## **Questionnaire for Industrialized Construction Maturity Evaluation of Building Projects**

Dear experts,

Thank you very much for taking the time to participate in this survey. We belong to the researchers of the National Engineering Technology Research Center for Prefabrication Construction in Civil Engineering (NETRC PCCE) of Tongji University, and we are currently conducting research work on "Maturity Evaluation of Industrial Construction of Construction Projects". There are no "correct" and "wrong" answers to all questions in the questionnaire. Based on your own experience and feelings in the construction industrialization practice, please give you the choice that best reflects the actual situation. The filling process is expected to take you about 20 minutes. Thank you for your participation!

We attach great importance to the strict confidentiality of your personal information and solemnly promise that the questionnaire will only be used for academic research.

Contact us : victor-liu@outlook.com

1.



国家土建结构预制装配化工程技术研究中心 National Engineering Technology Research Center for Prefabrication Construction in Civil Engineering

The maturity of industrial construction of a construction project refers to the ability level of the project to successfully and reliably implement the project using the technology related to industrial construction under predetermined goals and conditions. This study divides the evaluation indicators into two areas: "Enablers" and "Results". "Enablers" describe what the project should do to achieve the goal, and "Results" describe the achievement of the project's goals, and Figure 1 presents the evaluation dimensions that correspond to the following indicators.

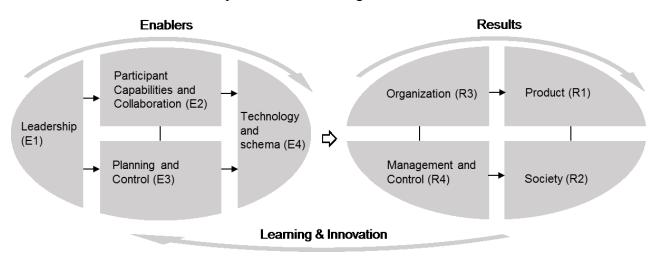



Figure 1. The framework for the evaluation model

## 2. Basic information about the project

| Please fill the blanks of the table that best matches the actual situation of the project you are   |
|-----------------------------------------------------------------------------------------------------|
| responsible for and mark the multiple choice questions in the appropriate $\square$ with $\sqrt{.}$ |

| Project name             |                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------|
| Which party do you       | □ Owner; □ Designer; □ Construction contractor; □ Subcontractor of the                             |
| belong to:               | construction contractor; □ Consultant/supervisor; □ Component supplier; □ Others:                  |
| Project investment       | Total investment (100 million yuan):                                                               |
| situation                | Construction and installation cost (yuan / $m^2$ ):                                                |
|                          | The estimated cost of construction and installation using traditional techniques                   |
|                          | (yuan/m <sup>2</sup> ):                                                                            |
| Project delivery method  | DBB DB EPC CM-at GC Others:                                                                        |
| The building area and    | Building area (10,000 m <sup>2</sup> ):                                                            |
| number of floors         | The number of above-ground floors:                                                                 |
|                          | The number of underground floors:                                                                  |
| Project duration         | Total duration (Day):                                                                              |
|                          | start date (y/m/d):                                                                                |
|                          | completion date (y/m/d):                                                                           |
| Prefabricated structural | □ Prefabricated assembled shear wall structure; □ In-situ structure external slab                  |
| system                   | system; $\Box$ Assembled frame external slab system; $\Box$ Assembled shear wall system;           |
|                          | □ Stacked shear wall; □ Others:                                                                    |
| Prefabricated            | Prefabricated components:                                                                          |
| components or parts      | □ Beam; □ Column; □ Floor slab; □ Floor slab; □ External load-bearing wall panel;                  |
|                          | □ Internal load-bearing wall panel; □ External wall panel; □ Internal partition wall               |
|                          | panel; $\Box$ Balcony panel or air-conditioning panel; $\Box$ Stairs; $\Box$ Daughter wall; $\Box$ |
|                          | Other:                                                                                             |
|                          | Prefabricated parts:                                                                               |
|                          | $\Box$ Exterior window $\Box$ Integrated toilet $\Box$ Whole cabinet $\Box$ Storage room $\Box$    |
|                          | Prefabricated pipe well $\square$ Pipeline system $\square$ Prefabricated flue $\square$ Others:   |

## 3. "Enablers" area

Please tick the option on the right side of the table that best matches the actual situation of the project you are responsible for. Here evaluation scores from 1 to 5 stand for "extremely non-conformity", "unconformity", "uncertain", "reluctantly conformity", and "extremely conformity" respectively.

| Code I | Indicators  | Practical analysis elements |                                             | Yo | ur ra | ting |   |   |
|--------|-------------|-----------------------------|---------------------------------------------|----|-------|------|---|---|
|        | Coue        | Inuicator s                 | Tractical analysis clements                 | 1  | 2     | 3    | 4 | 5 |
| ſ      |             |                             | Recognize and facilitate the application of |    |       |      |   |   |
|        | <b>F1 1</b> | Owner's cognition and       | industrial housing technology               |    |       |      |   |   |
|        | E1.1        | attitude                    | Recognize and facilitate coordination and   |    |       |      |   |   |
|        |             |                             | communication among all parties involved    |    |       |      |   |   |

|             |                           | Establish a work performance system for            |      |         |        |        |       |
|-------------|---------------------------|----------------------------------------------------|------|---------|--------|--------|-------|
|             |                           | industrialized construction projects               |      |         |        |        |       |
| -           |                           | Recognize and are willing to change the            |      |         |        |        |       |
|             | Contractors' accrition    |                                                    |      |         |        |        |       |
| E1.2        | Contractors' cognition    | traditional way of working                         |      |         |        |        |       |
|             | and attitude              | Establish a work performance system for            |      |         |        |        |       |
|             |                           | industrial housing projects                        |      |         |        |        |       |
| <b>FA 1</b> | Designer's experience     | Has a good reputation and industry qualifications  |      |         |        |        |       |
| E2.1        | and ability               | Experience with similar projects                   |      |         |        |        |       |
| БЭЭ         | Construction contractor's | Has a good reputation and industry qualifications  |      |         |        |        |       |
| E2.2        | experience and ability    | Experience with similar projects                   |      |         |        |        |       |
| E2.3        | Component supplier's      | Has a good reputation and industry qualifications  |      |         |        |        |       |
| E2.3        | experience and ability    | Experience with similar projects                   |      |         |        |        |       |
|             |                           | Participants established a cooperative             |      |         |        |        |       |
|             |                           | relationship based on the contract                 |      |         |        |        |       |
| E2.4        | Cooperation willingness   | Participants have long-term cooperation            |      |         |        |        |       |
|             |                           | experience and establish strategic partnerships at |      |         |        |        |       |
|             |                           | the enterprise level                               |      |         |        |        |       |
|             |                           | Use cross-organizational information               |      |         |        |        |       |
|             |                           | communication channels, such as BIM, supply        |      |         |        |        |       |
|             |                           | chain management platform                          |      |         |        |        |       |
| E2.5        | Collaboration channels    | Cross-organizational personnel collaboration,      |      |         |        |        |       |
|             |                           | such as construction personnel stationed in the    |      |         |        |        |       |
|             |                           | component plant, component plant personnel         |      |         |        |        |       |
|             |                           | stationed on-site, etc.                            |      |         |        |        |       |
|             |                           | Set clear and reasonable project goals according   |      |         |        |        |       |
|             |                           | to project characteristics                         |      |         |        |        |       |
|             |                           | Quantify the target and formulate a measurement    |      |         |        |        |       |
| E3.1        | Goal setting              | and control plan                                   |      |         |        |        |       |
|             |                           | Set a new technology application plan, such as     |      |         |        |        |       |
|             |                           | new construction and installation process          |      |         |        |        |       |
|             |                           | application                                        |      |         |        |        |       |
|             |                           |                                                    |      | Natio   | nal St | andaro | d 🗆   |
|             |                           | Main standards and norms adopted by the project    | Indu | ustry S | Standa | rd 🗆 I | Local |
| E3.2        | Norms and standards       |                                                    |      | S       | Standa | rd     |       |
|             |                           | Each participant has established and used          |      |         |        |        |       |
|             |                           | enterprise standards (please comprehensively       |      |         |        |        |       |
|             |                           | consider each participant)                         |      |         |        |        |       |

|      |                  | Construction schedule control is standardized,     |                  |  |   |  |
|------|------------------|----------------------------------------------------|------------------|--|---|--|
|      |                  | forming a standard operating process and           |                  |  |   |  |
|      |                  | standard management plan                           |                  |  |   |  |
|      |                  | Quantify, measure, and track periods of key        |                  |  |   |  |
|      |                  | construction processes, such as recording          |                  |  |   |  |
| E3.3 | Schedule control | transportation delay rate and component            |                  |  |   |  |
|      |                  | installation time                                  |                  |  |   |  |
|      |                  | Continuously seek the optimization plan of         |                  |  |   |  |
|      |                  | construction schedule control                      |                  |  |   |  |
|      |                  | Adjustable space is considered and reserved in     |                  |  |   |  |
|      |                  | the schedule                                       |                  |  |   |  |
|      |                  | Change control is standardized, forming standard   |                  |  |   |  |
|      |                  | operating procedures and standard management       |                  |  |   |  |
|      |                  | plans                                              |                  |  |   |  |
|      |                  | Quantify, measure, and track the key processes     |                  |  |   |  |
|      |                  | of change control, such as recording the location, |                  |  |   |  |
|      |                  | number of changes, and engineering volume          |                  |  |   |  |
|      |                  | involved                                           |                  |  |   |  |
| E3.4 | Change control   | Continuously seek optimization solutions for       |                  |  |   |  |
|      |                  | change control                                     |                  |  |   |  |
|      |                  | The design drawing is sufficiently detailed and    |                  |  |   |  |
|      |                  | conforms to the actual situation of the component  |                  |  |   |  |
|      |                  | factory and the site                               |                  |  |   |  |
|      |                  | Owner's needs are determined and maintained in     |                  |  |   |  |
|      |                  | the early stage of the project                     |                  |  |   |  |
|      |                  | Quality control is Standardized, forming standard  |                  |  |   |  |
|      |                  | operating procedures and standard management       |                  |  |   |  |
|      |                  | plans                                              |                  |  |   |  |
|      |                  | Quantify, measure, and track key quality control   |                  |  |   |  |
|      |                  | processes, such as retaining component             |                  |  |   |  |
|      |                  | installation image information, measuring          |                  |  |   |  |
|      |                  | component flatness                                 |                  |  |   |  |
| E3.5 | Quality control  | Continuously seek optimization solutions for       |                  |  | + |  |
|      |                  | quality control                                    |                  |  |   |  |
|      |                  | Conduct model room testing, identify quality       |                  |  |   |  |
|      |                  | hazards early in the construction phase            |                  |  |   |  |
|      |                  | Prepared for the compression of the construction   | $\left  \right $ |  | + |  |
|      |                  | period, and can guarantee the quality when the     |                  |  |   |  |
|      |                  |                                                    |                  |  |   |  |
|      |                  | construction period is compressed                  |                  |  | - |  |
| F2 ( | Cost control     | Cost control is standardized, forming standard     |                  |  |   |  |
| E3.6 | Cost control     | operating procedures and standard management       |                  |  |   |  |
|      |                  | plans                                              |                  |  |   |  |

|             |                           |                                                    |   | 1 |  |
|-------------|---------------------------|----------------------------------------------------|---|---|--|
|             |                           | Quantify, measure, and track key cost control      | 1 |   |  |
|             |                           | processes, such as statistical analysis of the     |   |   |  |
|             |                           | construction site work to reduce inefficient labor |   |   |  |
|             |                           | Continuously seek optimization solutions for cost  | 1 |   |  |
|             |                           | control                                            |   |   |  |
|             |                           | Adopt assembly type special quota                  |   |   |  |
|             |                           | Compare and analyze multiple prefabricated         |   |   |  |
|             |                           | systems based on project characteristics           |   |   |  |
| E4.1        | Prefabricated technology  | Identify the key management points and             | 1 |   |  |
| Ľ4,1        | system                    | difficulties of the selected technology            | 1 |   |  |
|             |                           | Comprehensive consideration of room function,      |   |   |  |
|             |                           | available area, price, planning, and other factors | 1 |   |  |
|             |                           | Scheme design, preliminary design consider the     |   |   |  |
|             | Advance work of IC        | later component split                              | 1 |   |  |
| E4.2        |                           | Scheme design, preliminary design consider the     |   |   |  |
|             | design                    | constraints of later production, transportation,   | 1 |   |  |
|             |                           | construction, and other links                      | 1 |   |  |
|             |                           | Component design according to the national         |   |   |  |
|             | Decimient internet        | standard atlas of components                       | 1 |   |  |
| E4.3        | Design with component     | In the case of meeting the prefabrication rate,    |   |   |  |
|             | confirmation              | reduce the appearance of heterosexual              | 1 |   |  |
|             |                           | components and non-standard components             | 1 |   |  |
|             |                           | Relevant parties can provide timely information    |   |   |  |
| <b>F</b> 44 | Detail design and process | in the process of deepening the design             | 1 |   |  |
| E4.4        | matching                  | Result files of the deepening design meet the      |   |   |  |
|             |                           | needs of component automatic production            | 1 |   |  |
|             |                           | Automatic production method based on a digital     |   |   |  |
|             |                           | drive                                              | 1 |   |  |
| E4.5        | Component production      | Components such as doors and windows are           |   |   |  |
|             |                           | assembled with the component in advance in the     | 1 |   |  |
|             |                           | component factory                                  | 1 |   |  |
|             |                           | Carry out simulation or calculation of             |   |   |  |
|             |                           | transportation schemes, such as simulation of      |   |   |  |
| E4.6        | Component transportation  | vehicle scheduling                                 |   |   |  |
|             |                           | Implement measures to protect components           |   |   |  |
|             |                           | during transportation                              |   |   |  |
|             | Construction with         | Simulate or test the hoisting and construction     |   |   |  |
| E4.7        | Construction with         | plan, such as using BIM software to simulate       |   |   |  |
|             | component assembly        | hoisting                                           |   |   |  |
|             | component assembly        | hoisting                                           |   |   |  |

|      |                           | There are corresponding solutions to the site       |  |  |  |
|------|---------------------------|-----------------------------------------------------|--|--|--|
|      |                           | space constraints, such as the use of multiple      |  |  |  |
|      |                           | hoisting methods                                    |  |  |  |
|      |                           | Apply industrialized interior decoration (if this   |  |  |  |
|      |                           | item is not available, the last two items do not    |  |  |  |
|      |                           | need to be filled)                                  |  |  |  |
| E4.8 | T 1 / 1 1 1 /             | Consider the coordination between the main          |  |  |  |
| £4.0 | Industrialized decoration | structure and the interior decoration in the design |  |  |  |
|      |                           | stage                                               |  |  |  |
|      |                           | Realize the integration of the whole bathroom,      |  |  |  |
|      |                           | whole kitchen and pipeline system                   |  |  |  |
| E4.0 |                           | Project operational requirements are valued early   |  |  |  |
| E4.9 | Operation preparation     | and prepared during the design phase.               |  |  |  |

## 4. "Results" area

Please tick the option on the right side of the table that best matches the actual situation of the project you are responsible for. Here evaluation scores from 1 to 5 stand for "extremely non-conformity", "unconformity", "uncertain", "reluctantly conformity", and "extremely conformity" respectively.

|      | <b>T</b> 1• /            |                                                     |     | Y        | our ra | ting |      |
|------|--------------------------|-----------------------------------------------------|-----|----------|--------|------|------|
| Code | Indicators               | Practical analysis elements                         | 1   | 2        | 3      | 4    | 5    |
|      |                          | The eveness monomorphylicities rate in the          |     | %-30%    | %      | □30% | -40% |
| R1.1 | Prefabrication rate      | The average monomer prefabrication rate in the      | □40 | □40%-50% | %      | □50% | 60%  |
|      |                          | project                                             | □>6 | 0%       |        |      |      |
|      |                          | In the industrial construction projects of the same |     |          |        |      |      |
| R1.2 | Practical performance    | customer positioning, the room function is better   |     |          |        |      |      |
|      |                          | than the average level                              |     |          |        |      |      |
|      |                          | In the industrial construction projects of the same |     |          |        |      |      |
| R1.3 | Operating and            | customer positioning, the use cost (modification,   |     |          |        |      |      |
| K1.5 | maintenance savings      | electricity, and water) saved by design and         |     |          |        |      |      |
|      |                          | performance is better than the average              |     |          |        |      |      |
| R1.4 | Owner's satisfaction     | The owner is very satisfied with the project        |     |          |        |      |      |
| K1.4 | Owner's satisfaction     | deliverables (only the deliverables are evaluated)  |     |          |        |      |      |
|      |                          | The project independently developed some            |     |          |        |      |      |
| R2.1 | Technological innovation | patented technologies, which have obvious           |     |          |        |      |      |
| N2.1 |                          | effects on improving the building construction      |     |          |        |      |      |
|      |                          | level and quality and efficiency.                   |     |          |        |      |      |
|      |                          | Among the industrialized residential projects       |     |          |        |      |      |
| R2.2 | Environmentally friendly | with the same customer positioning, the             |     |          |        |      |      |
|      |                          | environmental protection benefits of the four-      |     |          |        |      |      |

|       |                         | section one-project project are better than the    |      |        |         |         |         |
|-------|-------------------------|----------------------------------------------------|------|--------|---------|---------|---------|
|       |                         | average level                                      |      |        |         |         |         |
|       |                         | The project won the honors of Innovative           | □ N  | one 🗆  | Dist    | rict le | vel 🗆   |
| R2.3  | Honors or awards        | Project, Demonstration Project, Magnolia           | City | level  | □ Prov  | vincial | l level |
|       |                         | Award, Luban Award, etc.                           | □ Na | ationa | l level |         |         |
|       |                         | Information communication and technical            |      |        |         |         |         |
|       | Participants            | disclosure between project participants are        |      |        |         |         |         |
| R3.1  | communication           | smooth, without information delays and             |      |        |         |         |         |
|       | efficiency              | inefficiency. Participants are satisfied with the  |      |        |         |         |         |
|       |                         | communication effect                               |      |        |         |         |         |
|       |                         | Participants are satisfied with the cooperation    |      |        |         |         |         |
| R3.2  | Participants' long-term | method and the distribution of risks and benefits  |      |        |         |         |         |
| K3.2  | cooperation willingness | and are willing to cooperate again with other      |      |        |         |         |         |
|       |                         | participants of the project                        |      |        |         |         |         |
|       |                         | Compared with the planned construction period,     |      |        |         |         |         |
|       |                         | the project is completed on time or even ahead of  |      |        |         |         |         |
| R4.1  | Schedule                | schedule                                           |      |        |         |         |         |
| 174.1 | Selledule               | Compared with the construction period of similar   |      |        |         |         |         |
|       |                         | industrialized houses of the same type, the        |      |        |         |         |         |
|       |                         | construction period is less than the average level |      |        |         |         |         |
|       |                         | Compared with the planned quality regulations,     |      |        |         |         |         |
|       |                         | the project meets quality standards                |      |        |         |         |         |
| R4.2  | Quality                 | Compared with the quality of similar industrial    |      |        |         |         |         |
|       |                         | houses of the same type, the quality level is      |      |        |         |         |         |
|       |                         | greater than the average level                     |      |        |         |         |         |
|       |                         | Compared with the planned cost, the project cost   |      |        |         |         |         |
|       |                         | is lower                                           |      |        |         |         |         |
| R4.3  | Cost                    | Compared with the cost of similar industrialized   |      |        |         |         |         |
|       |                         | buildings of the same type, the project cost is    |      |        |         |         |         |
|       |                         | largely below average                              |      |        |         |         |         |

Thank you again for your great support for our research!

If you need, you can leave your personal mailbox: \_\_\_\_\_\_, and we will send the analysis results to you for review after the data analysis is completed. You can also leave your valuable suggestions for our research here:

We wish you and your family a very happy life!