
sustainability

Article

Blockchain IoT for Smart Electric Vehicles
Battery Management

Bogdan Cristian Florea *,† and Dragos Daniel Taralunga †

Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest,
061071 Bucharest, Romania; dragos.taralunga@upb.ro
* Correspondence: bogdan.florea@upb.ro
† These authors contributed equally to this work.

Received: 9 April 2020; Accepted: 12 May 2020; Published: 13 May 2020
����������
�������

Abstract: Electric Vehicles (EVs) have generated a lot of interest in recent years, due to the advances
in battery life and low pollution. Similarly, the expansion of the Internet of Things (IoT) allowed
more and more devices to be interconnected. One major problem EVs face today is the limited range
of the battery and the limited number of charging or battery swapping stations. A solution is to not
only build the necessary infrastructure, but also to be able to correctly estimate the remaining power
using an efficient battery management system (BMS). For some EVs, battery swapping can also be an
option, either at registered stations, or even directly from other EV drivers. Thus, a network of EV
information is required, so that a successful battery charge or swap can be made available for drivers.
In this paper two blockchain implementations for an EV BMS are presented, using blockchain as the
network and data layer of the application. The first implementation uses Ethereum as the blockchain
framework for developing smart contracts, while the second uses a directed acyclic graph (DAG), on
top of the IOTA tangle. The two approaches are implemented and compared, demonstrating that
both platforms can provide a viable solution for an efficient, semi-decentralized, data-driven BMS.

Keywords: blockchain; battery management; electric vehicle; state of charge estimation; Internet of
Things; smart contract; Ethereum; IOTA

1. Introduction

In recent years the development of electric vehicles has become one of the main interests for
most major automobile manufacturers. One of the most concerning aspects for consumers regarding
the adoption of electrical vehicles (EVs) is the autonomy and the lack of infrastructure in most areas,
except for large cities.

The history of electric vehicles dates back almost to the introduction of the electric motor. EVs can
be classified in the following categories: hybrid electric vehicles (HEVs), plug-in hybrid electric
vehicles (PHEVs), and battery electric vehicles (BEVs) [1]. HEVs and PHEVs are powered by two
sources: an electric motor and an internal combustion engine which can operate independently or in
parallel, while BEVs operate solely using an electric motor powered by batteries or fuel-cells (FCEV) [2].
Moreover, HEVs do not provide an external charger for the batteries, while PHEVs allow external
battery charging.

For HEVs and PHEVs, multiple drive-train configurations are available. Series operation EVs
use only the electric motor for propulsion, which is coupled with the transmission, while the internal
combustion engine is used solely to charge the battery when the state of charge is low. This method
is useful for city driving, where frequent start-stops are required. The parallel operation uses both
engines for propulsion, by simultaneously transmitting power to the wheels, thus improving the

Sustainability 2020, 12, 3984; doi:10.3390/su12103984 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-1113-6400
https://orcid.org/0000-0001-8729-9292
http://dx.doi.org/10.3390/su12103984
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/10/3984?type=check_update&version=4


Sustainability 2020, 12, 3984 2 of 25

efficiency of the vehicle. Finally, the series-parallel mode combines the features of the two previous
modes, but the design of the vehicle is more complicated [1].

On the other hand, BEVs rely solely on battery power and an electric motor for propulsion, and
both BEVs and PHEVs can be externally charged from a power source. There are two types of charges
used: (i) on-board chargers, which are often designed for small size and low weight with the usual
downside of providing a slow charge, and (ii) dedicated fast chargers that can be used in designated
locations such as charging stations. For EV charging, various methods are used, such as constant
current (CC), constant voltage (CV), constant power (CP) or a combination of these methods [1,3].

With the recent advances in battery technology [4–7], the autonomy of EVs has increased to well
over 200 km and it will probably continue to increase over the next few years. However, EV drivers
are still faced with many challenges related to battery life, battery charging time and especially the
availability of charging stations. Thus, numerous pilot projects exist for implementing inductive
charging on designated road sections, such as parking areas, traffic light stops or airport road segments
for electric buses [8,9]. Until the technology becomes mainstream, EV drivers will still depend on fixed
charging points.

One solution for this problem could be a decentralized network for battery charging or swapping,
where users or charging stations can trade energy or batteries. Moreover, such a decentralized
network can also be used by autonomous (self driving) vehicles (a new trend in vehicle development).
These vehicles must be able to process a lot of information, so that the safety of the passengers is
always ensured. Ideally, these vehicles should be able to communicate directly with other smart
vehicles on the road and share information about traffic conditions, incidents, weather, etc. A method
of machine-to-machine (M2M) communication is required so that true autonomy can be achieved.
Since these vehicles are equipped with an array of sensors, one can perceive them as IoT (Internet of
Things) devices.

To implement a decentralized IoT network of charging and swapping stations, which could allow
even regular users to provide some of these services, some vital information is necessary, such as
the type of batteries used in electric vehicles, the possibility of swapping these batteries, the state
of the battery (charge cycles, health, remaining capacity, etc.) and the location of the stations and
their availability of charging and swapping services. Such a system can be implemented using IoT,
by monitoring the battery parameters while driving and warn the user when a charge is necessary.
Due to the fact that the security of IoT applications is essential, new strategies have to be used to offer
high security and reliability for IoT networks.

Blockchain is a novel technology, which was first introduced in 2008 as the underlying network
architecture for the cryptocurrency Bitcoin [10]. The technology created an environment for
secure, anonymous transactions, using a decentralized network of devices [11]. The main goal
of the architecture was to create trust between the participants without the regulation of a central
authority [10]. This technology has found many applications outside the financial world. Wang et al.
proposed a decentralized electricity transaction model for microgrids, defining a continuous double
auction mechanism directly between the buyer and the seller, while continuously adjusting the energy
price according to market changes [12]. In [13], Khan et al. proposed and developed a method for
validating microgrid transactions using signatures of multiple producers based on their attributes.
These signatures are verified by consumers with matching attributes, without the regulation of a central
authority. Wu and Tran presented an overview for blockchain technology in sustainable energy systems,
describing different scenarios for blockchain use in energy systems [14]. In [15], Miller proposes a
survey for the use of blockchain and IoT technologies in the industrial sector, providing solutions for
supply chain management, autonomous vehicles and manufacturing plant asset management. Florea
proposed a blockchain data provider, using IOTA to integrate IoT devices to create a decentralized
data provider [11].

One of the main problems of IoT has always been the security of the communication between
the devices. Son et al. proposed a directed acyclic graph (DAG)-based IoT protocol, using IOTA for



Sustainability 2020, 12, 3984 3 of 25

securing IoT applications [16]. Odysseas and Gialelis introduced a IOTA-based sensor node system [17],
while Bartolomeu et al. used IOTA for vehicular applications [18].

This paper presents a blockchain application for electric vehicles’ (EVs) battery charge and swap,
considering two approaches: custom Ethereum blockchain and the IOTA public tangle. For both
scenarios, the performance of the system is analyzed, highlighting the advantages and disadvantages
of each method. The application is tested using lithium-polymer (LiPo) batteries driving DC motors in
an environment similar to that of an EV. The battery voltage and state of charge (SOC) is continuously
monitored and the data are stored on the blockchain, together with the required functionalities, such
as user and battery information and charge/swap requests.

In the following sections, the paper will present the general background knowledge for blockchain,
smart contracts and the IOTA tangle (Section 2), electric vehicles batteries and SOC estimation
(Section 3), the proposed application structure and test build (Section 4), followed by the results
and comparison between the two proposed methods (Section 5), the general discussion and the
conclusions (Sections 6 and 7).

2. Background

2.1. Blockchain and Distributed Ledgers

Since the introduction of blockchain in 2008, blockchain and cryptocurrencies have become
mainstream terms. The technology proposes a network similar to that of a distributed ledger
technology(DLT). Specifically, it implements a peer-to-peer (P2P) network of distributed data sets
shared over multiple locations, where every change in the ledger is reflected in all copies on the
network [19]. This means that once a change is submitted by one of the participants, it must be
validated and approved by the entire network before it is added to the ledger. To achieve this,
a consensus mechanism is required, so that the information, once accepted, cannot be altered by any
user or group of users. Different implementations of the blockchain technology provide different
methods of consensus, but in most cases consensus is achieved by means of cryptographic functions.

The first blockchain application was introduced in [10], where the cryptocurrency Bitcoin was
introduced, with the goal to replace the trust provided by a 3rd party with proof. The term blockchain
suggests that the network consists of a series (or chain) of blocks, linked together by means of a
cryptographic hash function (Figure 1). Each block can have multiple transactions (Tx1, Tx2, . . . ).
When a new block is created, the corresponding transactions are stored as a Merkle tree (or hash
tree), where each leaf (data) node is labeled with its cryptographic hash and each non-leaf node is
labeled with the hash of the labels of its children [20]. When the block is created, only the root node of
the hash tree is included in the block, which allows for old blocks to be compacted. Each new block
includes the reference to the previous block hash. The network participants (or miners) will generate
the corresponding hash of the new block with the restrictions imposed by the consensus algorithm
(difficulty of the hash function). The miners can inject a nonce in order to find a resulting hash that
respects the network specifications. Once this hash is created, the new block is added to the chain and
the other users must validate and approve the block by verifying the generated hash. Once the block
has been confirmed by the network it can no longer be changed, as any change on the block (or any of
the previous blocks) will invalidate the computed hash and will be rejected by the network. In this
way, data immutability is achieved, which is one of the main advantages of blockchain technologies
because it ensures that no single entity can have control over the data.



Sustainability 2020, 12, 3984 4 of 25

Figure 1. Typical blockchain structure [10,11].

On public blockchains, especially in the cryptocurrency applications, incentives are provided for
network participants as rewards for discovering new blocks (generating the block’s hash function).
The user (miner) that submits the valid block is rewarded using a token specific for each platform.
These tokens can be used in further transactions on the blockchain or even be exchanged for fiat
currency. This method of submitting and verification of new blocks (consensus) is called proof of
work (POW).

2.2. Ethereum and Smart Contracts

With the rapid development and adoption of the Bitcoin model, the need for an automated
transaction model was evident. In 2014, the Ethereum platform was launched, introducing smart
contracts to the blockchain [21]. The term smart contract was first introduced in [22] as a set of promises,
defined in digital form, including the protocols within which the parties will perform them. Ethereum
uses the same basic consensus mechanism of POW where the network nodes continuously mine new
blocks by means of their hash function. Similar to Bitcoin, a network token is used as an incentive for
the network participants, rewarding the node who successfully generates a valid block by a number
of tokes (ETH). To support this reward system and keep the network running, any participant who
submits a transaction to the blockchain pays a fee, called gas, in the same way that banks charge their
clients a transaction fees for their operations.

Transactions on the Ethereum blockchain can be created either externally or by smart contracts,
introducing the concept of functions to the blockchain [21]. Smart contracts are programs that are
recorded and verified on the blockchain (Figure 2). Once the contract is deployed, its code cannot be
altered, thus ensuring that the initial conditions will always be respected for any future executions.
Just like real world contracts, a smart contract on the blockchain is created between two parties and is
executed once some triggering event is set, such as a deadline or a specific target value being reached.
In [23], the architecture and applications of blockchain smart contracts are described.

Figure 2. Smart contract anatomy.



Sustainability 2020, 12, 3984 5 of 25

Many blockchain implementations provide languages for the development of smart contracts
to a certain extent of Turing-completeness. Ethereum, the most popular platform for smart contract
and decentralized apps (dApp) development, introduced Solidity, a Turing complete language that
allows the creation and deployment of smart contracts on the blockchain [21]. The code of the smart
contract is written and compiled using the available language for each specific platform. A contract
can have two main attributes: value and state [23]. Once the contract has been created and deployed,
users can create calls (execute) to the contract functions. These calls can either query the contract state
(read operations) or make changes which will result in a different state (write operations).

In Ethereum a very important difference must be made between these two types of functions.
Calling (reading) a contract function is processed immediately, since they are executed locally without
consulting the network, by accessing the current state of the blockchain. For this reason, calls do not
require gas for their execution (they do not involve any fees).

Verified transactions have the potential (although not mandatory) to change the state of the
contract (writing data). These types of executions must be validated by the entire network and the new
state of the contract must be agreed upon. Since the data are processed by the entire network, these
function calls require gas, which is determined by the number of computational steps and the amount
of data which is handled by the contract [21]. These transactions are included in blocks (mined),data
are and the change is reflected on the network once the new block is added to the blockchain (a new
consensus is reached).

When a verified transaction is submitted it can have the following outcomes based on the amount
of gas that is assigned for the transaction [21]:

• The transaction is executed successfully. In this case the amount of gas that was required by the
processing of data is subtracted from the sender’s account and transferred to the mining nodes
(which verify and process the transaction). If the sender allocated more gas than was actually
required, the difference is returned to the sender’s account.

• The transaction exceeded the gas limit set by the sender (the number of computational steps or
the amount of data were too high for the fees which the sender was willing to spend). In this case
all changes to the contract are reverted. However, the gas is still subtracted from the sender, since
the other nodes have executed the code up to a certain point.

On a privately owned network, the gas limit and cost can be controlled so that the users do not run
into these problems or their impact will be reduced. Furthermore, for specific applications, a possible
solution to the gas-related costs could be the implementation of a semi-decentralized (permissioned)
blockchain, where the cost of gas (processing) can be supported by one or more trusted nodes. This will
be the network topology proposed in this paper.

2.3. IOTA Tangle

Since the blockchain consists of a series of blocks linked together by means of their cryptographic
hash, when the number of transactions increases, the difficulty of the hash function also increases,
which means that the creation of new blocks will require longer times and greater processing
power [24]. This is currently one of the main drawbacks of public blockchain networks. The so-called
mining operation is a required mechanism to achieve consensus between all participating nodes.
To overcome the resource intensive protocols that are implemented by most platforms, various other
consensus methods have been proposed. In [25], a comprehensive study of available and proposed
consensus methods is presented. Regardless of the consensus mechanism employed, the scalability
of the blockchain will still remain an issue due to the linear fashion in which the data are stored.
For data-driven systems, which require a large number of data points, such as IoT applications, this
limitation may become an issue. To overcome this issue a novel approach was introduced by the IOTA
foundation [26].



Sustainability 2020, 12, 3984 6 of 25

The IOTA network was specifically designed with IoT applications in mind, proposing a different
method of organizing the transaction data, by using a directed acyclic graph (DAG) instead of a linear
blockchain. The IOTA DAG is often referred to as the tangle. Its main characteristic is that it allows
zero-fee and zero-value transactions [26] (Figure 3a).

(a) The tangle (b) Transaction validation path
Figure 3. IOTA structure [11,26].

IOTA uses a trinary representation of data, as opposed to the usual binary system. Balanced
trinary data can have the following states: 0, 1, or −1 (trits). Similar to how 8 bits form a byte, in IOTA
27
(
33) from a tryte. IOTA uses special trinary hashing functions for data encoding and POW, which

are described in [26].
In the usual blockchain implementation, the users have to perform the POW continuously until

a hash is successfully found. This is a power-intensive operation that discourages new users from
competing in the mining phase. In IOTA, each new transaction (tip) is attached to two previous
transactions that it must validate by performing the necessary POW. In this manner, POW is only
necessary when a node wants to create a new transaction on the network, thus validating two previous
transactions. This means that the node that actually initiates the transaction is the one that computes
the POW hash. This allows the elimination of network fees, since it is in the interest of the initiating
node for its transaction to be completed. Hence, the network fee is replaced by the “on-demand” POW
computation. Since a new transaction validates two previous transactions, the scaling problem can be
successfully solved, because more transactions on the network result in more validated transactions.

Once a new transaction is attached to the tangle it also confirms all the previous transactions
referenced by the two former tips to which it was attached. This creates a validation path (Figure 3b),
which increases the trust for all the transactions inside this path. The IOTA network employs a Markov
chain Monte Carlo (MCMC) method of choosing the tips to which the new transaction is attached [26].

3. Electric Vehicles Batteries and SOC Estimation

The battery is the single most important component in an EV. Most of the weight of an EV comes
from the battery pack, so an efficient battery system, together with an optimized consumption model,
are crucial in electric vehicle development. Most EV models use lithium-based batteries (lithium-ion,
lithium-polymer, lithium-iron-phosphate) [27,28].

The energy requirements and number of battery-operated systems have changed drastically
over the last decade. Thus, a real battery management system is required for most battery-operated
applications and appliances. One of the most important parameters of a battery is the state of charge
(SOC), which represents the available battery capacity. SOC can be influenced by a very large number
of factors: battery chemistry, age, temperature, load characteristics, etc.

State of charge estimation methods vary depending both on the type of battery and on the
application where it is used. In [29], various methods of SOC estimation and their applications
were presented. The authors concluded that the most used technique is the Ampere-hour counting,



Sustainability 2020, 12, 3984 7 of 25

because of its ease of implementation and good-enough results, but other methods, such as linear
modeling, Kalman filter, or artificial intelligence could be used, provided that the system can provide
the necessary computational resources or training data.

In [30,31] the authors compared the available methods for lithium-ion batteries with specific
applications for EVs. According to the authors, the best-suited methods for EV applications are
the electrical circuit model (ECM) or the Kalman filter (KF) model. Machine learning and artificial
intelligence models, although very accurate, are not well suited to the field of EV due to the high
computational costs involved.

In this section two methods will be briefly presented: the Ampere-hour (Ah) counting and the
open circuit voltage (OCV) estimation.

3.1. Ampere-Hour Counting SOC Estimation

The Ah counting (or Coulomb counting) method has become an industry standard and one of
the most used methods for SOC estimation, because of its accuracy for short-term calculations [30].
The Ah method defines the SOC as:

SOC (t) = SOC (t0) +
1

Cn

∫ t

t0

Ibatterydτ × 100%, (1)

where SOC (t0) is the initial state of charge, Cn is the nominal capacity and Ibattery is the charging or
discharging current of the battery [30].

The method is very simple, but it does not take into account the loss current. If the battery current
is measured incorrectly, the method will accumulate the measuring errors. This can be compensated
by better measuring techniques and sensors.

Taking into account the loss current, Equation (1) could be rewritten as:

SOC (t) = SOC (t0) +
1

Cn

∫ t

t0

(
Ibattery − Iloss

)
dτ × 100%, (2)

where Iloss is the current consumed by loss reactions [31].
In order to use this method, the initial SOC must be known. If it is not known, or it is incorrectly

estimated, the errors will accumulate throughout the process. This method is generally used in
combination with other methods to improve the estimated result.

3.2. Open Circuit Voltage SOC Estimation

The OCV method uses the battery open circuit voltage as a function of the SOC by means of a
polynomial equation or look-up table. The SOC is determined as a reverse function of OCV [30]:

SOC (t) = f−1 (OCV) . (3)

The open circuit voltage is continuously measured and the corresponding SOC is obtained using
a look-up table specific for each battery type. The accuracy of the method can be very good if enough
rest time is provided to estimate the SOC. Therefore, it is not ideal for real-time operation. The method
can be used to calibrate the Ah counting Equation (1). Different OCV measurements can be obtained
for the same battery under different charging or discharging currents, so the method may not always
provide the same result, depending on the C-rates of the charging/discharging process [30].

In the following sections the OCV method is used for SOC estimation, because of the available
battery data (look-up tables and empirical measurements). The proposed blockchain application will
base its logic around the computed SOC values that can be improved by different estimation methods
and measurement techniques.



Sustainability 2020, 12, 3984 8 of 25

4. Proposed Application for EV Battery Charging and Swapping

4.1. System Diagram

The proposed battery swapping and charging system is described in Figure 4. Each EV will have
an on-board computer, which will monitor the battery data and send the information to the BMS
application. Since the on-board computer may not have sufficient resources for computing the POW
hashing functions, the charging stations will act as peers on the implemented blockchain and the
transactions will be handled by the stations (computing the necessary POW).

The users can register on the system, add new batteries, and create charge or swap requests. These
requests are handled by a smart contract and are deployed on the network.

Two blockchain implementations will be implemented and analyzed: a customized Ethereum
blockchain (Section 4.4) and the IOTA tangle (Section 4.5).

Figure 4. The proposed battery charging and swapping system diagram.

4.2. Battery Level and SOC Monitoring

For the purpose of developing and testing the application, lithium-polymer (LiPo) batteries were
used because of their high current and discharge rates, which make them a common solution for EV
battery packs.

Four LiPo batteries were chosen:

• Two 2-cell, 800 mAh, 7.4 V, 30 C discharge rate;
• Two 3-cell, 1000 mAh, 11.1 V, 30 C discharge rate.

The chosen SOC estimation method is the OCV. The voltage-SOC table (Table 1) was created using
available LiPo look-up tables and checking them empirically.

To extend the life of the battery pack and to avoid deep discharging of the battery [32], it is
recommended to remain outside the highlighted area. The data were mapped with a minimum safe
battery voltage (Vmin) of 3.5 V/cell (7.0 V/cell for two cells and 10.5 V/cell for three cells). Three
approximations [33] were considered: linear, symmetric sigmoidal, and asymmetric sigmoidal.



Sustainability 2020, 12, 3984 9 of 25

Table 1. LiPo Voltage-SOC (state of charge) table.

SOC Cell Voltage (V) 2 Cells Voltage (V) 3 Cells Voltage (V)

100% 4.20 8.40 12.60
95% 4.15 8.30 12.45
90% 4.11 8.22 12.33
85% 4.08 8.16 12.25
80% 4.02 8.05 12.07
75% 3.98 7.97 11.95
70% 3.95 7.91 11.86
65% 3.91 7.83 11.74
60% 3.87 7.75 11.62
55% 3.85 7.71 11.56
50% 3.84 7.67 11.51
45% 3.82 7.63 11.45
40% 3.80 7.59 11.39
35% 3.79 7.57 11.36
30% 3.77 7.53 11.30
25% 3.75 7.49 11.24
20% 3.73 7.45 11.18
15% 3.71 7.41 11.12
10% 3.69 7.37 11.06
5% 3.61 7.22 10.83
0% 3.27 6.55 9.82

The highlighted values represent the unsafe battery operating range.

The linear approximation is described by the following relation:

SOC =
V − Vmin

Vmax − Vmin
, (4)

where V is the battery voltage, Vmax is the maximum voltage (for 100% charge), and Vmin is the
minimum safe voltage, as described in the previous paragraph.

The symmetric sigmoidal approximation was fitted using a 4-parameter logistics function (4PL):

SOC = d +
a − d

1 +
(

Vnormalized
c

)b , (5)

where:
Vnormalized =

V − Vmin
Vmax − Vmin

, (6)

and the parameters a, b, c, and d have the following meaning: a and d control the position of the
horizontal asymptotes (upper and lower, respectively), b controls the slope of the response, and c
controls the position of the transition region [34].

The asymmetric sigmoidal approximation was fitted using a 5-parameter logistics function (5PL):

SOC = d +
a − d[

1 +
(

Vnormalized
c

)b
]g , (7)

where a, c, and d are defined in (5) and Vnormalized is defined in (6). In this case, the b parameter solely
controls the approach to the top asymptote and together with g controls the approach to the bottom
asymptote [34].



Sustainability 2020, 12, 3984 10 of 25

Using curve fitting tools, the parameters for the 4PL function were determined as: a = 0, b = 2.9,
c = 1/1.9, and d = 112. With these values, Equation (5) becomes:

SOC = 112 − 112

1 + (1.9 · Vnormalized)
2.9 . (8)

In the case of the 5PL function the parameters are: a = 0, b = 8, c = 1/3.5, d = 270, and g = 0.045.
With these values Equation (7) becomes:

SOC = 270 − 270[
1 + (3.5 · Vnormalized)

8
]0.045 , (9)

The voltage data in Table 1 are plotted together with the three approximations in Figure 5 for a
2-cell battery, with Vmax = 8400 mV and Vmin = 7000 mV.

6400 6800 7200 7600 8000 8400

Voltage (mV)

0

10

20

30

40

50

60

70

80

90

100

S
O

C
 (

%
)

Battery voltage

Linear approximation

(a) Linear

6400 6800 7200 7600 8000 8400

Voltage (mV)

0

10

20

30

40

50

60

70

80

90

100

S
O

C
 (

%
)

Battery voltage

Symmetric sigmoidal approximation

(b) Symmetric sigmoidal

6400 6800 7200 7600 8000 8400

Voltage (mV)

0

10

20

30

40

50

60

70

80

90

100

S
O

C
 (

%
)

Battery voltage

Asymmetric sigmoidal approximation

(c) Asymmetric sigmoidal
Figure 5. Battery state of charge approximations.

It can be noted that both the 4PL (Figure 5b) and 5PL (Figure 5c) approximations provide good
results, while the linear approximation (Figure 5a) is not suitable for SOC estimation of LiPo batteries.
In the next section the 4PL approximation is chosen, as it requires less computational effort with very
good results.

4.3. Battery Monitoring System

The battery monitoring system should be available on any registered EV. For this application, the
BMS measures the battery voltage and, using Equation (8), estimates the remaining charge. The data
are processed by a micro-controller and sent via I2C (inter-integrated-circuit) communication to an
on-board computer (in this case a Raspberry Pi), which generates the transaction and submits the data
to the blockchain network.

A monitoring board (Figure 6) was designed and implemented. An ATMega164p micro-controller
is used to measure the battery voltage and compute the SOC using the 4PL approximation (8).

The board monitors all four test batteries simultaneously, which can also power the microcontroller
using the power switch. The battery voltages are read from the analog pins of the microcontroller
(A0–A3). Since the battery voltages are higher than the 5V accepted by the microcontroller, the voltage
is adjusted using voltage dividers.

For the 3-cell batteries the voltage dividers are formed using R1 and R2 (R3 and R4 for the second
battery), providing a ratio of 3.12. The divider ratio for the 2-cell batteries is 1.68 (R5 and R6 for the
3rd battery and R7 and R8 for the 4th).



Sustainability 2020, 12, 3984 11 of 25

Figure 6. Battery monitoring board.

For the 3-cell batteries the read voltage ranges between 0 and 4.03 V and for the 2-cell batteries
between 0 and 5 V.

The microcontroller transmits the data to the Raspberry Pi via I2C communication. The data are
averaged over a series of 60 samples and the blockchain transaction is created. The anatomy of the
transaction depends on the blockchain implementation and will be detailed in the following sections.

A battery test bed was designed and implemented (Figure 7), using a Raspberry Pi as an on-board
computer for collecting the battery data and relaying the information to the blockchain.

Figure 7. Battery test bed.

The transactions are created using the Python libraries Web3.py (Ethereum) and PyOTA (IOTA).
These libraries implement the necessary functions for creating and submitting the transactions for
their respective networks. The methods for each implementation will be described in their respective
sections below.



Sustainability 2020, 12, 3984 12 of 25

For user interaction, a web application has been developed using NodeJS and the libraries specific
for each platform (Web3.js for Ethereum and iota.js for IOTA). The web application allows the users
and stations to register on the network, add new batteries and manage their requests.

The overall system architecture is presented in Figure 8.

Figure 8. The blockchain interface for the proposed battery swapping and charging system. POW:
proof of work.

4.4. Ethereum Blockchain

The first implementation of the charging/swapping application uses a smart contract deployed
on a custom Ethereum blockchain.

In Ethereum, participating nodes have to perform POW to discover new blocks. To motivate
users into participating in the block discovery process, a transaction fee (called gas) is paid by the
user submitting the transaction. On the public chain the gas cost can be very high depending on the
payload of the transaction. This makes the public Ethereum chain not well suited for data transactions,
such as IoT applications.

On a customized chain, the gas cost and difficulty of the hash function can be controlled, in order
to be used for specific applications, such as the battery management of electric vehicles.

On the main network any user with sufficiently capable processing resources can join. In a custom
deployed network user access can be handled according to the application needs, thus allowing the
implementation of permissioned blockchains.

In this paper, a permissioned network is created where the registration of new users or charging
stations is handled by a master node. This creates a semi-decentralized network, but it can provide
certain advantages, which will be highlighted in this section.

Users of the network are the EV owners. The EV computer (Raspberry Pi in this study) will sync
to the network in light mode, where only the current state of the network and block headers are synced.
For all processing operations a light node depends on the full node peers on the network (it does not
take part in the mining process). The semi-decentralized structure ensures that there is at least one full
node that is the master node of the application. Transactions and the necessary POW are handled by
the charging/swapping station nodes, which will be synced as full nodes on the network.

When a user or station registers on the network via a web application, the master node creates a
new address on the blockchain, which will be used to identify the user. The newly created address is
stored and managed by the master node.

The registration process is handled by a smart contract deployed on the network. The proposed
smart contract is described in Figure 9.



Sustainability 2020, 12, 3984 13 of 25

Figure 9. The smart contract structure.

The user management section provides the functions for registering new users or stations and for
displaying their information.

The user and station information are stored inside the smart contract using the following structure:

struct User {
uint id;
uint balance; // user balance
uint8 userType; // user or station
bool set; // differentiate between unset and zero struct values

}

Upon registration, each user will have a unique id generated (similar to the primary keys in
relational databases) and it can have an initial balance of virtual tokens that can be used to perform
transaction on the network. The userType field specifies if the user is an EV owner or a charging station.

Each user or station is associated with an address by using a special mapping type, which maps
the user address to the user data. All users can be accessed through the user variable.

mapping (address => User) public users;

The newUser function has the following prototype:

function newUser(address _address , uint8 _type) public

The function checks if a user with the specified address exists. If the address is not found, a new
user object is created and its mapping is assigned. The newUser transaction is shown in Table 2 and the
result is described in Table 3. The new user has an initial balance of 50 tokens.

In Table 2, the From address is different from the new user address (in the Decoded input field).
The From address is the address of the master, as this is the node that actually creates the transaction.
In this way, the gas cost required by the transaction is actually paid by the master instead of the user.

The gas used for this transaction would correspond to 0.00234 ETH on the main Ethereum
network. For an ETH price of 258 USD (as of May 2019) the transaction cost would be around 0.60
USD. By running a separate network and allowing only mining nodes to submit transactions, the user
is not required to have an actual Ethereum token (ETH) balance. Table 3 shows that for a call (read)
operation, there is no cost involved, as the function only queries and returns the user data.



Sustainability 2020, 12, 3984 14 of 25

Table 2. New user transaction on the Ethereum blockchain.

Transaction hash 0x6cf7bdea3c4c8be4c023558e9a7089d840bb18115da1b11aa3ba55f77dd42b2c

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.newUser(address, uint8)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Gas 117179

Input 0x7636a94c00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c
10000000000000000000000000000000000000000000000000000000000000000

Decoded input {
"address _address": "0x62650b2f80d471d29372a4be9acf28365cd419c1",
"uint8 _type": 0

}

Logs [
{

"from": "0x6b2010a939adce6728d0e61d68c14d19c797a380",
"topic": "0x05cdcffc20f5068d145a89a6ba9848186e191098da4d73e256368398e0a76ff7",
"event": "newUserEvent",
"args": {

"_address": "0x62650b2f80d471d29372a4be9acf28365cd419c1",
"_id": "0",
"length": 2

}
}

]

Value 0 wei

Table 3. New user result on the Ethereum blockchain.

Transaction hash call
0x468fa9e5c2e87816688bcc96176bbe3e711ea4be
0x6b2010a939adce6728d0e61d68c14d19c797a380
0xa87430ba00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c1

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.users(address)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Input 0xa87430ba00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c1

Decoded input {
"address": "0x62650B2f80D471d29372a4Be9aCf28365cd419c1"

}

Decoded output {
"0": "uint256: id 0",
"1": "uint256: balance 50",
"2": "uint8: userType 0",
"3": "bool: set true"

}

Once users are registered they can add new batteries for their EVs. The battery information is
stored in a structure as follows:

struct Battery {
uint id;
bytes32 manufacturer; // eg. Yuki
bytes32 model; // eg. Radium
bytes32 batteryType; // eg. LiPo
uint32 capacity; // eg. 800 (mAh)
uint8 cells; // eg. 2
uint manufactureDate; // Unix timestamp
uint32 maxChargeCount; // eg. 200



Sustainability 2020, 12, 3984 15 of 25

bool set; // differentiate between unset and zero struct values
}

The newBattery function has the following prototype:

function newBattery(address _address , bytes32 _manufacturer , bytes32 _model ,
bytes32 _batteryType , uint32 _capacity , uint8 _cells ,
uint256 _manufactureDate , uint32 _maxChargeCount) public

The function requires the battery owner’s address (which was provided after registering) and
the battery information. The resulting transaction is presented in Table A1. Since the amount of data
written to the contract is much higher than the newUser transactions, the gas cost is almost double.

When a battery runs low, the user can manually submit a charge or swap request to the contract
newRequest method (Table A2):

function newRequest(address _address , uint _batteryId , uint8 _requestType ,
uint _timestamp) public

The _requestType parameter specifies if it is a charge or swap request. Note that the request does
not specify a specific station. All stations can view the request and whichever one can provide the
requested service can accept it (Table A3). The function acceptRequest has the following definition:

function acceptRequest(address _address , uint _userIndex , address _station ,
uint _stationIndex , uint _approved) public

where the _address and _userIndex represent the user address and their battery identifier is used to
locate the battery in the structure mapping; the _station and _stationIndex are used to specify the
station’s battery and the _approved parameter is the timestamp of the approval. The function changes
the owners of the two batteries and the change will be reflected on the network once the transaction is
confirmed. The result after the request is accepted is presented in Table A4.

The previous requests are created by the users/stations using the web interface. The battery
information is submitted by the on-board computer and the data are stored in the smart contract using
the following structure:

struct BatteryData {
uint id;
uint8 SOC; // percentage
uint32 voltage; // mV
uint32 chargeCount; // eg. 7
uint timestamp; // eg. 1562662637000
bool set;

}

The Raspberry Pi collects the data and averages them over 60 samples (30 samples/minute).
The newData contract function is called from the Python script:

function newData(address _address , uint _id , uint _index , uint8 _soc ,
uint32 _voltage , uint32 _chargeCount , uint _timestamp) public

where the _address, _id, and _index parameters are used to identify the user and the battery, _voltage
and _soc are the actual measurements, and _chargeCount and _timestamp are the current charge
count and the date and time of the measurement.

In this section, a full implementation of a battery swapping/charging system is described, using an
Ethereum smart contract on a custom network. This approach allows further actions or improvements
to be added to the smart contract, while the transaction costs are supported by the master node due to
the semi-decentralized, permission-based approach.

Using the same contract on the main Ethereum network would be unfeasible, due to the high
transaction costs (gas). The nature of the application is perfectly suited for a permission-based network,
since the aim of the application is to transfer data rather than tokens on the blockchain.



Sustainability 2020, 12, 3984 16 of 25

4.5. IOTA Tangle

The Ethereum implementation uses the power and flexibility of smart contracts to implement the
application logic on the blockchain ensuring that all nodes run the same code and data immutability.

The first difference between IOTA and other blockchain platforms is the way the data are stored
(directed acyclic graph vs. linear chained blocks). This solves the scalability issue by linking a new
transaction to two previous transactions by validating them, as described in Section 4.5.

Since the IOTA network does not have transaction fees, the implementation can run on the
public network. One important disadvantage is that IOTA does not (yet) support smart contracts,
and thus the application logic has to be handled by a master node, resulting in a semi-decentralized
system. In this case, the master node has to perform extra operations to extract and filter the data
from the tangle, whereas in the Ethereum version these operations were handled directly by the smart
contract functions.

To implement the required functionality, the transaction structure is used (Table 4) by routing the
different types of transactions to their specific actions.

Table 4. IOTA transaction anatomy [26].

Field Description Length (trytes)

address Sender’s or recipient’s address, depending if the
transaction withdraws or receives tokens

81

signatureMessageFragment A signature if the transaction withdraws tokens or a
tryte-encoded message otherwise. This can be split across
multiple transactions

2187

value The amount of tokens transferred 27

tag User-defined tag 27

timestamp Unix timestamp (seconds since Jan. 01 1970) of when the
transaction was issued. In IOTA, the timestamp is not
currently enforced and can be arbitrary

9

bundle The hash of the bundle of the transaction 81

currentIndex Index of the current transaction in the bundle 9

lastIndex Index of the last transaction in the bundle 9

trunkTransaction Hash of a parent transaction 81

branchTransaction Hash of a parent transaction 81

attachmentTimestamp Unix timestamp of when the POW was completed 9

nonce The POW field of the transaction 27

To route the transaction to specific actions, the tag field is used, similar to a function call of a smart
contract. Based on this the application will filter the data and assign it to the appropriate structures.

For example, the equivalent of the newUser operation from the Ethereum implementation would
have the structure described in Table 5.

The tag field specifies the action of the transaction. Since the application is running on the public
development network, any user can create a transaction with this tag. However, since all transactions
are still handled by the master node as the sender, the application will only filter its own transactions
from the tangle.

Since the IOTA implementation uses only raw transactions, their structure for the other
operations are similar to the one presented in Table 5. Each operation has a corresponding tag field:
IOTABMSNEWUSER for the new user transactions; IOTABMSNEWBATTERY for the new battery operation;
IOTABMSNEWDATA for battery data information; and IOTABMSNEWREQUEST and IOTABMSACCEPTREQUEST



Sustainability 2020, 12, 3984 17 of 25

for the request operations. Because the IOTA implementation uses the public Devnet tangle, these tags
can be used to examine the transaction details at https://devnet.thetangle.org.

For this implementation, the monitoring board collects the data over 60 samples, at the same rate
of 30 samples/minute. The data are stored directly on the tangle, so the Raspberry Pi has to create a
new transaction using the ProposedTransaction class from the PyOTA Python library:

tx = ProposedTransaction(
address=Address(IOTAAddress),
value=0,
tag=Tag(b’IOTABMSDATA ’),
message=TryteString.from_string(IOTAJSONData)

)

where IOTAAddress is the address of the master node and IOTAJSONData is a JSON object containing
the measurement information, with the same properties as the newData function from the Ethereum
implementation. The ProposedTransaction object is a transaction that was created locally and has not
yet been submitted to the network. To actually broadcast the transaction, the send_transfer function
is used:

IOTAApi.send_transfer(
depth=3,
transfers =[tx],
min_weight_magnitude= 14,
inputs=BatteryAddress

)

where BatteryAddress is the address of the registered battery (acting as the sender of the message),
depth is the maximum depth in the tangle for the tip selection mechanism, and min_weight_magnitude
is an optional parameter used to specify the POW difficulty. Note that the transfers parameter
contains a list of transactions (in this case only one), since there is no value transferred between the
two addresses. When transferring IOTA tokens, at least two transactions are required: one that adds
tokens to the recipient and one that subtracts the same amount from the sender.

Ideally, the POW should be performed locally. However, the Raspberry PI does not have the
necessary resources to compute the POW, so the transaction is handled by the master node of the
system, which computes the validation hashes for two selected tips. If the master node is not reachable,
the transaction data are stored locally and resubmitted when the connection can be established.

The biggest challenge and limitation of this implementation is the battery swapping operation.
Since the swap request is not sent to a particular station (similar to the Ethereum implementation),
the station that accepts the request has to do so by creating a new transaction. This new transaction
has to somehow reference the swap request submitted by the user. Two solutions can be outlined for
this problem: either reference the swap request transaction hash in the message field of the transaction,
together with the rest of the information, or override the IOTA’s tip selection mechanism and attach
the acceptRequest transaction directly to the related request transaction using the trunkTransaction
or branchTransaction fields (Table 4). For this implementation, the first method was preferred.

The main difference between the IOTA implementation and the Ethereum one is that the code
which handles the data storage and processing is not contained in a smart contract (distributed across
all nodes), but runs solely on the master node. This makes the IOTA implementation more centralized
than its Ethereum counterpart, due to the fact that the master node still represents a single point of
failure for the application.

https://devnet.thetangle.org


Sustainability 2020, 12, 3984 18 of 25

Table 5. New user transaction on the IOTA tangle.

Transaction hash AMCSQBBEUNDBITQMW9ZYDXA9H9YBMO9QQZMAQARQGFFWUZX9HOUYHFI
ENRBAUTQ9IZZ9ZSWBMULFZ9999

From UHLEMW9QSZBRM9QVQGICTIMKWQNWDPQLYPHCMMHR9JDDYJXHGAOVLJR
LEWACCLJTXFOJLJAAJLXVRUDIW

To SMVIZBPLNBFOALXONUIREQZZWN9HTLVJQVEDUDVNGMLYP9SQDOLMMWC
9WXRKXFJZMLQZU9TMRSWJCDZKD

Bundle STODQIOYCBKLUQWWHARYLQUEKLFDZNNSVASDQSHCHEXWZEG9ZKCH9LJ
KV9YTHJZDTUJDGSESUHUQYYDA9

Index in bundle 0/0

Trunk transaction Y9YHCOTRWEMFREDJ9HWRWSKONSUGADUCSXZDDMJLVD9IJYDWSNCG9PN
PWTCEWWTOXHKKBWYVDUIOXM999

Branch transaction Y9YHCOTRWEMFREDJ9HWRWSKONSUGADUCSXZDDMJLVD9IJYDWSNCG9PN
PWTCEWWTOXHKKBWYVDUIOXM999

Tag IOTABMSNEWUSER9999999999999

Message ODGAPCSCSCFDTCGDGDGADBGABCWBECSBICLBZBVBXBLBPBYBKBVBGCY
BXBDCSBACOB9CICICFCXBCBRBCCVBECTB9CECOBNBDCNBECXBQBWBVBH
CZBCBBC9CNBYBVBWBWBFCMBCBFCGCACUBGCPBTBICWBVB9CICDCCBCC
WBACBCFCTBMBNBICUBNBGAQAGAHDMDDDTCGADBGAUAGAQAGAQCP
C9DPCBDRCTCGADBZAUAQAGAHDXCADTCGDHDPCADDDGADBGAVAZAZ
ABBYAYAWAXAWACBVAYAWAGAQD

Decoded message {
"address": "SMVIZBPLNB. . . MRSWJCDZKD",
"type": "0",
"balance": 50,
"timestamp": "1558442329142"

}

In the case of smart contracts, the corresponding function is executed whenever a transaction is
submitted. In the IOTA implementation the master node has to monitor the network state continuously
using the transaction tag field and decide which function should be executed locally. Here, the tangle
is used only as a decentralized data storage (instead of a traditional database management system).
When the user wants to access the information from the web application, the master node queries the
tangle for the raw data and any necessary processing is done before presenting the data to the user.

Off-chain processing is recommended when working with distributed applications, since
computational power is expensive on any blockchain implementation, but it is much more difficult to
work with unstructured data than with organized data structures achieved through smart contracts.

One important difference between the IOTA implementation and the Ethereum counterpart is the
fact that Ethereum requires at least two full nodes (the master node and at least one charging station)
to perform the POW and create new blocks on the network. In IOTA, the charging stations can be
connected to the tangle, but this is not mandatory, since the actual POW is done by the device that
creates the transaction (the master node in this implementation). This reduces the setup time and the
necessary hardware requirements for the stations, but has the downside that if the master node is not
available, the system may encounter some down-times.

5. Results

Figures 10 and 11 show the voltage and state of charge plots for a 2-cell and 3-cell battery,
respectively. These results are obtained directly in the front-end application and can be viewed
by the users. They can help improve the SOC estimation by accounting for battery age and other
environmental factors, and possibly allow stations or users to properly service or replace batteries in



Sustainability 2020, 12, 3984 19 of 25

safe operating conditions. It can be noted that the SOC vs. Voltage plot (Figures 10c and 11c) is similar
to the theoretical 4-PL approximation in Figure 5b, which is the expected result.

(a) Voltage vs. Time (b) SOC vs. Time (c) SOC vs. Voltage
Figure 10. Experimental results for 2-cell battery.

(a) Voltage vs. Time (b) SOC vs. Time (c) SOC vs. Voltage
Figure 11. Experimental results for 3-cell battery.

To compare the two implementations, the transaction times were measured for a set of 500
transactions submitting new battery data (Figure 12). For the Ethereum blockchain (Figure 12a),
running with two mining nodes (one master node and one charging station), the time from submitting
a transaction until its first confirmation by the network ranged between 1.65 and 75.45 s, with an
average of 12.97 s per transaction. These confirmation times can vary depending on the network
congestion, the number of operations required in the contract function and the difficulty of the network,
which, in the case of a permission-based chain, can be controlled by the network administrator.

(a) Ethereum blockchain (b) IOTA tangle
Figure 12. Transaction confirmation times.

For the IOTA tangle the results for the same transactions are presented in Figure 12b. It can be
seen that the transaction times are slightly higher than the Ethereum implementation, with an average
of 17.86 s and the minimum and maximum values of 3.78 and 104.14 seconds, respectively. These
differences can be easily explained by the different approach of the two platforms. While in Ethereum,
mining nodes perform the POW operations continuously, in IOTA these operations are performed only
when a new transaction is submitted. In the proposed implementation the IOTA POW is not done
locally due to the limited resources of the Raspberry Pi board. Instead, the required operations are
performed by a public node outside the application infrastructure (in this case, the IOTA Devnet node).



Sustainability 2020, 12, 3984 20 of 25

Depending on the load of the node and the network congestion, the expected transaction recording
time can vary. However, the benefit is an easier setup and fewer resources necessary for the master
and station nodes of the BMS application.

6. Discussion

The Ethereum blockchain demonstrates that the technology is mature enough to be used in many
fields of industry, offering the possibility of developing any kind of application logic on the blockchain
in a decentralized manner. The main disadvantage of this approach is the rather complicated setup
required to deploy the blockchain and smart contract. Since the application would not be suited to
function on the main network, due to the high transaction fees, the creation of a separate network
is absolutely necessary. Hence, one advantage is the possibility to manage the network settings and
difficulty, so that the response time can be reduced, compared to a transaction on the public blockchain.
Another advantage, which will be considered in future works, is to setup the blockchain using a
different consensus mechanism, such as proof-of-authority (POA), where designated nodes can add
new blocks to the chain without requiring a swarm of mining nodes.

IOTA was considered as an alternative because of its zero-fee transaction model and its scalability,
which allows the application to run on the main tangle with minimal additional setup. The lack of
smart contracts is the main disadvantage of this approach, because the application logic has to be
maintained by one or more central nodes and it is more susceptible to failures, while possible changes
of the application may affect its overall functionality on the network. These problems could be resolved
when smart contracts become available in IOTA (which were already announced as of 2019), but the
implementation may provide additional difficulties that cannot yet be estimated.

The main problem of the proposed IOTA implementation is the tag-based routing system, which
can be replicated by users not registered on the battery management application. This can be solved
either by having one or more trusted nodes (or oracles) that will generate the transactions on behalf
of their users (as proposed in this paper), or by using masked authenticated messages (MAM) [35]
as a means to create direct channels of communication between data publishers (EV owners) and
subscribers (stations). This approach will be further studied in future works.

Battery charging requests on IOTA can be easily created because they do not involve changing
the ownership of the battery, but, without the capabilities of on-chain processing, swap requests can be
more difficult to handle, as they require the front-end application to search through the transaction
history to find the latest state of the requested batteries. Due to this fact, IOTA is better related to
producer–consumer applications, where sensors or embedded devices are the data producers and the
users query and use the data off-tangle (data flow is unidirectional).

An issue for any application which relies on user information and value exchange (tokens,
electricity, batteries, fiat currency, etc.) must deal with the privacy issues that may arise from these
interactions. Several methods can be considered, depending on the type of blockchain that is being
used and on the visibility of the blockchain network. Feng et al. [36] and Jia et al. [37] introduced such
methods that deal with blockchain privacy.

The Ethereum-based implementation presented in this paper uses a private blockchain network
where user access control (UAC) methods can be implemented to protect the user information.
Furthermore, sensitive user information can be encrypted using a private–public key mechanism.

The proposed IOTA implementation uses the public tangle; thus, MAM can be used to establish
a direct channel between the involved parties when an exchange is requested (battery swap or
driver-to-driver charging).

These issues are an interesting extension for this study and the authors plan on extending the
results of the current paper with an in-depth study on blockchain data privacy and protection.



Sustainability 2020, 12, 3984 21 of 25

7. Conclusions

In this paper, a complete battery management system for electric vehicles was presented using
blockchain technology to create a semi-decentralized network of electric vehicles and charging stations
that are able to share data (battery information and condition) based on continuous monitoring.

Blockchain is a relatively young technology that has seen major growth and adoption in the last
10 years with the development of cryptocurrencies. The underlying architecture makes it a strong
candidate for data-driven applications, such as electric and autonomous vehicles.

To analyze the feasibility of the proposed application, two distinct implementations were
considered and tested: the first method uses an Ethereum blockchain, powered by a smart contract,
which allows the distributed processing and sharing of data, while at the same time ensuring data
immutability and privacy. The second approach uses the IOTA network, which lacks the support
for smart contract development, but provides zero-fee transactions and is built with data-driven
applications in mind, thus allowing better application scaling.

The results show that both platforms can be used for developing blockchain IoT applications
having acceptable transaction confirmation times for the purpose of the proposed battery monitoring
system, which does not require real-time confirmations. Ethereum is still the main platform for
developing decentralized applications, which can be deduced from the large number of projects
and research papers available. This may change in the future especially for IoT and data-driven
applications, as alternative approaches specially designed for this field mature and become available.

Author Contributions: Methodology, B.C.F. and D.D.T.; implementation, B.C.F.; writing—original draft, B.C.F.;
writing—review and editing, D.D.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

4PL 4-Parameter Logistics
5PL 5-Parameter Logistics
Ah Ampere-Hour
BEV Battery Electric Vehicle
BMS Battery Management System
DAG Directed Acyclic Graph
DLT Distributed Ledger Technology
ECM Electrical Circuit Model
ESC Electronic Speed Control
EV Electric Vehicle
FCEV Fuel-Cell Electric Vehicle
I2C Inter-Integrated Circuit
IoT Internet of Things
HEV Hybrid Electric Vehicle
KF Kalman Filter
LiPo Lithium-Polymer
M2M Machine to Machine
MAM Masked Authenticated Messages
OCV Open Circuit Voltage
P2P Peer to Peer
PHEV Plug-in Hybrid Electric Vehicle
POA Proof of Authority
POW Proof of Work
SOC State of Charge
UAC User Access Control



Sustainability 2020, 12, 3984 22 of 25

Appendix A. Ethereum Transactions

Table A1. New battery transaction on the Ethereum blockchain.

Transaction hash 0xe3bdb085f2dc0c7423bc7a8a50c3c75f431faccf7fe9ced9c8889e755845455d

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.newBattery(address,bytes32,bytes32,bytes32,uint32,uint8,uint256,uint32)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Gas 213278

Input 0x2b069245 . . . 000000c8

Decoded input {
"address _address": "0x62650b2f80d471d29372a4be9acf28365cd419c1",
"bytes32 _manufacturer": "0x59756b69",
"bytes32 _model": "0x4b727970746f6e69756d0000",
"bytes32 _batteryType": "0x4c69506f",
"uint32 _capacity": 1000,
"uint8 _cells": 3,
"uint256 _manufactureDate": "1526989237000",
"uint32 _maxChargeCount": 200

}

Logs [
{

"from": "0x6b2010a939adce6728d0e61d68c14d19c797a380",
"topic": "0xf01d0b1897e49a087d6d16276d60ab14a343d4e4b451af73bfc055cab1888c7c",
"event": "newBatteryEvent",
"args": { . . . }

}
]

Table A2. New swap request transaction on the Ethereum blockchain.

Transaction hash 0xdb90386e3ab9877e7da06699cb975fcf97020211f3c351755302961146d1d5b5

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.newRequest(address,uint256,uint8,uint256)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Gas 141145

Input 0xc286525a . . . e5153348

Decoded input {
"address _address": "0x62650B2f80D471d29372a4Be9aCf28365cd419c1",
"uint256 _batteryId": "0",
"uint8 _requestType": 0,
"uint256 _timestamp": "1558621533000"

}

Logs [
{

"from": "0x6b2010a939adce6728d0e61d68c14d19c797a380",
"topic": "0x28d61e4489683b71fb18e12434540b0f2e409d794b88c706069480866c22f893",
"event": "newRequestEvent",
"args": { . . . }

}
]



Sustainability 2020, 12, 3984 23 of 25

Table A3. New accept swap request transaction on the Ethereum blockchain.

Transaction hash 0x3a78d06023f5d493cb1a55f21c0bbf0f803d98a6373dba5bd0c92e87401bf26b

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.acceptRequest(address,uint256,address,uint256,uint256)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Gas 469526

Input 0xeca01e5a00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c10000
000000000000000000000000000000000000000000000000000000000000000000000000000000
0000001365af95d86cf447dbe6b991be87d5c4a59a3e3800000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000
000000016ae5153348

Decoded input {
"address _address": "0x62650B2f80D471d29372a4Be9aCf28365cd419c1",
"uint256 _userIndex": "0",
"address _station": "0x1365af95D86cF447dbe6B991bE87d5c4A59A3E38",
"uint256 _stationIndex": "0",
"uint256 _approved": "1558621533000"

}

Logs [
{

"from": "0x6b2010a939adce6728d0e61d68c14d19c797a380",
"topic": "0xf1e21ec30699d34039ffbb472baadcc06326aa1a6fc32b220f936f2a58a8a495",
"event": "acceptedRequestEvent",
"args": { . . . }

}
]

Table A4. Accepted request result on the Ethereum blockchain.

Transaction hash call
0x468fa9e5c2e87816688bcc96176bbe3e711ea4be
0x6b2010a939adce6728d0e61d68c14d19c797a380
0x9ecebe2a00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c10000
000000000000000000000000000000000000000000000000000000000000

From 0x468fa9e5c2e87816688bcc96176bbe3e711ea4be

To BatteryContract.requests(address, uint256)
0x6b2010a939adce6728d0e61d68c14d19c797a380

Input 0x9ecebe2a00000000000000000000000062650b2f80d471d29372a4be9acf28365cd419c10000
000000000000000000000000000000000000000000000000000000000000

Decoded input {
"address": "0x62650B2f80D471d29372a4Be9aCf28365cd419c1"
"uint256": "0"

}

Decoded output {
"0": "uint256: id 0",
"1": "uint256: batteryId 0",
"2": "uint8: requestType 0",
"3": "uint256: timestamp 1558621533000",
"4": "address: station 0x1365af95D86cF447dbe6B991bE87d5c4A59A3E38"
"5": "uint256: approved 1558621533000"
"6": "bool: set true"

}



Sustainability 2020, 12, 3984 24 of 25

References

1. Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art
technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385.
[CrossRef]

2. Eberle, U.; von Helmolt, R. Sustainable transportation based on electric vehicle concepts: A brief overview.
Energy Environ. Sci. 2010, 3, 689–699. [CrossRef]

3. Dharmakeerthi, C.H.; Mithulananthan, N.; Saha, T.K. Modeling and planning of EV fast charging station in
power grid. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA,
USA, 22–26 July 2012; pp. 1–8.

4. Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management
System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access
2018, 6, 19362–19378. [CrossRef]

5. del Valle, J.A.; Anseán, D.; Carlos Viera, J.; Antuña, J.L.; González, M.; García, V. Analysis of Advanced
Lithium-Ion Batteries for Battery Energy Storage Systems. In Proceedings of the 2018 IEEE International
Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power
Systems Europe (EEEIC/I CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6.

6. Liu, C.; Liu, L. Optimizing Battery Design for Fast Charge through a Genetic Algorithm Based
Multi-Objective Optimization Framework. ECS Trans. 2017, 77, 257–271. [CrossRef]

7. O’Malley, R.; Liu, L.; Depcik, C. Comparative study of various cathodes for lithium ion batteries using an
enhanced Peukert capacity model. J. Power Sources 2018, 396, 621–631. [CrossRef]

8. Helber, S.; Broihan, J.; Jang, Y.J.; Hecker, P.; Feuerle, T. Location Planning for Dynamic Wireless Charging
Systems for Electric Airport Passenger Buses. Energies 2018, 11, 258. [CrossRef]

9. Liu, H.; Tan, L.; Huang, X.; Zhang, M.; Zhang, Z.; Li, J. Power Stabilization based on Switching Control
of Segmented Transmitting Coils for Multi Loads in Static-Dynamic Hybrid Wireless Charging System at
Traffic Lights. Energies 2019, 12, 607. [CrossRef]

10. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/
bitcoin.pdf (accessed on 3 March 2020).

11. Florea, B.C. Blockchain and Internet of Things data provider for smart applications. In Proceedings
of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
10–14 June 2018.

12. Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A Novel Electricity Transaction Mode of Microgrids Based on
Blockchain and Continuous Double Auction. Energies 2017, 10, 1971. [CrossRef]

13. Khan, S.; Khan, R. Multiple Authorities Attribute-Based Verification Mechanism for Blockchain Mircogrid
Transactions. Energies 2018, 11, 1154. [CrossRef]

14. Wu, J.; Tran, N.K. Application of Blockchain Technology in Sustainable Energy Systems: An Overview.
Sustainability 2018, 10, 3067. [CrossRef]

15. Miller, D. Blockchain and the Internet of Things in the Industrial Sector. IT Prof. 2018, 20, 15–18. [CrossRef]
16. Son, B.; Lee, J.; Jang, H. A Scalable IoT Protocol via an Efficient DAG-Based Distributed Ledger Consensus.

Sustainability 2020, 12, 1529. [CrossRef]
17. Odysseas, L.; Gialelis, J. An IOTA Based Distributed Sensor Node System. In Proceedings of the 2018 IEEE

Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6.
18. Bartolomeu, P.C.; Vieira, E.; Ferreira, J. IOTA Feasibility and Perspectives for Enabling Vehicular Applications.

In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018;
pp. 1–7.

19. Ibáñez, L.; Simperl, E.; Gandon, F.; Story, H. Redecentralizing the Web with Distributed Ledgers. IEEE Intell.
Syst. 2017, 32, 92–95. [CrossRef]

20. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. In Advances in Cryptology
(CRYPTO ’87); Pomerance, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 369–378.

21. Buterin, V. A Next Generation Smart Contract and Decentralized Application Platform. 2014. Available
online: https://github.com/ethereum/wiki/wiki/White-Paper (accessed on 3 March 2020).

http://dx.doi.org/10.1016/j.rser.2015.04.130
http://dx.doi.org/10.1039/c001674h
http://dx.doi.org/10.1109/ACCESS.2018.2817655
http://dx.doi.org/10.1149/07711.0257ecst
http://dx.doi.org/10.1016/j.jpowsour.2018.06.066
http://dx.doi.org/10.3390/en11020258
http://dx.doi.org/10.3390/en12040607
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.3390/en10121971
http://dx.doi.org/10.3390/en11051154
http://dx.doi.org/10.3390/su10093067
http://dx.doi.org/10.1109/MITP.2018.032501742
http://dx.doi.org/10.3390/su12041529
http://dx.doi.org/10.1109/MIS.2017.18
https://github.com/ethereum/wiki/wiki/White-Paper


Sustainability 2020, 12, 3984 25 of 25

22. Szabo, N. Smart Contracts: Building Blocks for Digital Markets. 1996. Available online: http://www.fon.
hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart_contracts_2.html (accessed on 3 March 2020).

23. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-Enabled Smart Contracts: Architecture,
Applications, and Future Trends. IEEE Trans. Syste. Man Cybern. Syst. 2019, 49, 2266–2277. [CrossRef]

24. O’Dwyer, K.J.; Malone, D. Bitcoin mining and its energy footprint. In Proceedings of the 25th IET Irish
Signals Systems Conference 2014 and 2014 China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014), Limerick, Ireland, 26–27 June 2014; pp. 280–285.

25. Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A Survey on Consensus
Mechanisms and Mining Strategy Management in Blockchain Networks. IEEE Access 2019, 7, 22328–22370.
[CrossRef]

26. Popov, S. The Tangle. 2018. Available online: https://assets.ctfassets.net/r1dr6vzfxhev/
2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf (accessed on 3 March 2020).

27. Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles
and Opportunities for Advancements. Energies 2019, 12, 1074. [CrossRef]

28. Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of Different Battery Types for
Electric Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [CrossRef]

29. Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications.
J. Power Sources 2001, 96, 113–120. [CrossRef]

30. Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion
Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [CrossRef]

31. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion
Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [CrossRef]

32. Prochazka, P.; Cervinka, D.; Martis, J.; Cipin, R.; Vorel, P. Li-Ion Battery Deep Discharge Degradation.
ECS Trans. 2016, 74, 31–36. [CrossRef]

33. Weng, C.; Sun, J.; Peng, H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge
estimation and state-of-health monitoring. J. Power Sources 2014, 258, 228–237. [CrossRef]

34. Gottschalk, P.G.; Dunn, J.R. The five-parameter logistic: A characterization and comparison with the
four-parameter logistic. Anal. Biochem. 2005, 343, 54–65. [CrossRef] [PubMed]

35. Brogan, J.; Baskaran, I.; Ramachandran, N. Authenticating Health Activity Data Using Distributed Ledger
Technologies. Comput. Struct. Biotechnol. J. 2018, 16, 257–266. [CrossRef]

36. Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system.
J. Netw. Comput. Appl. 2019, 126, 45–58. [CrossRef]

37. Jia, B.; Zhou, T.; Li, W.; Liu, Z.; Zhang, J. A Blockchain-Based Location Privacy Protection Incentive
Mechanism in Crowd Sensing Networks. Sensors 2018, 18, 3894. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://dx.doi.org/10.1109/TSMC.2019.2895123
http://dx.doi.org/10.1109/ACCESS.2019.2896108
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
http://dx.doi.org/10.3390/en12061074
http://dx.doi.org/10.1088/1757-899X/252/1/012058
http://dx.doi.org/10.1016/S0378-7753(01)00560-2
http://dx.doi.org/10.3390/electronics6040102
http://dx.doi.org/10.3390/en11071820
http://dx.doi.org/10.1149/07401.0031ecst
http://dx.doi.org/10.1016/j.jpowsour.2014.02.026
http://dx.doi.org/10.1016/j.ab.2005.04.035
http://www.ncbi.nlm.nih.gov/pubmed/15953581
http://dx.doi.org/10.1016/j.csbj.2018.06.004
http://dx.doi.org/10.1016/j.jnca.2018.10.020
http://dx.doi.org/10.3390/s18113894
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Blockchain and Distributed Ledgers
	Ethereum and Smart Contracts
	IOTA Tangle

	Electric Vehicles Batteries and SOC Estimation
	Ampere-Hour Counting SOC Estimation
	Open Circuit Voltage SOC Estimation

	Proposed Application for EV Battery Charging and Swapping
	System Diagram
	Battery Level and SOC Monitoring
	Battery Monitoring System
	Ethereum Blockchain
	IOTA Tangle

	Results
	Discussion
	Conclusions
	Ethereum Transactions
	References

