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Abstract: Building energy simulation programs are used for optimal sizing of building systems to
reduce excessive energy wastage. Such programs employ thermo-dynamic algorithms to estimate
every aspect of the target building with a certain level of accuracy. Currently, almost all building
simulation tools capture static features of a building including the envelope, geometry, and Heating,
Ventilation, and Air Conditioning (HVAC) systems, etc. However, building performance also relies
on dynamic features such as occupants’ interactions with the building. Such interactions have
not been fully implemented in building energy simulation tools, which potentially influences the
comprehensiveness and accuracy of estimations. This paper discusses an information exchange
mechanism via coupling of EnergyPlus™, a building energy simulation engine and PMFServ,
an occupant behavior modeling tool, to alleviate this issue. The simulation process is conducted in
Building Controls Virtual Testbed (BCVTB), a virtual simulation coupling tool that connects the two
separate simulation engines on a time-step basis. This approach adds a critical dimension to the
traditional building energy simulation programs to seamlessly integrate occupants’ interactions with
building components to improve the modeling capability, thereby improving building performance
evaluation. The results analysis of this paper reveals a need to consider metrics that measure different
types of comfort for building occupants.

Keywords: building performance; occupant behavior; EnergyPlus™ simulation; coupled simulations;
building energy modeling (BEM)

1. Introduction

Building performance plays an important role in the life cycle of a building [1]. Organizations such
as American Society of Heating, Refrigeration, and Airconditioning Engineers (ASHRAE) and U.S.
Green Building Council (USGBC) have proposed various guidelines, standards, and rating protocols
to evaluate the performance of a building. A prominent building performance includes a healthy
and comfortable built environment, as well as energy-efficient building systems and management [2].
Since people spend more than 80% of their time inside buildings on average [3], building occupants’
behaviors influence building energy use and indoor environment significantly, and vice versa.

Building energy modeling is an effective approach to evaluate building performance [4]. Although a
few studies have focused on modeling occupant interactions with buildings and the impact of occupant
on building performance, most traditional building energy simulation tools oversimplify the human
dimension in their modeling and calculation progress [5]. This may cause inaccurate building
energy estimation that deviates from reality. Furthermore, investigating occupant behaviors such as
opening/closing windows, doors, etc. gives insights of occupant comfort conditions and preferences
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of the built environment. Therefore, incorporating such dynamic occupant behavior information to
building energy models has the potential to improve the comprehensiveness of the modeling approach,
and thus optimize building design to achieve a better performance.

To address this issue, a robust occupant behavior model for commercial buildings was developed
and validated based on an existing building [6]. Agent-based modeling (ABM) was used to develop
the model, which captures three different physical perceptions of occupant and their reactions and
interactions with building components, with the basic rules that the major influencing factors are
environmental conditions. This paper discusses the coupled simulation of the ABM and a traditional
building energy modeling tool, EnergyPlus™, with the help of a bridging program, Building Controls
Virtual Testbed (BCVTB) [7].

BCVTB has been used by many researchers in the past for co-simulation purpose, which is capable
of supplementing additional information to the building simulation programs. Though studies exist
on the incorporation of occupant behavior information to building energy models, this paper can be
distinguished from previous research attempts in several ways. First, the occupant behavior model is
developed using a novel ABM approach based on a tool, PMFserv [8], which is capable of considering
both physical comfort and psychological states at the same time. PMFserv is a unified architecture
that formalizes many theories related to modeling individuals and their behaviors. Second, the
data exchange between EnergyPlus™ and PMFserv requires both indoor and outdoor environmental
data related to various occupant perceptions including thermal and visual comforts, and air quality.
The building performance is analyzed from individual occupant’s perspective instead of the whole
building, for a more specific evaluation. This study can be extended to several types of occupants by
age, physical capabilities, mental stature, etc.; these specific occupant characteristics can be modeled
and extrapolated to the whole building, so that the impact brought by different occupant types can be
studied in the future. Third, the co-simulation framework was tested on an actual case study building
rather than relying on a simulated building, with actual weather data imported meanwhile for a
more realistic simulation. The proposed framework has the potential to be extended to larger scale or
different buildings without major modification.

This paper analyzes and evaluates the building simulation results from both the perspectives
of building and occupant sides. It is concluded that occupant adaptation to the built environment
at room-level causes energy variations to the whole building. Moreover, building occupants may
conduct behaviors against thermal comfort to compensate for other comfort types. It is recommended
that building design and operation should balance energy use and indoor comfort to achieve an
optimal performance.

2. Research Motivation

Building performance simulation provides crucial design information by indicating potential
directions and solutions [9]. Adequate building performance simulation not only helps reduce
environmental impact of the building environment, but also improve indoor environment quality that
is directly associated with occupant productivity [10]. Crawley et al. [11] compared 20 major building
energy simulation programs from the common categories that are adopted by these programs. For a
generic building energy modeling purpose, these programs can capture a wide range of parameters
related to building performance to enable efficient design for a building.

Many researchers use building energy modeling tools to estimate performance for their proposed
optimization solutions. These studies include the renovation of building envelopes, building systems,
and building operation mechanisms, etc. For example, Kumar and Kaushik [12] described a model
for cooling potential of green roof and solar thermal shading in buildings. The mathematical model
was implemented in Matlab® and incorporated in building simulation code to generate simulated
results in contrast to experimental data. Similarly, Yao et al. [13] created two energy models in eQuest™
with conventional and green roofs and applied life cycle assessment of the two models. It was found
the initial increased cost can be offset through a 50-year duration of the building. Komeily et al. [14]
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tested the impact of seven different window systems on building energy use. The study focused on
the window prototypes with multiple climate zones to summarize the most efficient combination for
future application. Anastasiadi and Dounis [15] presented a fuzzy logic Heating, Ventilation, and Air
Conditioning (HVAC) controller and applied the model with EnergyPlus™ using BCVTB. With the
comparison with conventional on-off controller on the same building, the proposed algorithm reduced
non-comfort hours by 50% while consuming the same level of energy. Most recently, Srinivasan et
al. [16] automated the process of generating EnergyPlus™ files representing residential buildings in the
city of Gainesville, FL. These 20,000+ building energy models were then simulated for current weather
data, calibrated using utility data, and used for estimating future energy use owing to climate change.

Among the factors that influence building energy use, occupant behaviors are recognized as
one of the dominant elements that cause energy use uncertainty [17,18]. Integration of occupant
behavior model in building energy programs has gained significant attention in the past few years.
One example is Langevin et al. [19], who developed an ABM on thermal related behaviors that
enables co-simulation with EnergyPlus™. Lee and Malkawi [20] also explored the impact of occupant
behaviors on building performance based on predicted mean vote (PMV) parameters and a belief
system. Hong et al. [21,22] proposed a novel ontology to represent building occupant behaviors,
which defines the schema and parameters for a standardized model. Subsequently, an occupant
behavior modeling tool was developed based on the proposal, enabling co-simulation with BEM
programs implementing functional mock-up interface [23]. However, that research focused on the
implementation process instead of building performance evaluation. In another study, Chen et al. [24]
applied their occupant behavior model to a small office building and visualized how the simulated
occupants move and behave in the prototype building. Most recently, Dziedzic et al. [25] designed an
algorithm to simulate occupant movement in buildings using ABM with in-situ observation of natural
transitions of the building occupants.

In the current stage, occupant behavior models were often developed independently without
considering the future uptake in BEM tools. Regarding this issue, Gunay et al. [26] implemented
several occupancy and occupant behavior models from the literature, and compared their influences
to building performance simulation and found consistent load reduction with these models despite
the prediction differences. Ouf et al. [27] recommended occupant-related features improvement for
common building energy modeling tools to better apply the existing occupant-related models to these
tools. Similarly, Lindner et al. [28] attempted to implement 24 occupant behaviors models in literature
to explore the possibility of incorporating these models to BEM tools. The researchers then proposed
requirements for future occupant behavior models in order to be used by BEM tools.

With this background, this paper discusses a coupled simulation of a novel occupant behavior
model and EnergyPlus™. In addition, the paper analyzed the impact of occupant behaviors on various
aspects to deliver a holistic vision on building performance evaluation such as building energy use,
thermal comfort, and indoor environment.

3. Methods

The occupant behavior model used in this paper was developed by the authors previously, and a
preliminary validation study was conducted to test the applicability of the model [6]. The coupled
simulation framework was implemented using an existing educational building as test bed, with the
assistance of BCVTB.

3.1. Occupant Behavior Model Development and Validation

A human behavior modeling platform, namely PMFserv, was used for model development.
With a “grey-box” modeling approach, this study customized the modules of the platform and adopted
its internal calculation algorithms for decision-making (refer to [8,29] for detailed mechanisms of
the platform). Essentially, the tool only provides the general modeling architecture wherein specific
instances need to be created based on the modeling target and context (in this case, building occupant
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and built environment). The modeling process includes five steps. The first step is agent identification,
in this case the building occupant. Second, built environment is created as an object that surrounds
the agent. This includes both the environmental conditions and building components status.
Third, the psychological cognition system is completed with default items that may affect behavior
decisions. This includes basic value systems of humans. Then, the perception of the agent must be
created that measures occupant comfort level, and in this case, thermal and visual comfort, and air
quality are all included. All the perceptions are associated with built environment parameters through
rules. Finally, the behavior options must be introduced. To represent the reality, three behaviors
including opening and closing of the door, window, and window-blinds are modeled. Figure 1 shows
an overview of the five modules developed in the model and their connections. In this study, the ABM
was treated as a black-box model for application and thus the details of the development process are
not presented. Refer to [6] for detailed explanation of the ABM.
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in PMFserv.

For the purpose of integrating with EnergyPlus™, the ABM was designed to execute on a time-step
basis. Specifically, the occupant will conduct at most one behavior at each time step based on the
surrounding conditions (i.e., environment and building component status). For example, at moment T,
the door, window, and window blinds’ status are all closed, while the ambient conditions are updated
with certain values. This information will be perceived by the agent under the programmed rules,
thus may be triggering one or multiple physical perceptions including thermal and visual comfort,
and air quality measures (e.g., the occupant may feel hot or that it is dark in the room). At the same time,
the value system of the agent which is structured by weighted psychological items will evaluate the
triggered perceptions and available behavior options, and calculate the decision utilities considering
all the modules. At the end of the simulation step, the model outputs one or no action based on the
highest decision utility and current building component status. For instance, the occupant may feel
both hot and dark at the same time at moment T, but he or she will conduct the behavior that improves
both the perceptual and psychological status the most at this time step. In general, the agent decides
the behavior output based on the extent of unsatisfactory of that particular perception, under current
built environment conditions and his or her own status.

It should be noted that unlike commonly used data-driven modeling methods, such as [30,31],
the occupant behavior model in this study begins and ends from the individual’s perspective, and the
behavior prediction is governed by rules instead of statistical inference. In other words, the ABM is
not built upon collected data, but based on domain-related assumptions and regulated rules.
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To validate the assumption and effect of the developed ABM, an exploratory study was conducted
in the test-bed building. Related data of indoor and outdoor environmental parameters that are served
as input of the ABM were collected, and actual behaviors of different individuals were recorded
manually from five single-occupancy rooms. The actual data were then compared with simulation
output from the ABM at individual and group levels to understand the model performance. Details of
the validation study are available in [6]. As a follow-up study, this paper aimed at demonstrating the
validity of the ABM to be applied for simulation coupling or further uses.

3.2. Coupled Simulation Mechanism

The development of the occupant behavior model aims to add the human dimension to building
energy simulation program and, thus, has the potential to improve its overall simulation performance.
Occupants in commercial buildings may adjust building systems, components, or devices to improve their
indoor environmental conditions, to satisfy their thermal, visual, and air quality comfort requirements.
However, the current building energy simulation programs lack the ability to capture these behavior
changes. The goal of this simulation coupling framework is to integrate the occupant behavior model
and the building energy simulation model in order to dynamically exchange information between the
two simulators and to create a more realistic virtual environment for building energy estimation.

The concept of co-simulation meets the research goal. In short, both PMFserv and EnergyPlus™
execute on a time-step basis. Therefore, the integration process can be achieved by exchanging
designated outputs to serve as inputs to the other simulation engine. Specifically, the occupant behavior
model takes several input variables from EnergyPlus™, including temperature (indoor and outdoor),
relative humidity (indoor and outdoor), CO2 concentration, illumination, and occupancy at zone level,
and outputs the building components status (i.e., window, door, and window blinds) under the current
condition. EnergyPlus™ receives the status of the three building components from the occupant
behavior model, and computes the environmental conditions for the next time step. BCVTB was used
to connect the two simulation engines by establishing direct links to both ends, so that the simulation
process can be executed automatically with a user-defined simulation period and time step. It is noted
that the coupling of the two engines was not hard-coded. Instead, any other occupant behavior models
or building energy models that are developed based on the two engines can be loaded to enable the
co-simulation execution. This increases the flexibility of the framework for further uses.

The implementation of the co-simulation framework not only supplements an additional module
for building energy simulation, but also accounts for dynamic influence brought by building occupant
behaviors. Figure 2 depicts the input/output exchange mechanism in a general view. Initially, the status
for all three building components were set as “closed”. During the simulation process, the building
component status was only assumed open or close without a detailed extent setting such as the
opening angles.
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3.3. Case Study

With co-simulation implemented, EnergyPlus™ is able to exchange information with the occupant
behavior model, so that a dynamic behavioral schedule will be used for pertinent parameters calculation.
To examine the framework, a case study was conducted. Five rooms of the building (same as the
validation study sample rooms) were selected to run the coupled simulation. Ideally, with the
additional module that accounts for occupant influences on building energy use, the simulated result
by EnergyPlus™would be closer to the measured energy use for the target building. However, since the
coupled simulation was only executed in a small portion of the building, the building energy estimation
may not represent the situation of the entire building. Nevertheless, it is still meaningful to compare
the simulation results with and without coupling the occupant behavior model. The purpose was to
investigate the impact of occupant behaviors on building energy use, so that further extensive analysis
can be conducted to improve simulation accuracy and design realistic energy management solutions.
In general, although the research experiment was performed for five selected rooms, the simulation
results can be a starting point to improve building performance based on occupant behaviors’ patterns.

For the case study, a building energy model was developed in EnergyPlus™ based on the test
building (Figure 3). The building is a typical educational building consisting of classrooms, offices,
laboratories, etc. It is located in the state of Florida, USA, a subtropical climate zone. The simulation
integration was conducted at the room level instead of the whole building level given the number of
occupants in the study. The simulation period corresponded to the occupant behavior model validation
time frame (i.e., four weeks from the end of February to the end of March 2018), which was in the
middle of the spring season. In particular, the weather data used for simulation study was acquired
from an online source [32] which provides a weather information file in EnergyPlus™Weather (EPW)
format for the designated period. Finally, the simulation time step was set to 15 min, corresponding to
the occupant survey in the validation study [6].
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To compare the simulation results, a baseline model for the case study building was developed
and calibrated according to the reality. Since each co-simulation run was executed for a single room,
five separate EnergyPlus™ models were generated upon the baseline model that incorporated the
behavior patterns of each occupant, so that the individual influences to the building could be assessed.
By analyzing the simulation results, insights were gained about how occupants react under different
environmental conditions and how they cause energy use variation with their different behavioral
patterns. Figure 4 shows the simulation experiment design, with the relationship between the baseline
model and the ABM-based models.
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4. Simulation Results

4.1. Building Energy Use

The presented results are outputs from EnergyPlus™ for the default and co-simulation settings.
The focus is to explore and compare the energy use-related factors with different occupant behavior
information inputs.

For the four-week simulation experiment, the differences between baseline (i.e., with no occupant
behavior) and the simulation integration (i.e., with occupant behavior models in site energy use) are
compared at the building level, as the room/zone energy use data is unavailable. As shown in Figure 5,
even though the behavior change was at the room-level, the total energy use difference at the building
level can be observed. Moreover, the amount of variation differs for each occupant, due to the distinct
built environment and zone location they were situated in. Considering that the simulation period was
limited to approximately one month, the absolute differences can potentially be more significant for
an annual simulation. Another aspect is that all the ABM-based cases had lower energy use than the
default according to the simulation result. Since the environmental conditions, rather than energy use,
drives how the agents (occupants) interact with the building components in the ABM, it is inferred that
a higher level of indoor comfort and building energy efficiency can be achieved simultaneously. It also
demonstrates the importance of involving dynamic and detailed occupant behavior information in the
building simulation program. Last, but not least, in this study, although the studied behaviors did
not include energy-consuming behaviors such as use of individual heaters and fans, the influences on
energy use can help understand and analyze the behavior-energy links through extended experiments.

Room- and zone-level total energy use data is unavailable because there is no reliable or general
way to assign a portion of the HVAC energy use to a particular zone. However, other energy-related
results are accessible. In Table 1, two relevant zonal energy use types are shown. The results of ABM
case for each occupant were extracted from the corresponding model (e.g., result of occupant A is from
Model A, etc.). The first factor, namely Zone Air System Sensible Heating Energy, reports the total
heating energy delivered by the HVAC system to a zone. It is to be noted that this does not always
indicate the actual operation of heating coils. For example, outdoor air can contribute to the amount
of heating in the spring season even if all coils are off. Nevertheless, the changes in the values are
useful measures for comparison. As seen from the table, for the ABM-based scenario, the sensible
heating energy for all zones increased while the cooling sensible energy showed a contrary direction.
The results could guide building system design or future operation schedules, as the outside air can
compensate for part of the energy output by the HVAC system. For Zone Total Internal Latent Gain
Energy, the volumes decreased but the amount was subtle. It can be concluded that through the use of
the window, door, and window blinds, the latent gains from people and internal equipment may be
reduced, at least during the typical spring season in the building location.
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Figure 5. Energy use intensity result at building level between baseline and ABM-based models. Note:
The bottom value of the figure starts from 72,500 instead of 0, for a more observable comparison.

Table 1. Zone level simulated energy-related results by type for the baseline and ABM behavior cases
for each occupant in the study.

Occupant
Zone Air System Sensible Heating

Energy (kWh)
Zone Total Internal Latent Gain

Energy (kWh)

Baseline ABM Baseline ABM

A 24.46 136.28 91.98 85.39
B 12.10 109.86 40.51 38.93
C 12.10 149.44 40.51 39.75
D 10.98 111.63 36.02 35.27
E 10.98 147.94 36.02 35.95

4.2. Thermal Comfort

Besides the observation on the building side, it is also necessary to examine the comfort level on
occupant side. In EnergyPlus™, thermal comfort condition can be extracted via the output of PMV, a
thermal comfort measure, which values a thermal sensation metric according to the mean response
of occupants. The values of PMV range from −3 to 3 including 0, with “0” being the most ideal or
comfortable in terms of thermal comfort, and −3 and +3 representing very cold and very hot scenarios,
respectively. In Table 2, the mean and variance of PMV in the simulation duration for the five occupants
are listed. An interesting phenomenon can be observed for the coupled simulation scenario with
the dynamic behavior change provided by ABM, where the mean PMV values for all five occupants
moved away from the neutral value 0. This means on average, with the behavior being conducted,
the occupant may feel colder, which does not meet the expected consequence. One of the possible
reasons that lead to this result is because the ABM is not solely based on thermal conditions of the built
environment, also considering visual comfort and air quality before making a decision. Under the
simulation setting of the room, opening the window and door are the two options that both adapt to
thermal and air quality conditions. It is inferred that there are many time periods that the occupant
prioritized air quality issue and chose to open the window or door, although it might be thermally
uncomfortable at the moment. Another possible explanation is the comfort range setting in the ABM
might differ from the ASHRAE standard. In other words, for a general population, the environment
is considered “cold” but for the modeled occupants, the environment may be in the tolerant range.
Nevertheless, additional research must be performed to support the potential reasons mentioned.
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Table 2. Predicted mean vote (PMV) values comparison for baseline and ABM behavior cases for
each occupant.

Occupant PMV Mean PMV Variance

Baseline ABM Baseline ABM

A −0.879 −1.085 0.762 1.165
B −0.982 −1.181 0.765 1.228
C −0.982 −1.134 0.765 1.202
D −1.013 −1.194 0.787 1.239
E −1.013 −1.179 0.787 1.208

Although the explanations above need extensive research to prove the reliability, the simulation
result of built environment comfort calls for the significance of involving standard parameters
that measure other sensations in addition to thermal comfort level. Building energy modeling
tools could benefit from a more comprehensive system to evaluate the building performance.
Moreover, further research could focus on how building occupants prioritize their sensations under an
uncomfortable built environment, and thus the building design can be more human-oriented.

4.3. Indoor Environment

Since occupant comfort index may not be able to reflect every single individual’s preference,
the indoor environment parameters variation can provide more objective information of the building
performance. Therefore, the temperature and carbon dioxide variation in the simulation period for
one of the five rooms are depicted in Figures 6 and 7, with the x-axis showing the hours within the
period. It can be seen from Figure 6 that with the behavior information updated at each time step
during simulation process, the fluctuation becomes slightly more apparent than the baseline model.
The extreme values for the ABM-based case both exceed the original case, especially for the nadir of the
trend. This complies with the PMV value change in Table 2, where the mean value decreased and the
variance value increased for all the occupants. Temperature variation was mainly caused by window
operation in the case study building, and since the outdoor temperature range was comparatively
large in the spring season at the building’s location, indoor temperature was influenced to some extent.
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However, the variation of CO2 showed a contrary situation (Figure 7). From the behavior output
of the ABM, window and door were frequently opened for the occupant during the simulation.
According to [33], 600 ppm is a generally acceptable CO2 level among most populations. Since the
baseline model did not include any schedules for window and door operation, the CO2 level reached
or exceeded 600 in certain time periods. In contrast, the ABM case showed a much lower value of the
peak CO2 concentration during the one-month experiment. With the ventilation caused by window
and door operation, the overall CO2 level was maintained at a more stable and comfortable range.
This partially demonstrated our argument before, that the occupant may choose air quality over
thermal comfort in the ABM virtual environment. Moreover, a lower CO2 level is a strong indicator
of air quality improvement, which illustrated the building performance from another perspective.
It is concluded that with the behavioral adaptation to the building component in the ABM scenario,
indoor air quality is improved while the thermal condition is sacrificed, comparing to the baseline case.

5. Discussion

In summary, the simulation experiment in this study accomplished two research goals.
First, it implemented the simulation coupling idea by running a co-simulation framework with
EnergyPlus™ and PMFserv, and the applicability of the novel occupant behavior model was
demonstrated. Second, through the comparison study for the two simulation scenarios, influences of
occupant interactions with targeted building components were quantified and analyzed. The presented
results can help building designers and engineers optimize a building’s mechanical or electrical
systems, resulting in energy savings and a more comfortable indoor environment.

Further studies should include extending the simulation (i.e., simulate a whole year), to probe the
seasonal differences among different behavior scenarios. The space covered in the study is also limited
to only five out of more than 50 thermal zones, which could be expanded to the entire building. It is
important to explore the averaging effect of occupant behaviors if more rooms or zones are included
for simulation, as individual occupants’ impact on building performance at different spatial scales
varies [34]. Moreover, one of the limitations of the developed ABM is the lack of uncertainties involved
in the model. In other words, the model generated a deterministic output based on the corresponding
input, which cannot fully reflect the stochastic nature of occupant behaviors. Sensitivity studies can
be performed to delve into the relations between pertinent environment factors, occupant behavior
options, and building energy use. Last but not least, those parameters in EnergyPlus™ that reflect
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behavioral changes should be revised by researchers or tool developers to capture the actual impact of
behaviors more comprehensively.

The simulation results also suggest a lower energy use with occupant behavior information inputs
for ABM scenario, which promotes feasible energy conservation solutions through human-in-the-loop
building operation. The capability of accounting for the human dimension to building performance in
a dynamic manner will benefit all the stakeholders of a building through informed decision-making.

6. Conclusions

This paper discussed a coupled simulation experiment that integrated an agent-based model of
occupant behaviors and a building energy model created in EnergyPlus™. The occupant behavior model
was developed based on an existing building and five single-occupancy offices were selected to validate
the model. The model assumed the major driver of behaviors are environmental conditions, and thus
three different perceptions of building occupant were modeled corresponding to the surrounded
environment. The simulation study enabled a co-simulation framework of the ABM and the building
energy model which can exchange data as input and output for each other at each time step, until the
simulation ends. The analysis of simulation results was conducted from different perspectives to
provide a comprehensive evaluation for building performance. The comparison between a baseline
model and the coupled simulation models showed noticeable differences which can help building
stakeholders understand occupants’ need better. The main findings are:

• Occupant behaviors influence building energy use from room level to building level. Even though
the studied behaviors occur in the room level and do not consume energy directly, differences were
observed from the baseline model and the simulation coupling models.

• Thermal comfort may not be the only factor that drives occupant’s adaptation to the environment.
Standard metrics for other sensations are necessary to obtain a holistic performance evaluation approach.

• Occupant behaviors also caused built environment variation from various aspects. Occupants may
choose to adjust to the indoor environment for their most concerned element regardless of others.

Future research may include extended and detailed research to validate the conclusions above,
using measured energy use to investigate the simulation accuracy with the supplementary occupant
behavior input, and testing the ABM and simulation integration function on multiple test bed buildings
to expand the use of the proposed framework.
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