model

The study used different preprocessing techniques to process the spectral data to establish PLSR
for estimating PHCs. As shown in Table 2, the resulting model had the lowest accuracy, with R2 of
0.422, and RMSEC, RMSECV, RMSEP were the largest using the unprocessed spectrum for modeling.
The low-frequency data obtained through db3 wavelet three-layer decomposition of the initial spectrum
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contained little petroleum hydrocarbon information. Thus, the estimation model performed by this
spectrum preprocessing method had small predictive power (RPD = 1.06). The RMSE values of the
spectral model after continuum removal were more than 10g/kg and the models had the ability to predict
the content of PHCs (RPD > 3). The prediction modeling accuracy of PHCs after continuum removal
was better than that of the initial spectrum. The R2 values of db3 wavelet packet decomposition to
high-frequency spectrum were greater than 0.9, and the RMSE was low. Among the spectra, the CR-db3
to high-frequency spectral prediction model had the best prediction method, highest accuracy, and
strongest prediction ability (R2 = 0.977, RMSEC = 3.078, RMSECV = 4.727, RMSEP = 4.498, RPD = 6.16).

The high-frequency spectrum obtained through the three-layer decomposition of db3 wavelet
packet can improve the correlation between spectral reflectance and PHCs (Figure 8c,f) and significantly
improve the diagnostic accuracy of the model. Db3 wavelet packet decomposition can strip weak
information because of the low PHCs in soil, which belong to detailed information. At the same time,
continuum removal can highlight the characteristics of target information. So CR-db3 can make the
predicted value close to the actual value to a great extent. Figure 9 shows the comparison between the
measured and predicted values of PHCs using CR-db3 to high-frequency spectrum. The modeling and
verification sample points were roughly distributed around the straight line y = x.

Table 2. Modeling accuracy of different spectral prediction models.

Spectral
Preprocessing

Models
Important Variables R2 RMSEC

(g/kg)
RMSECV

(g/kg)
RMSEP
(g/kg) RPD

Initial spectrum

456–524,
1886–189,

1995–2033,
2278–2371 nm

0.422 12.358 16.565 22.528 1.01

Db3 to
low-frequency

spectrum

502–524,
1887–189,

1997–203, 2285–2368 nm
0.423 11.360 15.813. 20.534 1.06

Db3 to
high-frequency

spectrum

483, 697, 701, 872–883,
1387–1440, 1552–1565,

1898–1932, 2202–2220 nm
etc.

0.818 8.800 9.189 12.804 2.33

After-continuum
removal

spectrum

1186–1254, 1682–1843,
2202–2226, 2250–2448 nm 0.918 5.888 7.971 10.662 3.29

Db3 to
low-frequency

spectrum

469–474, 835–869,
1185–1307, 2224–2232 nm 0.951 4.578 5.147 6.952 3.38

Db3 to
high-frequency

spectrum

441–443, 447–483, 686–740,
1423–1441, 1683–1716,

2257–2296, 2400 nm etc.
0.977 3.078 4.727 4.498 6.16
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4. Conclusion

Petroleum hydrocarbons easily leak during extraction, transportation, and refinement and
damage the sustainable development of the environment when they enter the soil. Therefore,
monitoring soil petroleum hydrocarbon pollution in real time with the help of hyperspectral inversion
is extremely important [37]. The soil petroleum hydrocarbon spectrum in Zhaoyuan County performed
mathematical transformation through continuum removal and wavelet packet decomposition (CR-db3).
The correlation coefficients of the spectral reflectance of six pretreatment operations and PHCs were
calculated, and the corresponding PLSR models were established to predict the petroleum hydrocarbon
content. The results are summarized as follows:

(1) CR-db3 three-layer decomposition can improve the correlation between the spectral reflectance
and PHCs and effectively improve the spectrum sensitivity to PHCs.

(2) Wavelet packet decomposition can improve the accuracy of the PHC prediction model in soil,
where the accuracy of the obtained high-frequency spectrum modeling is higher than that of the
low-frequency data.

(3) Obtaining high-frequency information based on the CR-db3 processed spectrum can improve
the prediction accuracy of PHCs. The PHC model constructed by this preprocessing method is
optimal (R2 = 0.977, RMSEC = 3.078, RMSECV = 4.727, RMSEP = 4.498, RPD = 6.16).
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Appendix A

Table A1. 26 soil samples of PHCs.

Number Longitude Latitude PHCs (mg/kg)

001 124◦39’52.17”E 45◦45’45.95”N 34.3
002 124◦39’0.50” E 45◦45’1.25” N 4100
003 124◦38’14.48” E 45◦45’8.30” N 8.08
004 124◦38’27.90” E 45◦44’55.42” N 3350
005 124◦38’30.29” E 45◦44’26.33” N 9620
006 124◦38’41.50” E 45◦43’24.91” N 1950
007 124◦38’50.88” E 45◦42’46.08” N 2090
008 124◦39’4.99” E 45◦42’29.06” N 33400
009 124◦39’23.42” E 45◦43’14.21” N 33900
010 124◦39’31.58” E 45◦43’8.08” N 4690
011 124◦39’45.21” E 45◦42’41.35” N 2520
012 124◦39’41.43” E 45◦42’12.00” N 52400
013 124◦40’23.31” E 45◦44’55.42” N 46110
014 124◦40’39.19” E 45◦44’47.29” N 7910
015 124◦40’6.45” E 45◦44’4.12” N 12610
016 124◦40’14.13” E 45◦42’37.05” N 24000
017 124◦40’30.04” E 45◦42’28.58” N 2930
018 124◦39’53.38” E 45◦41’2.20” N 4025
019 124◦39’26.28” E 45◦41’40.69” N 85000
020 124◦38’58.33” E 45◦41’22.04” N 18900
021 124◦38’44.03” E 45◦41’22.00” N 39.3
022 124◦38’57.63” E 45◦41’2.60” N 34100
023 124◦39’25.78” E 45◦41’7.70” N 291
024 124◦38’37.23” E 45◦40’58.38” N 113
025 124◦39’10.87” E 45◦40’23.44” N 710
026 124◦39’48.02” E 45◦40’37.36” N 7340
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