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Abstract: Increasing climate variability and change coupled with steady population growth is
threatening water resources and livelihoods of communities living in the Wami-Ruvu and Rufiji basins
in Tanzania. These basins are host to three large urban centers, namely Dar es Salaam, Dodoma and
Morogoro, with a combined total of more than 7 million people. Increased demand for ecosystem
services from the available surface water resources and a decreasing supply of clean and safe water are
exacerbating the vulnerability of communities in these basins. Several studies have analyzed climate
projects in the two basins but little attention has been paid to identify locations that have vulnerable
communities in a spatially-explicit form. To address this gap, we worked with stakeholders from
national and local government agencies, basin water boards and the Water Resources Integration
Development Initiative (WARIDI) project funded by USAID to map the vulnerability of communities
to climate variability and change in the two basins. A generalized methodology for mapping social
vulnerability to climate change was used to integrate biophysical and socioeconomic indicators
of exposure, sensitivity and adaptive capacity and produced climate vulnerability index maps.
Our analysis identified vulnerability “hotspots” where communities are at a greater risk from climate
stressors. The results from this study were used to identify priority sites and adaptation measures for
the implementation of resilience building interventions and to train local government agencies and
communities on climate change adaptation measures in the two basins.

Keywords: climate change; climate variability; climate stressors; water resources; communities;
vulnerability; hotspots; adaptation; resilience; GIS

1. Introduction

Increasing climate variability and change coupled with steady population growth are threatening
water resources and livelihoods of communities living in the Wami-Ruvu and Rufiji River basins
in Tanzania. The river basins are facing multiple climate threats, including increasing temperature,
decreasing total rainfall and increasing rainfall variability [1–4], which are exacerbating uncertainties
in fresh water supply. Steady population growth rate of about 2.7% [5] is increasing water demand.
Additionally, competing uses of the water resources, such as increasing hydroelectric and agriculture in
the two basins is further complicating efforts to manage this important resource. These issues threaten
the health and livelihoods of communities in these basins and presents challenges to the governance of
the water resources in the face of pressures from multiple water user groups. These threats are likely to
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continue to reduce the availability and quality of surface and groundwater resources. Sustainable and
resilient governance of water resources will need to take into account threats from climate variability
and change, as well as increased demand from a growing human population [6,7].

Climate sensitive water resource management is crucial to livelihoods in the two basins and
therefore understanding their vulnerability to climate variability and change is crucial to the wellbeing
of river basin communities [8]. These communities, especially in rural areas, are some of the poorest in
the country with about one-third of the households considered multi-dimensionally poor (i.e., suffering
deprivations in 33% of weighted indicators composed of health, education and standard of living) [9].
Sustainable utilization of the water resources in these basins requires sustained efforts to build the
adaptive capacity of the social and ecological systems to existing and emerging threats.

Assessment of climate vulnerability, as a contribution to resilient and sustainable use of these
resources by government and non-government actors, is an important source of information to the
decision making process. Spatially-explicit vulnerability assessments can act as powerful decision
support tools that provide a layer of information useful in the formulation of environmental
policies [10–12]. In the recent past, the application of vulnerability mapping has grown tremendously,
especially with the proliferation of mapping methods, increased data availability and a growing
awareness and need to target responses to locations that need them most. Several vulnerability
studies have demonstrated the importance of mapping and Geographic Information Systems (GIS)
as powerful tools for identifying vulnerable communities and locations at different scales [13–20].
Vulnerability mapping entails the integration of indicators that act as proxies for different components
of climate vulnerability of a system: (i) exposure to climatic stressors; (ii) sensitivity of the system to
these stressors; and (iii) the adaptive capacity to cope with the stressors [21,22].

Vulnerability mapping that integrates biophysical and socioeconomic variables to support climate
adaptation for vulnerable communities in Africa is not new. For instance, several studies have
integrated climate variables such as extreme weather events to map climate hot spots [15,23] while
other studies (e.g., [14,16–19]) have integrated climate variables such as increases in temperature,
long-term changes in rainfall from historical observations, climate models and socioeconomic
variables [23] to map areas where populations are vulnerable to climate extremes, malaria [20],
floods and droughts [15,24] and conflicts. Because vulnerability is spatially differentiated [25,26],
characterizing spatial variability in basin communities can aid identification of the most vulnerable
locations. This type of information is useful because: (i) it provides the locations of such communities;
and (ii) through additional analysis such as Principal Component Analysis (PCA), it can identify
patterns in the input indicators that drive vulnerability in these communities to help target specific
measures that reduce their sensitivities and build their adaptive capacity [27].

Several methods exist for spatially aggregating information into an index through the integration
of spatial data layers. Each method has strengths and limitations and researchers have used various
justifications for choosing an aggregation method. In recent meta-analysis, de Sherbinin et al. [13]
performed a systematic review of 84 studies that mapped social vulnerability to climate impacts across
the world. They found that the linear aggregation technique which includes averaging and additive
approaches accounted for 50% of all studies. Other methods such as cluster analysis, geometric mean,
geons and spatial regression modeling accounted for less than 25% of the studies. The averaging and
additive approaches have been widely used because of their strength in summarizing information
into simple indices that are easy to interpret and their robustness in transparency of aggregation
methods [17,28].

Due to its broad use and application, it is important to give meaning to a vulnerability study by
defining attributes that give reference to a specific vulnerable situation [29–32]. Füssel [30] suggested
that vulnerability assessments need to identify the system of analysis, the valued attributes of concern,
the external hazard and a temporal reference for the assessments to be meaningful. Our study identified
these fundamental dimensions as follows:
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• Focus: vulnerability of basin communities to climate stressors
• Valued attribute: water and food security, health and general wellbeing
• Climate stressors: variability and changes in rainfall and increasing temperatures that threaten

social systems
• Temporal reference: historical period of 1981–2017

The objective of this study was to map and identify vulnerable communities to assist the
United States Agency for International Development (USAID) funded Water Resources Integration
Development Initiative (WARIDI) and local government partners prioritize climate adaptation
interventions in the Wami-Ruvu and Rufiji basins. Ultimately, the broader outcome of this work
was to support improved water resources management and community livelihoods in the two basins.

2. Materials and Methods

2.1. Description of the Study Area

This study focused on the Wami-Ruvu and Rufiji River basins (Figure 1) where the WARIDI
project and national and local government agencies were jointly implementing projects to strengthen
governance and resilient management of water resources and services under a changing climate.
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Figure 1. Map of the Wami-Ruvu (dark gray) and Rufiji (light gray) basins located in Eastern Tanzania.
Inset: Location of the basins relative to the national boundary.

The Wami-Ruvu basin is estimated to cover an area of 72,930 km2 and is primarily defined by the
catchment of the Wami and Ruvu Rivers. It lies between longitudes 35◦30′ and 40◦00′ E and latitudes
05◦00′ and 07◦30′ S. The large urban centers of Dar es Salaam, Morogoro and Dodoma, are all located
in this basin. A large climatic diversity exists within the basin: from humid plains along the Indian
Ocean coastline and the high rainfall regions of the Eastern Arc mountains to the arid areas around
Dodoma further west, which lie in the rain shadow of the mountains. The basin is the only permanent
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source of fresh water supply for the commercial capital city of Dar es Salaam which has an estimated
population of more than 5 million people.

The Rufiji basin covers an area of about 177,420 km2 (about 20% of Tanzania). It lies between
longitudes 33◦55′ and 39◦25′ E and latitudes 05◦35′ and 10◦45′ S and comprises of four major rivers:
Great Ruaha, Kilombero, Luwegu and Rufiji. The basin is also a power house of the country as it hosts
the majority of hydropower plants in the country. A wide range of livelihoods exists in these basins
including rain-fed and irrigated agriculture, pastoral livestock, tourism, forestry, fishing, mining and
leading industries.

2.2. Stakeholder Engagement

Government and donor agencies are increasingly using vulnerability maps to prioritize the use of
adaptation funding and resilience building areas [14,33,34]. Involving stakeholders in the development
of vulnerability maps, especially in identification of drivers of vulnerability, selection of indicators and
validation of end products, is a critical step to increase likelihood of use and buy-in of vulnerability
maps [13,24,33,35–37].

To ensure this vulnerability mapping activity was done in a robust and inclusive manner,
we formed an interdisciplinary co-development team (CDT) comprised of experts drawn from
12 government and non-governmental institutions (Table 1). The CDT drew its composition from
members with expertise in GIS and remote sensing, statistics, hydro-geology, water resource and
environmental engineering, cartography, climate change, livelihoods and community development.
The CDT was actively involved, with three co-development meetings organized in the period of the
mapping exercise. An additional stakeholder meeting with 47 participants was convened with decision
makers from high level government and non-governmental agencies in order to obtain feedback on the
vulnerability products as well as gather participatory recommendations on priority areas and strategic
interventions for strengthening resilience of water resources and communities in both basins against
climate variability and change.

Table 1. Institutions that formed the co-development team.

Institution Type

Ministry of Water Government
Tanzania Meteorological Agency (TMA) Government

Wami-Ruvu Basin Water Board Government
Rufiji Basin Water Board Government

National Bureau of Statistics (NBS) Government
National Environment Management Council Government

E-link Consult ltd. Private
Wema Consult Private

University of Dar es Salaam- Institute of Resource Assessment Academic
President’s Office, Regional Administration and Local Government Local Government (PO-RALG)

Planning Commission Government
USAID Water Resources Integration Development Initiative (WARIDI) Donor funded project
Regional Centre for Mapping of Resources for Development (RCMRD) Intergovernmental

2.3. Vulnerability Mapping

2.3.1. Data Sources and Indicator Selection

We used a range of remote sensing, modeled and socioeconomic data as well as vulnerability
indicators in this study, as listed in Table 2. Indicator selection was done through a process
of compiling an initial list of potential candidates by the CDT and further refined through the
stakeholder consultation meeting that included experts from five water user groups: agriculture, water,
communities, water, sanitation and hygiene (WASH), energy and terrestrial ecosystems. The refinement
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was further complemented by an evaluation criteria that guided data collection. We evaluated data in
terms of:

1. Availability and accessibility: The study used data that were available and accessible at the time
of analysis.

2. Conceptual proximity to the component being measured: Data had to be associated with one of
the three components of vulnerability and the scope of the vulnerability mapping.

3. Spatial resolution: Gridded data had to have high resolution (≤5 km2) while socioeconomic data
from household surveys had to be disaggregated to ward level and not larger than a district.

4. Timeliness of most recent acquisition: Climate data had to cover the period 1981–2017 while
environmental and socioeconomic data had to be 10 years old or less.

5. Reliability and validity: Data had to be consistently representative and accurate for each indicator.

Table 2. The list of indicators used to compile component and overall vulnerability indices.

Component Indicator Variable Data Source

Exposure

Precipitation change Long term trend in annual
precipitation

CHIRPS enhanced
precipitation for Wami Ruvu
and Rufiji basins (1981–2016)

Precipitation
variability

Long term Coefficient of
Variation in annual
precipitation

CHIRPS enhanced
precipitation for Wami Ruvu
and Rufiji basins (1981–2016)

Floods Flood frequency
(events/100 years) UNEP GRID (2009)

Temperature Long term mean of annual
maximum temperature

FEWSNET ITE temperature
(1981–2012)

Sensitivity

Soil health Soil organic carbon FAO-ISRIC Global Soil
Organic Carbon Map (2017)

Poverty Poverty index National Bureau of Statistics
(2016)

Child mortality Under 5 mortality rate National Bureau of Statistics
(2015)

Malaria susceptibility Malaria endemicity index Malaria Atlas project (2010)

Population Population count/ward National Bureau of Statistics
(2012)

Land use land cover Land use land cover change RCMRD (2010)

Adaptive capacity

Crop
productivity/Yields

Water Requirement
Satisfaction Index (WRSI)

FEWSNET GeoWRSI
(1981–2016)

Water access Access to safe drinking
water

National Bureau of Statistics
(2015)

Markets Access to market services
(travel time)

JRC World travel time map
(2015) (Weiss et al., 2018)

Availability of health
services Health infrastructure index DHS (2015)

The climate exposure indicators comprised of average conditions for temperature as well as
long-term variation and changes in rainfall. Flooding was also included because it is regular occurrence
in the two basins. Rainfall and temperature data were sourced from a locally enhanced Climate
Hazards InfraRed Precipitation with Stations (CHIRPS) and an interpolated temperature provided by
the Famine Early Warning Systems Network (FEWSNET), respectively. CHIRPS is a ≥35 quasi-global
rainfall dataset that blends satellite estimates and in-situ station data to create gridded rainfall time
series for trend analysis and seasonal drought monitoring [38]. The locally enhanced CHIRPS and
temperature data incorporated additional in-situ stations provided by TMA.

Flood frequency data were sourced from the United Nations Global Risk Data Platform (GRID).
This dataset included a modeled estimate of flood frequency at 1 km2 spatial resolution. The data are
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derived using a combination of GIS and hydrological modeling using the HydroSHEDS dataset and
the Manning equation [39] to estimate river stage for a calculated discharge value. It also integrates
observed flood events from 1999 to 2007. This data represent the expected average number of events
per 100 years [40].

Soil organic carbon (SOC) was sourced from the Global Soil Organic Carbon Map (GSOCmapV1.0)
mapped by FAO [41]. This product consisted of national SOC maps, developed as 1 km soil grids,
covering a depth of 0–30 cm. Organic carbon (OC) in soils is an important determinant of crop
yields and higher OC content would be associated with high soil water retention [42], hence lower
sensitivity to climate variability [43]. Additionally, we used the FEWSNET GeoWRSI tool [44] to
calculate potential for maize yields from 1981 to 2016. Maize is a major subsistence and cash crop
for communities living in these basins. Areas with low yields potential were categorized to have
higher sensitivities to climate variability and hence communities living in those areas were considered
more vulnerable.

Malaria prevalence index data covering the period 2000–2015 was sourced from the Malaria
Atlas Project (MAP) [45]. These data provide the prevalence of Plasmodium falciparum, the malaria
causing parasite, by combining environmental data and survey point data of clinical malaria
incidences, parasite rates and reconstruction of changing interventions. The output data were the
Plasmodium falciparum parasite rate in 2–10 year olds in Africa averaged over the time series at
30 arc-second resolution.

Land use and land cover data were provided by the RCMRD. This product was generated
using Landsat imagery at 30 m resolution and changes were calculated from the year 2000 to 2010.
The product was generated using the IPCC classification system complemented by nationally-defined
land cover classes [46].

A Demographic and Health Survey (DHS) carried out in 2015 together with integrated household
surveys from 2012 to 2016 provided socioeconomic indicators: poverty index, child mortality rates,
population counts, access to improved water sources, and availability of health services (in form
of geographical distribution of health infrastructure). These datasets were collected from the NBS
portal. Accessibility data (travel time to major towns) were sourced from MAP [47]. These are newly
released 30 arc-second resolution data that characterize travel time (in minutes) to major towns or
cities. They are an improvement on an earlier global accessibility map created by the European
Commission Joint Research Centre (JRC) in 2008. Accessibility is essential to meeting economic needs
of a population and can be a limiting factor to access schools, markets, health centers, water sources
such as boreholes and governance institutions. Physical isolation is a barrier to poverty reduction
and improvement of community livelihoods essential building for adaptive capacity to cope with
environmental stresses. Physical isolation also deprives poor communities who are mostly in rural
areas of essential services that are available in major towns and cities.

2.3.2. Aggregation of Vulnerability Indicators

A generalized function (Equation (1)) was adapted from the Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report (AR4) conceptual framework for climate change
vulnerability assessments [48] to develop composite vulnerability indices.

Vulnerability = f (Exposure, Sensitivity, Adaptive Capacity) (1)

This framework is widely used due to its ability to create separate maps for each vulnerability
component and has the potential to help decision-makers analyze adaptation options [25,49].

A spatial index approach was used to aggregate indicators into components, and components
into overall vulnerability. Maps created through this approach are advantageous in that it is easy
to communicate complex information [17,50,51], although aggregation, while making it easy to
interpret, can reduce the richness of information [27,52]. The additive approach was chosen [25]
due to its relatively high degree of transparency in methods and the relative ease in summarizing and
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communicating results. However, even with these advantages, the method suffers from challenges in
determining the relative importance of one indicator versus another. For this study, this challenge was
addressed by subjecting our maps to validation by subject experts and local communities represented
by officers from local government agencies.

Several data processing steps were followed to develop composite indices for overall vulnerability
and the three components. First, all the original raw spatial layers were converted into grids of a
common spatial resolution of 5 km2. This grid resolution was chosen because the most complete
data, the climate data, were at 5-km resolution and much of the socioeconomic data were aggregated
at either district or ward level. The average size of wards and districts was 403 km2 and 8705
km2, respectively. To minimize redundancies introduced by indicators that are highly correlated,
we performed a bivariate correlation analysis in order to identify and exclude indicators that were
highly correlated from subsequent integration.

Each data layer was then transformed to an indicator with a range of 0–100 (with 0 and
100 representing least and most vulnerable, respectively). This transformation is an important step in
data aggregation since raw data had different measurement units (e.g., rainfall (mm), temperature (◦C),
travel time to markets (minutes) and poverty (%)). This unit less scale was retained for component
indices because the aggregation of indicators to the components resulted in varied ranges of scores
based on the underlying distributions of the indicator scores [43]. In a few cases (e.g., population
and access to markets), expert judgement was used to trim or winsorize values to a cut off point that
became the maximum for that indicator, and values above this threshold were set to this maximum.
In the case of population, the data were trimmed at 15,000 people, the mean population for wards in
the two basins. This became the maximum value representing highest sensitivity in terms of number
of people exposed to a climate impact such that the number of people per grid location above that
threshold were not incrementally disadvantaged [43].

Winsorization was also applied to access to markets indicator, represented as the amount of time
it takes to travel from one location to the nearest town of 50,000 people or more. These data were
trimmed to a maximum of 3 h upon which we decided that any travel time over 3 h to access these
towns for services had the least adaptive capacity (i.e., highest vulnerability score of 100). In other
cases, an indicator such as land cover land use change data contained nominal data and categories of
the change was directly assigned a value between 0–100 depending on the relationship between the
change and the perceived importance to supporting community livelihoods. For instance, changes
from vegetated categories to bare land were assigned 100 representing most sensitive categories (due to
the sensitivity of open soil to erosion, high evaporation rates, lack of organic matter and low soil
moisture to support vegetation or crop growth [53]). Additionally, some indicators have an inverse
relationship with vulnerability and in those cases where high values in raw data were associated
with low vulnerability (i.e., access to water, soil organic carbon, crop yields and health infrastructure),
these values were inverted so that high and low values in raw data would represent low and high
vulnerability, respectively [54,55].

Once the normalization was complete, the indicators were then averaged to produce overall
vulnerability index. All data transformations and aggregations were performed in the R statistical
package v3.4.2 while maps were produced in QGIS v2.8.1 and ArcGIS v10.1 as these were available to
members of the co-development team.

2.3.3. Validation of Vulnerability Maps

This study engaged 150 representatives from local government agencies (LGAs) drawn from
20 districts where WARIDI was implementing resilience building projects. Validation exercises
involved two general steps (Figure 2): (i) presenting draft maps to a team of thematic experts,
mainly drawn from national level agencies, to provide initial input on the relevance of indicators,
aggregation methods and communication of results from the vulnerability assessments; and (ii)
presentation of refined maps to local community representatives at the LGA level based on the feedback
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from the national experts for validation of vulnerability hotspots and identification of adaptation
options. A summary of this approach and the subsequent outcomes from the validation exercise are
shown below.

Refinement of vulnerability indicators and 
aggregation methods

Refined maps presented to LGAs 
representing local communities. For each 
hotspot, LGAs  were trained and asked 

to come up with a list of observed/known 
climate hazards, key sensitivities, 

vulnerable ecosystems and population 
groups

Identification of potential short term and 
long term adaptation measures to 

respond to climate change impacts in the 
hotspots.

LGAs developed action plans for each 
hotspot to guide implementation of 

identified adaptation measures

Presentation of initial list of vulnerability 
indicators, mapping methods and 

preliminary vulnerability maps to the 
expert team

WARIDI developed a plan for 
implementing selected interventions in 

the hotspot in each LGA. Each LGA 
had a unique set of interventions on 
water, agriculture, land use planning 

among others.

Figure 2. Steps used to validate the vulnerability hotspot maps.

In addition to showing the location of vulnerable communities, overall vulnerability was classified
into five relative categories using equal intervals of 0–20, 20–40, 40–60, 60–80 and 80–100, and the total
number of people living in those classes was estimated. A gridded population map [56] was used to
extract total population in each class using the ArcGIS v10.1 zonal statistics tools. This information
was useful to WARIDI and other stakeholders who required complementary information to support
the maps in developing action plans and estimating the required funds to implement interventions.

Lastly, a cluster analysis was performed using aggregate scores for all districts in the two basins
and a multidimensional scaling (MDS) plot to visualize the clusters was generated. This analysis
summarized the relationship amongst districts and made it easier to identify similar districts in
terms of their component scores and overall vulnerability. Radar plots of aggregate scores for three
districts (Kilolo, Mvomero and Gairo) where WARIDI was primarily working, were also generated.
This information provided a snapshot of how indicators and aggregate vulnerability indices scored in
each district.

3. Results

3.1. Indicator Correlation

Pearson’s linear correlation results did not show strong correlations between pairs of indicators
(Figure 3). Consequently, all indicators were used in developing vulnerability indices. Significant
(p < 0.05) but moderate negative and positive correlations between several pairs of indicators were
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observed. The precipitation trend indicator was negatively correlated with precipitation variability
(R = −0.5), maximum temperature (R = −0.42), poverty (R = −0.37) and malaria susceptibility
(R = −0.54). The health infrastructure index was negatively correlated with access to markets
(R =−0.31) and crop productivity (R =−0.37). The total population indicator was negatively correlated
with the access to markets (travel time) indicator (R = −0.26). Positive correlations were observed
between the precipitation variability indicator and the maximum temperature indicator (R = 0.47),
as well as between the maximum temperature indicator and the malaria susceptibility indicator
(R = 0.38). The access to markets (travel time) indicator was also positively correlated with the crop
productivity indicator (R = 0.31).
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Figure 3. Pearson’s linear correlation plot of vulnerability indicators. Square boxes show the strength of
positive (blue) and negative (red) correlation (R) while asterisks show significance levels (P): 0.01 ∗∗∗∗,
0.05 ∗∗∗, 0.1 ∗∗, 1 ∗.

3.2. Exposure

The exposure index (Figure 4) was derived from precipitation trends and variability, long-term
average maximum temperature and flood frequency. High exposure was seen in areas where the
decline and variability in rainfall have been largest, areas with higher maximum temperatures and
higher frequencies of flood events. Out of the four variables, flooding had little influence on the
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resultant exposure index (See Appendix A Figure A1). This is likely due to the fact that the flood
indicator was derived from a modeled flood events output that focused mainly on rivers and streams.
Highest exposure was observed in the eastern parts of the two basins and mostly in Rufiji districts
of Ulanga, Kilombero and Rufiji; Wami Ruvu districts of Morogoro (rural), Mvomero, Gairo, Kilindi,
Bagamoyo, Kibaha, Kisamawe, Kinondoni, Ilala, Temeke, Mkuranga and southern Handeni; and some
pockets in Kongwa and Dodoma Urban.
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Figure 4. Map of the exposure of communities living in the Wami-Ruvu and Rufiji basins. The values
have been stretched to one standard deviation to enhance colors.

3.3. Sensitivity

The sensitivity index (Figure 5) was derived from population, poverty, soil organic carbon,
malaria susceptibility, child mortality and land use land cover change data. The most sensitive areas
are located in Namtumbo, Ulanga, Kilolo, Kilombero, Morogoro, Mvomero and Bagamoyo; there were
pockets of sensitivity in Kilosa, Liwale, Rufiji and Gairo, as well as rural areas in Mufindi, Iringa,
Mbarali and Manyoni. All the indicators seem to have major influences on sensitivity in several
locations in various ways (See Appendix A Figure A2). For instance, poverty and malaria seemed to
influence sensitivity severity in Namtumbo, Liwale, Songea and the border areas of Mpwapwa and
Kilolo districts. Child mortality and malaria susceptibility seemed to influence sensitivity in Morogoro
while population seemed to be a major driver of sensitivity in many districts in the Wami Ruvu basin.
Land cover changes considered detrimental for livelihoods and water resources were observed across
many areas in both basins. Population on was a good indicator of sensitivity because highly populated
areas are more prone to fresh water stress due to higher demand [57–59].
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Figure 5. Map of the sensitivity of communities living in the Wami-Ruvu and Rufiji basins. The values
have been stretched to one standard deviation to enhance colors.

3.4. Adaptive Capacity

The adaptive capacity index (Figure 6) was derived from water requirement satisfaction index as
a proxy for crop productivity, access to markets (travel time), access to improved water sources and
availability of health services represented as health infrastructure index. Access to markets, availability
of health services and access to water were dominant in the adaptive capacity index (See Appendix A
Figure A3). Locations with low adaptive capacity in Wami-Ruvu basin were double those in Rufiji
and most of these locations were in rural areas. Overall, districts with low adaptive capacity in both
basins were Rufiji, Kilolo, Iringa Rural, Morogoro Rural, Bagamoyo, Chamwino, Mpwapwa, Manyoni,
Kilindi, Kiteto, Gairo and some parts of Kilosa. Urban areas had relatively high adaptive capacity.
For instance, even though most districts in Dar es Salaam city were in the high exposure category,
their adaptive capacity index was high, resulting in low vulnerability. Populations in these districts had
good access to markets and health services and better access to improved water sources for domestic
use. Overall, less than 50% of the population distributed across the two basins had access to improved
water sources for domestic use. These populations were mostly found in Iringa, Liwale, Rufiji, Njombe,
Mufindi, Kilolo, Manyoni, Morogoro, Gairo, Kiteto, Kisarawe, Handeni and Mkuranga.
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Figure 6. Map of the adaptive capacity of communities living in the Wami-Ruvu and Rufiji basins.
The values have been stretched to one standard deviation to enhance colors.

3.5. Overall Social Vulnerability

The overall social vulnerability map is shown in Figure 7. This map averages rescaled values
from the exposure, sensitivity and adaptive capacity components. Generally, high vulnerability was
in the eastern districts of the two basins. Areas of low vulnerability are in urban areas such as the
big cities of Dar es Salaam, Morogoro and Dodoma, smaller urban centers and highlands in the
southwestern districts of Rufiji basin. Districts with high vulnerability were Ulanga, Kilombero,
Njombe, Kilolo, Liwale, Morogoro, Rufiji, Kisarawe, Manyoni and Kilosa, Gairo, Mvomero, Bagamoyo,
Kibaha, some pockets in Iringa, Kongwa, Kiteto, Handeni Kilindi, Mkuranga, Temeke, Ilala, Kinondoni
and Kisarawe.

Land area and population count statistics (Table 3) revealed that >80% of the land area and >60%
of the total population in the two basins were in areas classified as medium-highest vulnerability.
This category represents approximately 200,000 km2 of land area and close to 8 million people.
The highest proportion of land area and population was found in the medium category of 40–60%
vulnerability (49% and 46%, respectively), representing approximately 120,000 km2 of land area and
close to 6 million people.

Table 3. Population count and land area statistics by overall vulnerability categories.

SoVI (Equal Intervals) Vulnerability Level % Land Area Total Population (2015) Population %

0–20 Lowest 2 1,058,367 9
20–40 Low 12 3,412,546 28
40–60 Medium 49 5,682,709 46
60–80 High 35 2,010,397 16

80–100 Highest 2 103,995 1
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Figure 7. Map of the social vulnerability of communities living in the Wami-Ruvu and Rufiji basins.
The values have been stretched to one standard deviation to enhance colors. Blue outlines are districts
where WARIDI trained LGAs in climate change adaptation and multiple water-use services.

3.6. Selection of Hotspot Sites and Adaptation Interventions

WARIDI was expected to work across 20 districts implementing resilience building interventions.
The a priori site selection considered interventions for communities and water resources at the
community and household level and were selected based on the following criteria: (i) buy-in from the
community; (ii) support of the local government; (iii) complexity of the project; and (iv) the size of the
population being served. The results shown in Figure 8 indicate that at 80% similarity, 50% of these
districts were in the third tercile (highest vulnerability), 30% in the second tercile (medium-high
vulnerability) and 20% in the first tercile (lowest vulnerability). Exposure and sensitivity were
positively correlated with overall vulnerability while adaptive capacity showed a negative correlation.
Districts in the first tercile and some in the second tercile were found to have relatively higher adaptive
capacity and low vulnerability.

The results were also used by WARIDI in the selection of three vulnerable villages: Msufini in
Mvomero district, Nguyami in Gairo district and Magana in Kilolo district (Figure 9). These three
districts experience droughts and scored relatively high in mean daytime temperature. Kilolo district
showed higher rainfall variability than the other two districts. Poverty scored highly (>40%) in all three
districts with higher scores observed in Kilolo and Gairo. The latter was also highly populated and had
higher scores in infant mortality rate, implying there were more deaths of children under five years.
All three districts that this analysis identified had low scores for soil organic carbon, meaning their soils
had high organic matter content suitable for agriculture because high soil organic carbon represented
low sensitivity. All three districts scored poorly in availability of health infrastructure. Mvomero and
Gairo districts scored highly in crop productivity.
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Figure 8. Multi-dimensional scaling (MDS) plot of overall social vulnerability. The trajectories show
the correlation between vulnerability components.

Figure 9. Radar plots of vulnerability indicators for three selected hotspot districts. E, “exposure”; S,
“sensitivity”; AC, “adaptive capacity”.
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3.7. Discussion

Our study focused on generating information that would support prioritization of adaptation
interventions in Wami-Ruvu and Rufiji basins using a combination of scientific methods and
stakeholder engagement to map communities that were vulnerable to climate variability and change.
The results show that these communities were found in areas which experience high exposure as a
result of large rainfall declines and high variability coupled with higher temperature, higher sensitivity
and low adaptive capacity. Overall, vulnerability maps from this study, regular consultations and
engagement with local communities and district administrators provided a critical input to the selection
of adaptation options that aligned well with community expectations. For instance, the consultations
confirmed three villages as hotspots and identified land tenure as a way to support sustainable
management of land, water and forest resources. As a result, WARIDI supported a participatory
process with local governments and communities to develop and implement village land use plans
(VLUPs) and record 1961 Certificates of Customary Rights of Occupancy (CCROs). In other locations,
the vulnerability maps were used as one of several criteria for selecting the locations for 50 water
projects which will supply clean water to 520,000 people. Communities surrounding the water supply
projects were trained on water-efficient agriculture techniques and water conservation, particularly
in dryer areas. Additionally, WARIDI worked with local technical assistance entities to train farmers
on Climate Smart Agriculture (CSA) approaches such as crop diversification, agroforestry, improving
soil organic matter and using small-scale intensified agriculture practices which improve water
use efficiency.

Rainfall and temperature are major factors that influence the wellbeing of communities in Tanzania
and East Africa in general. Our results show higher declines and higher variability in total annual
rainfall over the past 30 years in the eastern parts of the two basins. This result is consistent with
previous observations [1]. Rainfall decline has a direct implication on water availability in the two
basins because major sources of water for various user groups come from surface water sources
that depend on rainfall for recharge. Additionally, the eastern areas experience high temperatures
and higher evapotranspiration. This observation raises concerns that high evapotranspiration and a
declining rainfall will continue to exacerbate water stress, affecting surface water availability for both
human and livestock, and reducing biomass and crop yields due to increased evapotranspiration [60].
This concern is further strengthened by observed land cover changes that impact water resources
negatively such as deforestation for agricultural expansion. Deforestation removes vegetation cover
that enhances water retention for surface water and regulates evapotranspiration. The rate of
deforestation in the two basins has increased in the recent past. This has led to sedimentation of
fresh water resources, increased surface run-off and flash floods and reduced the rate of infiltration,
ultimately reducing base flows in rivers [61]. Future projections of temperature changes for Tanzania
from most global climate models show an increase of 1–2 times the current increases in the near future
(2020–2050) and 2–3 times in the mid and far future (2050–2100) for high greenhouse gas concentration
scenarios [62]. Coupled with an increasing demand from high population growth, water security will
continue to be a major concern for water user groups in these basins.

Sensitivity was observed to be higher in rural areas than in urban areas. Notably, malaria was
dominant in the southern districts and along the coast south of Dar es Salaam city. Malaria is documented
as a leading cause in child mortality in Tanzania, accounting for nearly a fifth of all deaths compared to
other diseases, and the mortality rate has shown an increasing trend [63]. Temperature increase in the
two basins has provided previously malaria free areas with conducive environments for vector carrying
mosquitoes to thrive. We observed a positive correlation between malaria susceptibility and maximum
temperature meaning, that areas that experience higher temperatures have a higher malaria risk. Steady
population growth in both basins will further increase the number of people exposed to malaria.

Regionally, climate change has been attributed as a contributing factor to impacts on human
health through increases in climate sensitive diseases like malaria [64,65] and other water-borne
diseases such as diarrhea and cholera. Some of these impacts are already being experienced in
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some of the highlands in the rural areas of southern Tanzania such as Njombe, Kilolo and Mufindi
which have witnessed increases in malaria and are some of the areas in the basins with low adaptive
capacity to cope with malaria risk [66]. This information was corroborated by district officers during
the validation exercises where warmer temperatures in these highland areas have been witnessed.
Our results also show that availability of health infrastructure such as health centers is lacking or
sparsely distributed in rural areas, leading to isolation of some communities from access to health
services. Adequate preparedness for climate impacts on the health of communities in the basins will
require local government agencies and other development agencies to strategically increase coverage
of health services in rural areas in the two basins. This kind of intervention would minimize the
isolation of vulnerable communities from health services. This will ensure that these communities have
access to health services during crises occasioned by climate extremes such as floods and droughts and
other longterm climate change impacts.

Enhancing the adaptive capacity of Wami-Ruvu and Rufiji basin communities to cope with climate
shocks will require interventions in a number of areas. Agriculture is one of the major livelihoods
in these basins, especially in the southern highlands of Rufiji basin. We observed that many rural
areas were in locations that had potential for high crop yields but were in remote areas, taking longer
duration to reach major market centers. This physical isolation can lead to negative consequences
on availability of food for urban populations, precipitating increases in food prices. Rural farmers
who cannot access markets for their produce can also suffer negative economic impacts, consequently
affecting household income. The latter is a critical factor to the resilience of households during
seasons that experience shocks such as droughts that affect crop yields. Overall, negative impacts on
agricultural areas can have detrimental effects on the health and household vulnerability and likely
undermine the ability to cope with future climate shocks. It is critically important for government and
development partners to enhance the adaptive capacity of vulnerable communities in these basins to
current impacts of rainfall declines on smallholder agriculture and availability of water resources for
farming while also mitigating likely impacts from projected increases in temperature in the near future.

Our results provided an independent validation of selected districts and provided further
evidence that a combination of quantitative and qualitative criteria can be used for prioritizing
development assistance effectively. These results supported WARIDI’s rationale for focusing on
agricultural livelihoods and water resources management in each district hotspot. They also led to the
development of district action plans for integrating climate change into district-wide development
plans including interventions in agriculture, forestry, health, water, tourism and wildlife, and were
used during facilitated discussions with national ministries including the Ministry of Water, Ministry of
Agriculture, Ministry of Natural Resources and Tourism, Presidents Office—Regional Administrative
and Local Government and local government authorities. It is worth noting that, while most of the
interventions were in districts captured by our vulnerability maps as being hotspots, a good number
fell in the lower categories of overall vulnerability. This can be partly explained by the choice of
indicators which was influenced by our focus on social vulnerability. Our analysis captured various
aspects in which different water user groups, largely comprised of the human population, are impacted
by climate variability and other environmental changes. We defined these impacts as those that relate
to health, wellbeing and livelihoods.

Temporally consistent climate data are important in climate vulnerability mapping and risk
management [67,68]. Institutions in Tanzania led by TMA are increasing their capacity to collect
and archive weather and climate data for use in climate risk and hydrological assessments.
However, the capacity to analyze these data and integrate satellite Earth observations into their
assessments is often limited with efforts have been ongoing to improve this capacity [69]. We used the
co-development approach because it provided an opportunity for institutions in the CDT to collaborate
in data analysis. It also acted as a means to build capacity of staff at institutions responsible for
making data and information used in this study available for decision makers. This approach enabled
technical experts in the CDT to work together by using good quality rainfall and temperature data
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that were generated through blending of station data with satellite proxies to produce vulnerability
indices. The co-development team had an equally important role of providing insights on local
conditions and supporting the linkage between WARIDI and other local stakeholders in government
and other agencies.

Our data integration techniques involved combining high resolution satellite data with coarser
resolution socioeconomic data. One advantage with satellite data is that they are consistent and cover
vast areas. However, many of these data are proxies for factors that influence vulnerability. On the
other hand, socioeconomic data provide data collected directly from household surveys. This means
data are collected directly from subjects of a vulnerability study, thus providing better estimates of
local conditions. However, even these have disadvantages because publicly available data are often
aggregated at administrative units. In our case, most socioeconomic data were at the ward or district
level. Comparatively, a grid pixel from the remote sensing data was 25 km2 while the average size of
wards and districts was 403 km2 and 8705 km2, respectively. Artifacts may arise from integrating data at
different spatial scales such as abrupt discontinuities across borders may draw attention in differences
between areas that are not necessarily present on the ground [43]. These caveats notwithstanding, the
combination of remote sensing and household survey data is gaining popularity as one of the fast
growing approaches being used in vulnerability mapping. Various publications have provided more
critical perspectives on these approaches and describe in depth their limitations [13,17,43,54,66].

Other data integration challenges exist in vulnerability mapping. A major problem that data
analysts in vulnerability mapping studies encounter is dealing with extreme values in data that
may impact statistical operations. Through truncation or winsorization, analysts may overcome this
challenge by limiting extreme values through statistical transformations. However, this winsorization
has the potential to bias results. We encountered this challenge in the population and access to markets
indicators and addressed it by combining expert judgement and existing literature on approaches to
determining truncation thresholds. For instance, we limited the maximum amount of time to access
major towns to 3 h based on international- and country-based recommended practices on access to
health services. The World Health Organization (WHO) recommends that access to critical care should
be within 2 h while some studies in sub-Saharan Africa have shown that many countries in Africa are
yet to achieve this goal to guarantee universal access to healthcare [70]. By involving locally-based
experts with sufficient knowledge of the geography of the study area and by subjecting our mapping
outputs to validation by local communities, we were able to partially address the potential biases
introduced by the data winsorization. We believe that the effect of data winsorization can only be fully
assessed through a rigorous sensitivity analysis and validation. The interpretation of a vulnerability
map should consider the fact that sections of the population may feel excluded from developmental
programs because of the category they fall in from a mapping perspective, while it may not necessarily
mean that they are not vulnerable; rather, the severity is not as high as that of populations in other
higher categories. It is important to subject vulnerability maps to rigorous validation with people who
understand the target region well to ensure that areas that do not look vulnerable on the map, but are
on the ground, are captured when developing and selecting adaptation interventions.

Vulnerability maps can provide objective information for selection of sites for adaptive
interventions but only if they are participatory and evidence-based. While they are useful in providing
a systematic and reliable way to prioritize adaptation intervention sites, independently, they cannot be
sufficient to ensure success in a resilience building activity. Building resilience is an incremental process
that is influenced by political interests, availability of budget, motivation of local stakeholders and
other factors. Our study provides evidence that the uptake of mapping results into decision making is
highly dependent on a participatory process that gets buy-in from communities, key thematic experts,
local government, and other stakeholders. The goal of a vulnerability mapping exercise is to identify
locations or sections of populations that are most vulnerable and require development assistance to
cope with existing and emerging stressors. However, this prioritization risks the shortcomings of
excluding other sections of the population that may be identified as having lower vulnerability. It is
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important that development assistance activities using vulnerability mapping to inform decisions take
into consideration both short- and long-term vulnerabilities to the population.

4. Conclusions

Our study demonstrated the value added by vulnerability analysis to prioritization of climate
adaptation interventions in the Wami-Ruvu and Rufiji basins. We conclude that a data- and
consultation-driven approach to vulnerability assessments provides more robust and evidence-based
outcomes for prioritizing climate adaptation interventions. Such an approach also provides a systematic
and objective process whose results create a record of data, outcomes, events and decisions that led
to an intervention in a particular area. This provides a solid basis for decision making and policy
interventions in highly vulnerable communities where resources are also scarce.

Since replicability of these prioritization processes in space and time is also important,
and therefore reproducibility of results by research, policy and community-based institutions is
also key, we also conclude that combining structured stakeholder engagement and scientific methods
of data integration in mapping vulnerability is equally important in facilitating smooth uptake of
the outcomes of vulnerability analysis studies. This builds the capacity to understand and analyze
vulnerability both at community and research levels. We found that, to ensure transparency with our
mapping methodology and to build lasting capacity of local experts in replicating this type of mapping
in future, it was critically important to form a co-development team. This was important in sustaining
the interest of the team and supporting effective dialogue and prioritization of development assistance
activities between WARIDI and a broad range of stakeholders.
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Figure A1. Plot of indicators used in this study to develop the exposure index.
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Figure A2. Plot of indicators used in this study to develop the sensitivity index.
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