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Abstract: Conventionally, liquefaction-induced settlements have been predicted through numerical or
analytical methods. In this study, a machine learning approach for predicting the liquefaction-induced
settlement at Pohang was investigated. In particular, we examined the potential of an artificial neural
network (ANN) algorithm to predict the earthquake-induced settlement at Pohang on the basis of
standard penetration test (SPT) data. The performance of two ANN models for settlement prediction
was studied and compared in terms of the R2 correlation. Model 1 (input parameters: unit weight,
corrected SPT blow count, and cyclic stress ratio (CSR)) showed higher prediction accuracy than
model 2 (input parameters: depth of the soil layer, corrected SPT blow count, and the CSR), and the
difference in the R2 correlation between the models was about 0.12. Subsequently, an optimal ANN
model was used to develop a simple predictive model equation, which was implemented using a
matrix formulation. Finally, the liquefaction-induced settlement chart based on the predictive model
equation was proposed, and the applicability of the chart was verified by comparing it with the
interferometric synthetic aperture radar (InSAR) image.
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1. Introduction

The Pohang earthquake (Mw = 5.4) that struck the Heunghae Basin, around Pohang City,
on 15 November 2017, had a damaging effect, leading to liquefaction and lateral spreading. Since the
event, several attempts have been made to study the post-earthquake damage [1–5]. However, little
attention has been paid to the settlement resulting from the liquefaction. This study tried to predict the
liquefaction-induced settlement of Pohang by applying a machine learning algorithm to a standard
penetration test (SPT) data and proposes a liquefaction settlement chart based on the results. Before
constructing a structure on the ground, design is performed based on the ground investigation results.
In addition, many sites, including Pohang, have a lot of SPT data. The SPT is a common method to get
ground investigation data.

Assessing liquefaction-induced settlements is a major challenge in geotechnical earthquake
engineering since a variety of phenomena such as re-sedimentation or reconsolidation (volumetric
strain) of the liquefied soil, ground loss due to venting of liquefied soil (i.e., sand boils or ejecta),
lateral spreading under zero volume change, soil-structure interaction ratcheting, and bearing capacity
failure are associated with them [6]. For numerical analysis, earthquake-induced liquefaction in the
free-field can be interpreted as a 1D phenomenon occurring along a vertical soil column in which
earthquake-induced cyclic shear and compressive forces increase the pore pressure and thereby cause
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a reduction in the transient stiffness and strength of the soil. After liquefaction, reconsolidation occurs
in the soil owing to the dissipation of the excess pore pressure (∆u) by means of water flow, and it
results in the vertical settlement of the ground surface [7].

Tang et al. [8] classified the significant parameters controlling seismic soil liquefaction into seismic
parameters, site conditions, and soil parameters. Out of 22 influence factors, they identified 12 as being
significant, and they were the magnitude, epicentral distance, duration, fines content, particle size,
grain composition, relative density, drainage condition, degree of consolidation, thickness of the sand
layer, depth of the sand layer, and groundwater table. Over the years, researchers have considered
some of these significant influence factors for predicting earthquake-induced liquefaction and its effects
through machine learning techniques [9,10].

Therefore, simple artificial neural network (ANN) models were adopted to predict liquefaction-
induced settlement on the basis of SPT database from the Korea Geotechnical Information DB
system [11] and the Pohang earthquake. In the following sections, the research methodology and
findings are presented.

2. Motivation and Study Objective

Liquefaction-induced settlement is often calculated by considering numerous parameters and
following several complex analytical and numerical procedures. However, obtaining such parameters
in the field may not be practicable in most cases, as some of the required data may not be available.
Hence, there is a need for an alternative simple settlement prediction procedure that requires a few
parameters that are readily obtained from a field observations database. Therefore, the objective of this
study is to fill this gap by presenting a tool to predict liquefaction-induced settlement that may occur
when an earthquake occurs in the field using SPT data obtained in the past.

3. Methodology

The database used in this study was collected from the Korea Geotechnical Information DB
system [11] and the UBCSAND constitutive effective stress model [12]. Through a 1D column analysis,
the UBCSAND model estimates the shear-induced deformation from SPT data and earthquake
information. SPT data were obtained for five different borehole sites near the epicenter of the
earthquake at Pohang. The summary statistics of the data set are presented in Table 1 and the details of
the database are in Table A1.

Table 1. Summary statistics of the data set.

Input Parameters Output

Depth (m) Unit Weight (kN/m3) N1(60) CSR Settlement (mm)

Count 100 100 100 100 100

Mean 10.500 18.960 13.620 0.314 0.898

Std. 5.795 1.869 8.722 0.045 0.874

Min. 1 16 0 0.21 0

25% 5.75 18 7 0.29 0.3

50% 10.5 20 11 0.32 0.6

75% 15.25 21 25 0.34 1.4

Max. 20 21 25 0.39 3.4

The data set comprised 100 data points (20 data for each borehole) along with the corresponding
settlement values. The locations of the boreholes considered in the study are shown in Figure 1.
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Figure 1. Locations of boreholes in Pohang City considered in this study.

3.1. Data Division and Preprocessing

The settlement prediction process comprises training and testing. Seventy percent of the entire
data set was used for training, and the remaining 30% was used for testing. The data were preprocessed
before training the algorithm, to ensure quick convergence and minimize the generalization error. This
involved scaling the input variables to the range −1 to +1 by using Equation (1).

Xn =

(
(b− a)
(B−A)

×Xunscaled

)
+

(
a−

[
A×

(b− a)
(B−A)

])
(1)

where A and B are the minimum and maximum values of the unscaled data set, respectively, and a and
b are the minimum and maximum values of the scaled data set, respectively.

3.2. Overview of the Artificial Neural Network Model

3.2.1. Basic Concept of ANN

Artificial neural networks (ANNs) are complex mathematical models inspired by biological
neurons, and they emulate biological neural networks. They are widely used for nonlinear system
modeling and system identification [13]. A typical ANN consists of an input layer, one or more hidden
layers, and an output layer. The numbers of layers and neurons in each layer depend on the complexity
of the problem under consideration.

3.2.2. Mathematical Representation of ANN Architecture

A neural network in its simplest form can be used to model the relationship between data points
x and the corresponding real-valued targets y. Mathematically, if our inputs (x) comprise n features,
we can choose weights (w) and bias (b) such that our prediction (y’) is given by Equation (2).

y′ = w1 · x1 + · · ·+ wn · xn + b (2)
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For easy computation, all the features can be collected into a vector x and all weights into a vector
w to express our model compactly using the dot product notation—Equation (3).

y′ = wτx + b (3)

ANNs can learn by example (supervised learning). In ANNs, a set of input variables are multiplied
by adjustable connection weights to produce the output. When input data are fed to an ANN, the
ANN adjusts through a feed-forward back-propagation technique to determine the rules governing
the relationship between the concerned variables. Figure 2 shows a graphical depiction of a typical
feedforward ANN architecture. A neural network is trained using error back-propagation.

Figure 2. Feedforward neural network architecture.

Two ANN models were considered in this study, and they are shown in Figure 3. Both models
had three input variables. The input variables of model 1 were unit weight (γ), corrected SPT blow
count (N1(60)), and cyclic stress ratio (CSR), while those of model 2 were depth of the soil layer (d),
N1(60), and CSR.

Figure 3. Architecture of the artificial neural network (ANN); (a) model 1 and (b) model 2.

The choice of input parameters was based on domain knowledge. They were chosen by considering
how the seismic and soil properties influence liquefaction-induced settlement. The soil properties
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considered were γ, N1(60), and d, while the CSR represented the seismic property. The CSR quantifies
the demand imposed on the critical soil layer as a result of the seismic ground motion.

4. Results and Discussion

Table 2 summarizes the performance statistics of the two ANN models used for settlement
prediction. For the test data set, models 1 and 2 had R2 (coefficient of determination) values of 0.8601
and 0.7352 and MAE (mean of absolute errors) values of 0.1941 and 0.3136, respectively.

Table 2. Performance statistics of the ANN models.

Model Input Parameters Output No. of Epochs R2 MAE

1 γ, N1(60), CSR
S

60 0.8601 0.1941

2 d, N1(60), CSR 60 0.7352 0.3136

After the models were trained, the root mean square error (RMSE) and loss were plotted to check
the models’ performance for the training and test data sets, as shown in Figures 4 and 5. The x-axis
represents the number of epochs (i.e., the number of times the model ran through the entire training/test
data set and updated the weights).

Figure 4. Plot of the (a) root mean square error (RMSE) and (b) loss for ANN model 1.

Figure 5. Plot of the (a) RMSE and (b) loss for ANN model 2.

Figures 6 and 7 show the performance of the ANN models in terms of R2 for the test data set.
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Figure 6. Scatter plot showing the performance of ANN model 1 for the test data set.

Figure 7. Scatter plot showing the performance of ANN model 2 for the test data set.

A comparison of models 1 and 2 in terms of the prediction accuracy shows that the prediction
accuracy of the former is higher. The difference in the R2 correlation between the two models is
about 0.12.

From the results shown in Figures 5 and 6, it can be concluded that there exists a strong correlation
between the model predictions and the actual settlement in both cases considered.

In this study, ANN models composed of two or more hidden layers were considered, and it was
found that the difference in accuracy between models with two or more hidden layers and the model
with the single hidden layer was not significant. Therefore, an ANN model using one layer was used.



Sustainability 2020, 12, 4001 7 of 16

4.1. ANN-Based Numerical Equation

A simple equation was developed to predict the liquefaction-induced settlement. The optimal
ANN model structure used for the purpose is shown in Figure 8, and its associated weights with biases
are presented in Table 3.

Figure 8. Structure of the optimal ANN model.

Table 3. Weight matrix and bias vector for the ANN model.

W1

−2.231 2.729 −2.500

B1

−9.631
−8.874 −3.629 −15.703 −6.179
−6.271 −5.433 −1.570 −5.334
−1.100 5.470 −3.295 −8.614
5.617 7.774 1.701 −7.317
−1.866 −4.224 −9.756 −0.926
−2.116 7.453 −1.157 −7.489
0.314 −1.285 −4.980 −6.722

W2 0.579 −1.853 −1.058 −1.591 1.006 1.964 −0.852 −0.320 B2 1.006
Note: Matrices W1 (8 × 3), B1 (8 × 1), W2 (1 × 8) and B2 (1 × 1) were used in Equation (2)

The optimal-ANN-model-based numerical equation for settlement prediction can be expressed as
Equation (4).

fsig = σ(z) =
1

1 + e−z (4)

where T12 is the output variable, namely, the predicted settlement value (S), Bk is the bias value at the
output layer, Wkj is the connection weight between the jth node in the hidden layer and the kth node
in the output layer, Bj is the bias value of the jth hidden node, Wji is the connection weight between
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the ith input node and the jth hidden node, Xi is the ith input variable, and fsig is the sigmoid transfer
function given by Equation (5).

S = T12 = Bk +
11∑

j=4

Wkj × fsig[B j +
3∑

i=1

(W jiXi)

 (5)

For the simplification of the calculation process, the weights and biases were arranged in a
matrix form.

4.2. Example of Settlement Calculation Using the ANN Model

For γ = 18 kN/m3, N1(60) = 13, and CSR = 0.34, the input vector X is

X =


18
13

0.34


The normalized input vector (Xn) is calculated from Equation (1) by using the A and B values in

Table 1:

Xn =


−0.200
0.040
0.444


Note: (a, b) = (−1, 1)
The settlement (S) is calculated using the normalized input vector as follows:

W1×Xn + B1 =



−2.231 2.729 −2.500
−8.874 −3.629 −15.703
−6.271 −5.433 −1.570
−1.100 5.470 −3.295
5.617 7.774 1.701
−1.866 −4.224 −9.756
−2.116 7.453 −1.157
0.314 −1.285 −4.980


×


−0.200
0.040
0.444

 +



−9.631
−6.179
−5.334
−8.614
−7.317
−0.926
−7.489
−6.722


=



−10.187
−11.529
−4.995
−9.640
−7.374
−5.058
−7.282
−9.049



fsig(W1 ×Xn + B1) =



3.76E− 05
9.84E− 06
6.73E− 03
6.51E− 05
6.27E− 04
6.32E− 03
6.87E− 04
1.17E− 04
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S = [0.579 − 1.853 − 1.058− 1.591 − 0.423 1.964− 0.852 − 0.320]

×



3.76× 10−5

9.84× 10−6

6.73× 10−3

6.51× 10−5

6.27× 10−4

6.32× 10−3

6.87× 10−4

1.17× 10−4


+ [1.006]

S = [1.010]

The actual value of the settlement was 1 mm, and the value predicted using the ANN model was
1.010 mm.

4.3. Sensitivity Analysis

Sensitivity analysis was performed to determine the effect of the input parameters on the settlement
prediction. The measure of variable importance was obtained using the permutation importance
approach for random forests, described by Breiman [14]. This approach involves measuring the drop
in the ANN model performance when a feature is unavailable.

As shown in Figures 9 and 10, the unit weight had the strongest influence on the settlement
prediction in the case of ANN model 1, while the depth of the soil layer had the strongest influence
on the predicted settlement in the case of model 2. In both cases, N1(60) had a stronger influence than
the CSR.

Figure 9. Relative importance of the input parameters of ANN model 1.



Sustainability 2020, 12, 4001 10 of 16

Figure 10. Relative importance of the input parameters of ANN model 2.

4.4. Parametric Study and Extrapolation beyond the Training Data

A parametric study was conducted to verify the validity and robustness of the optimal ANN
model, and it involved generating a synthetic data set within the range of the training data set to test
the model. For a given unit weight of soil, the settlement was determined based on the unit thickness
of each layer. As shown in Figure 11a, the amount of predictive settlement generally increased with
increasing a CSR and decreased with an increase in N1(60). However, it is necessary to expand the
range of N1(60) and CSR obtained through the parametric study due to some field data being beyond
the range. Therefore, this study proposed a simple settlement chart based on a parametric study as
shown in Figure 11b.

Figure 11. Variation of settlement with (N1)60 and CSR for γ = 18 kN/m3. (a) Settlement relationship
between (N1)60 and CSR; (b) settlement chart based on the ANN method.
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4.5. Application of Settlement Chart Based on the ANN Method

The proposed settlement chart from the optimal ANN model was assessed using the SPT data
obtained from three additional boreholes at the Pohang site. The locations of the boreholes and the
measured settlement obtained from interferometric synthetic aperture radar (InSAR) imaging are
shown in Figure 12.

Figure 12. A settlement map from interferometric synthetic aperture radar (InSAR) and a location of
extra boreholes (BHs).

The InSAR procedure was recommended by the Remote Sensing Lab at Kangwon National
University, Korea [15]. Following the procedure, the settlement was analyzed by the Pohang satellite
images between November 4 and 16, 2017, from Google Earth. Such Google Earth images were used to
generate the settlement map in Figure 12 by using a freely distributed SentiNel Application Platform
(SNAP) program by the European Space Agency [16]. With an average unit weight of 18 kN/m3, N1(60)
values were converted from the SPT blow count (NSPT) of boreholes [17]. The CSR can be calculated
from Equation (6) [18].

CSR = (τav/σ′vo) = 0.65(amax/g)(σvo/σ′vo)γd (6)

where amax = peak acceleration at the ground surface from the earthquake (this study used the
Pohang Earthquake, 0.2712 g); g = acceleration of gravity; σvo and σ’vo are total and effective vertical
overburden stresses, respectively; and γd = stress reduction coefficient.

The calculated total settlement for the additional boreholes, 1, 2, and 3, using the optimal ANN
model are 17.14, 19.77, and 13.88 mm, respectively, as shown in Table 4. It can be observed that
these settlement values are close to those measured by the InSAR imaging. Unlike the numerical
analysis approach, the proposed chart between (N1)60-CSR-Settlement from the optimal ANN model
has been proven to estimate settlement values with minimal input parameters. For an earthquake with
similar impact and magnitude, this simple ANN model can be deployed as a handy tool to obtain
liquefaction-induced settlement in the field.
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Table 4. Predicted settlement due to Pohang earthquake using the proposed settlement chart.

Depth
BH-B-1 BH-B-2 BH-B-3

Nspt (N1)60 CSR S(mm) Nspt (N1)60 CSR S(mm) Nspt (N1)60 CSR S(mm)

0 3 4 0.39 4.04 4 7 0.39 3.47 4 6 0.39 3.66

1 4 5 0.39 3.85 5 8 0.39 3.28 14 23 0.39 0.4

2 5 8 0.39 3.28 6 10 0.39 2.9 7 11 0.39 2.71

3 7 11 0.39 2.71 7 12 0.39 2.52 7 11 0.39 2.71

4 9 14 0.38 2.08 9 13 0.38 2.26 8 12 0.38 2.44

5 13 19 0.38 1.18 10 13 0.38 2.26 13 18 0.38 1.36

6 21 28 0.38 0 11 14 0.38 2.08 17 22 0.38 0.6

7 29 36 0.37 0 17 20 0.37 1 21 25 0.37 0

8 37 43 0.37 0 42 48 0.37 0 24 27 0.37 0

9 44 49 0.36 0 36 39 0.36 0 28 31 0.36 0

10 50 53 0.35 0 50 53 0.35 0 47 50 0.35 0

11 50 51 0.34 0

Total Settlement 17.14 Total Settlement 19.77 Total Settlement 13.88

5. Conclusions

In this study, the potential of an ANN to predict the liquefaction-induced settlement at Pohang
was examined. Two ANN models were trained using a back-propagation algorithm. Both models
had three input variables. The input variables of model 1 were unit weight, corrected SPT blow count
(N1(60)), and CSR, while those of model 2 were depth of the soil layer, N1(60), and CSR. The output of the
models was the settlement (S). After the training and testing of the models, it was evident that model 1
had higher prediction accuracy, and the difference in the R2 correlation between the two models was
about 0.12. Subsequently, the weights and biases of an optimal ANN model were used to develop a
simple predictive model equation, which was implemented using a matrix formulation.

Sensitivity analysis performed using the permutation importance algorithm indicated that
the corrected SPT blow count had a stronger influence than the CSR on the predicted settlement.
Furthermore, a parametric study showed that for a given unit weight of soil, the settlement decreased
with an increase in N1(60).

Finally, the simplified relationship between (N1)60-CSR-Settlement was proposed using the optimal
ANN model, and the cumulative settlement was predicted by applying the proposed relationship to
additional boreholes and compared with the InSAR results. The cumulative settlement had a similar
range as the InSAR displacement map. Thus, the simplified relationship of this study can be deployed
as a handy tool to obtain liquefaction-induced settlement in the field.
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Appendix A

Table A1. Details of the liquefaction-induced settlement database.

Borehole Depth (m) Unit Weight (kN/m3) N1(60) CSR Settlement (mm)

BH-A-1

1 20 11 0.33 0.50

2 20 11 0.31 0.50

3 20 14 0.29 0.80

4 20 16 0.28 1.40

5 20 5 0.27 3.30

6 20 10 0.26 3.40

7 20 5 0.27 3.40

8 20 6 0.29 2.50

9 20 9 0.3 1.60

10 20 9 0.31 1.00

11 18 25 0.31 0.40

12 18 25 0.31 0.30

13 18 25 0.32 0.20

14 18 25 0.32 0.30

15 18 25 0.32 0.30

16 18 25 0.32 0.30

17 18 25 0.32 0.30

18 18 25 0.32 0.20

19 18 25 0.31 0.30

20 18 25 0.31 0.30

BH-A-2

1 20 15 0.35 0.40

2 20 17 0.32 0.80

3 20 17 0.3 1.60

4 20 7 0.29 3.10

5 20 6 0.27 2.80

6 21 13 0.31 1.40

7 21 18 0.34 0.80

8 21 13 0.36 0.90

9 21 11 0.37 1.10

10 21 13 0.36 0.80

11 16 2 0.36 0.00

12 16 1 0.37 0.00

13 16 1 0.38 0.00

14 16 1 0.39 0.00

15 16 1 0.39 0.00

16 16 1 0.39 0.00

17 16 1 0.39 0.00

18 16 1 0.39 0.00

19 16 1 0.38 0.00

20 16 1 0.37 0.00
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Table A1. Cont.

Borehole Depth (m) Unit Weight (kN/m3) N1(60) CSR Settlement (mm)

BH-A-3

1 18 6 0.24 0.60

2 18 8 0.28 1.40

3 18 10 0.3 2.00

4 18 10 0.29 2.30

5 18 11 0.28 2.00

6 18 10 0.3 1.80

7 18 11 0.32 1.40

8 18 11 0.33 1.30

9 18 12 0.34 1.20

10 18 13 0.34 1.00

11 21 25 0.34 0.70

12 21 25 0.33 0.60

13 21 25 0.33 0.60

14 21 25 0.33 0.50

15 21 25 0.32 0.50

16 21 25 0.32 0.40

17 21 25 0.31 0.50

18 21 25 0.31 0.40

19 21 25 0.3 0.40

20 21 25 0.3 0.50

BH-A-4

1 20 5 0.23 1.10

2 20 7 0.27 1.90

3 20 18 0.27 1.60

4 20 9 0.27 2.80

5 20 6 0.26 2.80

6 20 11 0.31 1.60

7 20 9 0.34 1.40

8 21 25 0.36 0.60

9 21 25 0.38 0.60

10 21 25 0.38 0.60

11 21 25 0.38 0.60

12 21 25 0.37 0.50

13 16 7 0.22 0.00

14 16 1 0.21 0.00

15 16 0 0.21 0.00

16 16 2 0.22 0.00

17 16 3 0.22 0.00

18 16 3 0.22 0.00

19 16 3 0.22 0.00

20 16 3 0.22 0.00
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Table A1. Cont.

Borehole Depth (m) Unit Weight (kN/m3) N1(60) CSR Settlement (mm)

BH-A-5

1 20 11 0.32 0.50

2 20 10 0.31 1.60

3 20 9 0.29 2.60

4 20 11 0.3 1.90

5 20 11 0.32 1.50

6 20 10 0.33 1.40

7 20 15 0.34 0.90

8 20 15 0.35 0.80

9 21 25 0.34 0.60

10 21 25 0.34 0.60

11 21 25 0.34 0.60

12 21 25 0.33 0.60

13 21 25 0.33 0.70

14 21 25 0.33 0.70

15 18 15 0.33 1.10

16 18 11 0.33 1.40

17 18 12 0.32 1.00

18 16 14 0.32 0.10

19 16 10 0.32 0.00

20 16 7 0.32 0.00
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