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Abstract: In this paper, an application of the Jaya Algorithm (JA) is presented, to develop an
operation optimization model for the Mula reservoir, located on the upper Godavari Basin, in India.
The mentioned algorithm is a relatively new optimization technique, which is algorithm-specific and
parameterless. In JA, there is no need for algorithm-specific parameter tuning, unlike with other
heuristic techniques. To test its applicability, the model performance has been compared with that of
other models for hypothetical four reservoir system studies available in the literature. Simulations for
hypothetical four reservoir system have proven that JA is a better solution for a number of Function
Evaluations when compared with the results obtained by means of other evolutionary methods such
as Genetic Algorithms, Particle Swarm Optimization, Elitist Mutated Particle Swarm Optimization,
and Weed Optimization Algorithm models reported in previous studies. Simulations have been
carried out for real time operation of the Mula reservoir, and have revealed its superior performance
when comparing the water releases proposed by it and the ones proposed by existing policy. Hence,
from the two case studies presented, it can be concluded that the JA has potential in the field of
reservoir operation and can be further explored to operation optimization of existing multi-reservoir
system, with lower computations.

Keywords: Jaya algorithm; reservoir operation; optimization

1. Introduction

Nowadays, the management of resources has become vital for the sustenance of humankind.
Water is among the most important ones for living beings. Freshwater has now become a scarce natural
resource due to the effect of climate change and water pollution, and majorly due to the rapid increase
of population [1]. The management of water resources has been the supreme prerequisite for today’s
rapidly developing world, as the conflict between the supply and requirement of water resources has
become a major concern. These conflicts can be resolved by developing new water resource projects
and increasing the overall management efficiency [1]. The development of a new water resource project
to serve human needs is not easy due to environmental issues and because the cost of building new
projects increases every year; therefore, the operation optimization of the existing projects is a better
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alternative to meet the present and future water requirements. Many researchers have been working
towards rational approaches to allot the water very optimally in every essence. Many approaches can
be found in the literature, such as can be read in in every essence; vagaries of approach have been
commended in the literature with excellent opinions regarding the distribution of resources [2].

The techniques suggested and implemented in reservoir operation studies are chance constrained
Linear Programming (LP) by [3], in which multi-purpose reservoir operation optimization was carried
out with the aim of maximization of hydropower generation and fulfillment of irrigation requirements
according to the reliability level. The nonlinear power production function was linearized and a
solution was obtained in the range of the specified tolerance. In a similar way, a multi-purpose reservoir
operation optimization was carried out by using Non-Linear Programming (NLP) in [4] for the Koyna
dam, Maharashtra, India. Dynamic Programming (DP) [5] was implemented in the integration with
fuzzy rules and simulation studies to generate the general operating policies for Dez and Karoon
reservoirs in Iran. Ant Colony Optimization (ACO) was implemented for the reservoir operation
optimization of the Dez reservoir system, Iran, in [6], and resulted in a global optimal solution although
the tuning of parameters was recommended as the model is parameter sensitive. The application of
the Bat Algorithm (BA) to the Karoun-4 reservoir system in Iran and to another hypothetical reservoir
system showed the merits of the BA over other traditional techniques [7]. The Biogeography Based
Optimization algorithm was tested on three mathematical benchmark functions and then applied to a
single reservoir and a four reservoir system [8]. Furthermore, the authors in [9] applied a Charged
System Search Algorithm (CSSA) to a benchmark function and to the analysis of the Dez reservoir,
in Iran, and a comparison was established with results by Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), ACO, and gradient based NLP. The results proved superiority and robustness
in comparison to other approaches. The Crow Algorithm (CA) proved its potential for reservoir
operation optimization studies in [10]. It was implemented in the case of a multi-reservoir system in
China for hydropower generation and was found to outperform other metaheuristic approaches by
taking less computational time. Differential Evolution (DE) was used by [11] to determine the optimal
cropping pattern for the Bisalpur project, Rajasthan, India. Furthermore, the authors in [12] proved
the superiority of the Firefly Algorithm (FA) over the Genetic Algorithm in terms of convergence
rate of global optima and variance of the result when tested over five mathematical benchmark
functions, reservoir system operation optimization with irrigation as a purpose, and similarly with the
purpose of hydropower production. Jothiprakash et al. [13] applied the GA to Pechiparai reservoir,
Tamil Nadu, India, and derived rule curves on the basis of reliability of the GA model. Considering
meta-heuristic optimization methods as powerful and reliable ones, applied a Gradient Evolution
Algorithm (GEA) to Khersan-1 and Dez reservoir, Iran, as a novel approach in [14]. Harmony Search
(HS), when implemented by [15] to a benchmark problem and to the Narmab reservoir, Iran, resulted in
a higher rate of convergence with promising results and was found to be effective in flood management
operations of the Narmab reservoir. Honey Bee Mating Optimization (HBMO) provides comparable
results to those obtained by means of LP and other well developed approaches [16]. Hybrid Algorithm
(HA) of Artificial Fish Swarm Algorithm (AFSA) and Particle Swarm Optimization (PSO) Algorithm
were developed and implemented by [17] for the analysis of the Karun-4 hydropower system and
concluded that hybrid results are better than AFSA and PSO by overcoming the drawback of these
methods. By hybridization, the possibility of AFSA being trapped in a local optimum is decreased
and hence it increases its convergence. In the case of PSO, the diversity of its response is increased
by hybridization. HA is assessed on the basis of reliability, resilience, and vulnerability indices.
For verification, it is tested on few mathematical functions. The JA model was developed by [18]
for Jayakwadi-I reservoir, Maharashtra, India, to derive optimal releases and performance indices.
A study by [19], applied Particle Swarm Optimization (PSO), Elitist Mutated PSO (EMPSO), and GA
to the Bhadra reservoir system, India, which is a multipurpose reservoir. A weighted approach was
used for handling the multi-objectives. It was found that Elitist Mutated PSO performed better than
GA and standar PSO. Shark Algorithm (SA) was applied by [20] to the complex cases of reservoir
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operation optimization and was found to yield good results. Teaching Learning Based Optimization
(TLBO) and JA implemented in [21] to the benchmark studies and concluded that both methods
provide satisfactory solutions like other ones. The Water Cycle Algorithm (WCA) implemented in
[22] to reservoir operation optimization stating that, for solving complex optimization problems,
evolutionary optimization approaches are reliable and simple. The authors in [23] introduced the Weed
Optimization Algorithm (WOA) to reservoir operation optimization by its application to continuous
and discrete four reservoir system problem and compared with the global results from the past studies.
The authors in [24] implemented Wolf Search Algorithm (WSA) to a continuous Four Reservoir system
and a single reservoir hydropower optimization and found that WSA resulted in being close to a global
solution and that it is better than GA for the two scenarios.

A review study has been carried out by [25] to access the reservoir operation optimization and
management using different optimization models like LP, NLP, DP, Differential Dynamic Programming
(DDP), Discrete Differential Dynamic Programming (DDDP) model, and stochastic models, describing
their pros and cons and concluding that it is difficult to state which particular technique would be
the best for all real world problems. Furthermore, a review of evolutionary approaches in reservoir
operation studies is done by [2] concluding that evolutionary approaches are the most popular options
for reservoir operation study due to its improving capability and the advancement of computer
technology. In addition to this, a survey on Artificial Intelligence (AI) techniques in reservoir operation
is presented in [26], where it was found that an evolutionary algorithm (EA) has a great potential in
the field of optimization, but new techniques which proved to be powerful in other domains should
be applied to reservoir operations, and concluded that, with an increasing number of methods, it is
difficult to state which technique fits better for a specific reservoir system.

Though extensive research has been done to provide appropriate operational policies for reservoir
system, there is still scope for improvement in the aspect of accuracy, handling of increasing water
demands and reducing operational complexity [26]. There is also a need for a better approach
to improve the effectiveness and efficiency of the reservoir operation, which can be attempted by
application of recently developed optimization techniques based on their success in dealing with real
world problems [2]. In the reservoir operations, an optimization algorithm can be said to be a better
one when either it provides better optimal values or it achieves the same value (global) for less effort
and computational time [19,22].

One such technique, newly developed, is the Jaya Algorithm, with potential features, such as
requiring fewer parameters compared to other population based optimization techniques and needs
algorithm specific parameters [27,28]. Furthermore, it is capable to enhance its exploration and
exploitation capacities with a lower number of function evaluations (FE) [29]. JA has been used in the
present work for the optimization of reservoir operation studies. It is a meta-heuristic optimization
technique with a more presumptuous approach to revise the variable value to obtain the optimal
solution. JA was developed [28] after the progress and success of the previously developed TLBO
algorithm [30] in engineering applications.

Interestingly, JA does not depend on the nature of the objective function, i.e., maximization or
minimization. Several other optimization algorithms are built-up particularly for either minimization
or maximization problems, which necessitates a change in the sign of the objective function to transform
the problem from one case to the other. JA does not need such a modification and can be well applied
to both cases. It is also noted that JA can also be easily applied to the complex functions since it uses the
objective function value as an information source to upgrade the results. Upgrading the variable in the
JA is associated with two random numbers, one of them with the best solution among the population
and the other with the worst one. With this, there is a high rate of randomness involved, and, as such,
it explores search in uncertain wider areas. Hence, JA can be considered as a stochastic optimization
algorithm. The constraints are incorporated by using a penalty function; hence, more constraints do
not affect the convergence of the model.
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In general, heuristic approaches use a direct search in the problem space and follow the most
promising path for the desired solution, hence they bridge the gap between the complexity and
completeness of algorithms, which constitute the two basic qualities of search. However, these
techniques have various parameters to be tuned when trying to achieve the optimal solution. Even if a
single parameter is not appropriate in evolutionary methods, it leads to divergence from the optimal
solution. However, in JA, there are no such tunings required, and this offers the advantage of reduced
efforts, easy understanding, and application. In the JA technique, the only parameters to be set are
population size and generations; thus, it requires comparatively less effort. JA takes less computational
time than other algorithms while providing better results in several instances [31].

JA has so far been implemented for the analysis of a wide variety of problems such as tea category
identification [32], complex constrained problems describing various benchmark functions [33], heat
exchanger problems [34], pathological brain detection [35], forecast model for currency exchange
production [29], design optimization of truss [31], and for deriving optimum cropping patterns [36].
The real-time reservoir operation optimization problem is more complicated when compared to a
theoretical or hypothetical problem. Hence, powerful optimization methods are required to solve these
problems [37]. Rao and Waghmare [33] compared nine algorithms on five test problems, 11 algorithms
on four problems and six algorithms on 11 problems and concluded that JA provides better results than
the other approaches. These led authors to think of the possibility of application of JA to a reservoir
operation problem that is complex in nature [38]. In the present study, a computer model is developed
for JA using MATLAB (R2015a) for reservoir operation optimization of the Mula Reservoir, Upper
Godavari Basin, India, which is an existing reservoir system, and simulation studies have been carried
out to check the model performance in comparison to the existing one. In addition, JA is applied to
a four reservoir system problem (Theoretical case) [39] to test its applicability and performance in
comparison with other approaches to the basic reservoir operation problem (benchmark problem).

2. Materials and Methods

2.1. Description of the Jaya Algorithm

JA requires only two basic parameters: population size and number of generations. This feature of
JA reduces the complexity of tuning of the other parameters (algorithm-specific parameters) as is faced
in other evolutionary algorithms. Therefore, the authors in [28,40] described JA as an algorithm-specific,
parameter-less algorithm. In this approach, a simulation and evaluation strategy is applied. It means
that, in each generation, first, the decision variables and objective function values are evaluated and
then constraints are checked. If there is any violation of the constraints, the penalty is applied to the
objective function, resulting in a modified function value. From the best and the worst values of an
altered function, further processing is carried out. The penalty function is formulated such that the the
solution containing the violation does not give the best result and is rejected. The termination criterion
is the pre-set maximum number of generations after which the model will stop functioning and will
provide the results. The way JA operates is illustrated in Figure 1.

A stepwise detailed description of JA is as follows: let ‘m’ be the number of a variable, ‘b’ the
position of a variable (b = 1 to m), ‘n’ the population size, ‘c’ the candidate solution per population
(c = 1 to n), and ‘a’ the number of iterations, for a = 1, the value of these variables are initialized
using (1) based on the minimum and maximum bounds of the respective variable:

Xb,c = min(Xb) + r× (max(Xb)−min(Xb)), (1)

where

• min(Xb) is the minimum value of the variable Xb,
• r is a random number (r ∈ [0, 1]),
• max(Xb) is the maximum value of the variable Xb.
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Initialize the initial values of the independent variables (Releases, Evaporation losses and Initial storage) 

using the following equation: 𝑿𝒃,𝒄 = 𝒎𝒊𝒏ሺ𝑿𝒃ሻ + 𝒓 ∗ ൫𝒎𝒂𝒙ሺ𝑿𝒃ሻ − 𝒎𝒊𝒏ሺ𝑿𝒃ሻ൯ 

Initialize Population size, number of variables and Termination criteria  
(Maximum number of Function Evaluations or maximum number of generations) 

Calculate the dependent variables (storages and overflows) based on the continuity equation using 

independent variable values and inflows 

Calculate the objective function values incorporating the penalties for the constraint violation based on 

the following concept: 

a. For the minimization problem: 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 + 𝑷𝒆𝒏𝒂𝒍𝒕𝒊𝒆𝒔

b. For the maximization problem: 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 − 𝑷𝒆𝒏𝒂𝒍𝒕𝒊𝒆𝒔

Identify the best and worst solution in the populations 

Upgrade the values of independent variable using following formula: 

𝑿′𝒃,𝒄,𝒂 = 𝑿𝒃,𝒄,𝒂 + 𝒓𝟏,ሺ𝒃,𝒂ሻൣሺ𝑿𝒃,𝒃𝒆𝒔𝒕,𝒂ሻ − หሺ𝑿𝒃,𝒄,𝒂ሻห൧ − 𝒓𝟐,ሺ𝒃,𝒂ሻൣ൫𝑿𝒃,𝒘𝒐𝒓𝒔𝒕,𝒂൯ − หሺ𝑿𝒃,𝒄,𝒂ሻห൧

Calculate the dependent variable values, objective function values same as above 

Is solution 
corresponding 

to X’b,c,a is better 
than that 

corresponding 
to Xb,c,a ? 

Accept and replace the 

previous solution 

Yes No 

Is the 
termination 

criterion 
satisfied? 

Yes 

Report the optimal solution 

   No 

Keep the previous solution 

Figure 1. Flowchart of Jaya Algorithm (derived from [28]).

Then, the function value is calculated. A further objective function value is calculated using the
function value and penalties for the constraint violation. For the maximization problem, penalties
are subtracted and, for the minimization one, penalties are added to the function value to obtain the
objective function value according to

1. For the minimization problem: Objective f unction = f unction value + penalties,
2. For the maximization problem: Objective f unction = f unction values− penalties.
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After this, from the objective function values for the ‘n’ candidate solutions and for the ath

iteration, the best and the worst solutions are selected. For the maximization problem, the solution
with the maximum value of the objective function will be the best solution and the one with minimum
value will be the worst solution and vice versa. Then, the values of bth variables for cth population and
for ath iteration are updated using (2):

X′b,c,a = Xb,c,a + r1,(b,a)[(Xb,best,a)−
∣∣Xb,c,a

∣∣]− r2,(b,a)[(Xb,worst,a)−
∣∣Xb,c,a

∣∣], (2)

where

• X′b,c,a is the updated value of the variable,
• Xb,c,a is the old value of the variable,
• r1,(b,a) and r2,(b,a) are random variable for the bth variable during the ath generation

(r1,(b,a), r2,(b,a) ∈ [0, 1]),

• Xb,best,a is the bth variable corresponding to the best candidate solution for ath iteration,
• Xb,worst,a is the bth variable corresponding to the worst candidate solution for ath iteration.

The objective function value is calculated for these updated values of the variables. The objective
function value corresponding to the old and updated values of the bth variables for the cth population
are compared and the best among two is adopted, the worst one being rejected. These best values are
treated as an initial set for the next iteration, and the process is repeated until the termination criterion
(preset maximum number of iterations) is reached.

The main equation of the working of JA, i.e., the upgrading of variable values is done on the
basis of (2) in which two random numbers (r1 and r2) are used. Random numbers play a crucial role
in upgrading the decision variable, thereby improving the fitness function value. Hence, a random
number range can be tested for improvement in convergence. The random number r1 is associated with
the term representing the gap of the present value from the value corresponding to the best solution
for particular iteration and similarly the random number r2 is associated with the term representing
the gap of the present value from the value corresponding to the worst solution for particular iteration.
In this equation, a positive sign is associated with r1 and negative sign to r2 indicating its approach of
moving towards the best solution and away from the worst solution, which is like moving towards the
victory, the word translated as Jaya in Sanskrit. This is the reason for the name of the algorithm [28].
The way JA works has been illustrated in Figure 1, and has been derived from [28], and updated for
the different case studies discussed in the following sub-sections.

2.2. Case Study 1

This section applies JA to a hypothetical Four reservoir system shown in Figure 2 [39], with the
aim of checking its potential to derive an operating policy for a multi-reservoir system. The Four
reservoir system problem has been investigated by several researchers to test the performance of other
algorithms such as GA, PSO, EMPSO [19], and WOA [23].

The system comprises four reservoirs serving the purpose of hydropower generation and
irrigation. Hydropower generation is possible through all the reservoirs, while irrigation is possible
only by the fourth one. The objective function consists of maximizing the profits obtained from the
system during a twelve-hour operating period. The inflow to the reservoir varies every year for real
time reservoir operation. It is predetermined for reservoir operation optimization. The inflows to the
reservoirs 1 to 4 are 2, 3, 0, and 0 units, respectively, for all time periods. Usually, the releases of a
reservoir are bound to be in a range. Minimum releases correspond to minimum water supply to serve
the purpose, and maximum releases correspond to the demands of water for that particular period
and for a particular purpose.
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Figure 2. Case Study 1: Four reservoir system [39].

The minimum releases for all reservoirs in the study are 0, and the maximum releases are 3, 4, 4,
and 7 units, respectively. The minimum storage is 0 for all reservoirs and the maximum are 10, 10, 10,
and 15 units, respectively. Furthermore, the minimum initial storage should be maintained to make
the reservoir functional. The end storage for a given time period is the initial storage for the next one.
The operational policy of the reservoir must be kept. The initial storage for all reservoirs has the value
of 5 units, while it is required to maintain the storage of 5, 5, 5, and 7 units, respectively, at the end
of the period. The restriction to the inflows, maximum releases, and storage are pre-defined in the
problem [39]. Furthermore, all of the past studies used these constraints and performed comparisons
of optimization techniques in the field of reservoir operations in this common platform. The objective
function and profit function associated with it can be referred from [39,41] and is discussed hereunder.

The objective function to be maximized (F) is the summation of profit from the hydropower
operation from all four reservoirs and the irrigation profit from the fourth reservoir. Mathematically, it
can be expressed as in (3):

max F =
4

∑
i=1

12

∑
t=1

bi(t) · Ri(t) +
12

∑
t=1

b5(t) · R4(t), (3)

where

• bi(t) is a 4× 12 matrix of profit, function associated with all the four reservoirs for hydropower,
• Ri(t) represents the releases from the reservoirs i = 1 to 4 during the period ‘t’. The benefit

function associated with the hydropower is as follows:
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b4×12 =


1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4
1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8
1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1
1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 1

 . (4)

• b5(t) is the benefit associated with the fourth reservoir for irrigation

b5(t) =
[
1.6 1.7 1.8 1.9 2 2 2 1.9 1.8 1.7 1.6 1.5

]
. (5)

• R4(t) describes the releases from the fourth reservoir during the period ‘t’

The objective function is subject to the continuity and end storage constraints.
The continuity constraints (6) for each reservoir during each operating period ‘t’ are mathematically

expressed as:

Si(t+1) = Si(t) + Ii(t) + M× Ri(t), (6)

where

• Si(t+1) is the storage at the beginning of the next time period ‘t + 1’ for reservoirs i =1 to 4,
• Si(t) is the storage at the beginning of the time period ‘t’ for reservoirs i =1 to 4,
• M is a 4× 4 matrix of indices of the reservoir connections

M =


−1 0 0 0
0 −1 0 0
0 1 −1 0
1 0 1 −1

 . (7)

The End Storage constraint (8) is mathematically expressed as:

Si(13) ≥ di, (8)

where

• Si(13) is the storage at the beginning of next time period (generally irrigation year) for the
ith reservoir,

• di represents the target storage at the beginning of the next time period (generally irrigation year),
• di ∈ {5, 5, 5, 7} for i ∈ {1, . . . , 4}.

The optimization of the Four reservoir system problem is formulated in LP and solved with the
help of the LINGO solver. The results obtained from the LP model are used for the evaluation of this
approach. In LP, the final storage can be set as a constraint, whereas there is a requirement of a penalty
function in case of JA. The penalty function applied is the same as the one applied in other references,
and is expressed through (9) and (10):

gi(Si(13,di)
) = 40(Si(13) − di)

2 f or (Si(13) − di) ≤ 0 (9)

and

gi(Si(13,di)
) = 0 f or (Si(13) − di) > 0, (10)

where gi(Si(13,di)
) is the penalty function for the Four reservoir system problem.

Hence, the modified objective function is expressed by (11):
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max F =
4

∑
i=1

12

∑
t=1

bi(t) · Ri(t) +
12

∑
t=1

b5(t) · R4(t) −
4

∑
i=1

gi(Si(13,di)
). (11)

2.3. Case Study 2

JA has also been applied to an existing reservoir system, the Mula Reservoir of Upper Godavari
Basin in India (Figure 3). It is located at Latitude of 19◦21′30′′ and Longitude of 74◦34′30′′, and
is 8.04 km upstream of Rahuri, Ahmednagar District, Maharashtra State, India. The project was
completed in 1972 on the Mula river, which later meets the Pravara, a major tributary of the Godavari.
The catchment area of the project is about 2275 km2. It receives an average rainfall of 5080 mm in
the hilly region and 508 mm in the Lower Catchment. The gross storage capacity of the reservoir is
735.80 MCM with live storage of 608.45 MCM. The purposes served by this reservoir are irrigation,
domestic, and industrial supply. The total area irrigated under this project is 82,920 ha.

 

Figure 3. Index map of the Mula Reservoir Project, Upper Godavari Basin, India (Case Study 2).

Daily reservoir data corresponding to 31 years (1984-2015) are collected from the Mula Irrigation,
Subdivision Rahuri, Ahmednagar District, Maharashtra, India. Probable inflows are set as input data
for the models. The demands to be achieved are set as target releases or demands in the objective
function (12) and are calculated considering irrigation, industrial, and urban water requirements
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from the downstream side. Target demands are set by combining the information i.e., Net Irrigation
Requirement (NIR) for principal crops and actual releases. NIR is used for the months of July to
February, and actual releases are used for the months of March to June. This information was collected
from the Division Office of Mula Reservoir [42]. In the present study, the target demands are considered
the maximum demands. The inflows for December to May are not significant (Figure 4).
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Figure 4. Inflows for different probable condition for Mula reservoir, Upper Godavari basin, India
(Case Study 2).

Model Formulation

The objective of the study is the minimization of the sum of squares of deficit of total releases
from the demands. Mathematically, it can be expressed as in (12):

min F =
12

∑
t=1

[(Rt − Dt)
2], (12)

where

• F is the squared deviation of releases from the target releases,
• t is the time in months (t ∈ {1 = June, . . . , 12 = May}),
• Rt represpents the total releases during period ‘t’ in MCM = R(1,t) + R(2,t) + R(3,t),
• R(1,t) is the Left Bank Canal (LBC) releases during period ‘t’ in MCM,
• R(2,t) is the Right Bank Canal (RBC) releases during period ‘t’ in MCM,
• R(3,t) is the industrial and urban releases during period ‘t’ in MCM,
• Dt is the total demand during period ‘t’ in MCM.

The objective function is subject to storage continuity, storage limit, canal carrying constraint,
constraint for irrigation and industrial demand, overflows constraint, steady state constraint, and
non-negativity constraint.

The storage continuity constraint is described as the difference between inflow and outflow and is
equal to the change in storage. In this case study, reservoir lift is one of the outflows from the reservoir.
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Reservoir lift is the water lifted from the reservoir through pumping. The mathematical expression for
continuity constraint for this case is shown in (13):

St+1 = St + It − I′t − (Rt + Et + Ot), (13)

where

• S(t+1) is the storage of the reservoir at the beginning of time period ‘t + 1’ in MCM,
• St is the storage of the reservoir at the beginning of time period ‘t’ in MCM,
• It is the inflow into the reservoir during period ‘t’ in MCM,
• I′t is the reservoir lift (if any) during period ‘t’ in MCM,
• Et is the evaporation loss from the reservoir during period ‘t’ in MCM,
• Ot is the overflow from the reservoir during the period ‘t’ in MCM.

The storage of a reservoir is not expected to be smaller than its dead storage, and it cannot be
larger than the maximum reservoir storage capacity. Thus, the storage limit constraint is expressed
by (14):

Smin ≤ St ≤ Smax, (14)

where

• Smin is the dead pool storage of the reservoir in MCM,
• Smax is the reservoir capacity in MCM.

The release through a particular canal should not be larger than its capacity. Hence, the
canal carrying capacity constraint is mathematically presented through (15) and (16) for LBC and
RBC, respectively,

R(1,t) ≤ C(1,max) (15)

and

R(2,t) ≤ C(2,max), (16)

where

• C(1,max) is the maximum canal carrying capacity for LBC in MCM,
• C(2,max) is the maximum canal carrying capacity for RBC in MCM.

The releases from the reservoir for purposes like irrigation, domestic, and industrial water supply
should neither be smaller than the minimum requirement nor greater than the maximum demand.
Hence, a mathematical formulation of the constraint for irrigation and industrial demands is presented
in (17):

min D(x,t) ≤ R(x,t) ≤ max D(x,t), (17)

where

• x ∈ {1, . . . , 3} and t ∈ {1, . . . , 12},
• R(x,t) is the release from supply ‘x’ for time period ‘t’ in MCM,

• D(x,t) is the demand for the xth supply for the time period ‘t’ in MCM.

Overflow occurs when the maximum storage level is exceeded and, mathematically, the overflow
constraint is expressed in (18):
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Ot ≥ St + It + I′t − Rt − Et − Smax. (18)

The storage level at the end of irrigation year is equal to the storage at the beginning of irrigation
year to maintain steady state condition (19) and mathematically it is given as:

S13
∼= S1, (19)

where

• S13 is the storage at the end of irrigation year,
• S1 is the storage at the beginning of the irrigation year.

All of the variables involved in the model should be positive. Mathematically expressed using (20),

It, Rt, St, Et, Ot ≥ 0. (20)

3. Results

The Four reservoir systems is a benchmark problem of reservoir operation optimization that has
been used to compare the performance of various strategies proposed in the domain. JA has been first
applied to the Four reservoir system (benchmark) to test its applicability to reservoir operation studies.
With its success in this benchmark study, it has been further applied to optimize the operation of the
Mula reservoir, Upper Godavari Basin, India. The results of the two case studies are explained in the
next sections.

3.1. Hypothetical Four Reservoir System

The JA and LP are applied to this benchmark problem and results obtained are compared with
those obtained by means of earlier studies mentioned in the literature. LP is applied to replicate the
results mentioned in the literature and to present a comparison graph between the two techniques,
with the aim of validating it. When the JA is applied to the benchmark problem, it results in the optimal
solution (401.4) for a lower number of FEs when compared with the other evolutionary approaches
(Table 1). FEs represent the number of times the objective function value is evaluated and calculated as
FEs = population size× generations. The optimal solution is obtained at 325,000 FEs for a population
size of 150. In most of the cases, the population size plays a significant role in the performance of
EAs as it defines the search space. The higher the population size, the greater the number of possible
combinations of the variables in the search space. Increasing the population size will also increase the
time of computation without any significant improvement in the optimal value. Hence, the population
size should be decided with a proper analysis. The population size can be decided on the basis of
sensitivity analysis with population sizes of 5, 10, 50, 100, 150, 250, and 500. It has been found that
the population size of 150 resulted in the best one, based on the proximity to the objective function
value and thus finally the best optimal solution is obtained for a population size of 150. The average of
optimal values obtained in 10 runs has been found to be 98.84% at 325,000 FEs of the global solution
(401.3) as reported in the literature. The release and storage trajectories obtained from LP and JA
models for the Four reservoir system are shown in Figures 5 and 6, respectively. The JA results are not
consistent with LP results at all time steps. At some times, JA gives higher releases than LP and vice
versa at the remaining time steps, thereby leading to the maximum profit in both aspects. Hence, it can
be said that JA is capable of producing optimal results in the reservoir operation optimization problem.
JA, when applied [21], produced the optimal value of 401.4 at population size of 50 and 7000 iterations
(i.e., FEs = 50 population size× 7000 generations = 350, 000). In the present study, the JA results the
same optimal value as that of [21] for lower number of FEs with suitable combination of parameters.
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Table 1. Performance of the models applied for hypothetical Four reservoir system problem, i.e.,
Benchmark problem (Case Study 1).

Source Model 1 Best Objective
Function Value Population Size Function Evaluations

Taken

[39] DPSA 401.30 N.A. 2 N.A.

[41] DDDP 401.30 N.A. N.A.

[43] FDP 399.06 N.A. N.A.

[19]
GA 401.30 500 2,279,500
PSO 399.70 500 748,000

EMPSO 401.30 500 325,400

[23] WOA 401.30 40 400,000

Present Study LP 401.30 N.A. N.A.
JA 401.40 150 325,000

1 DPSA—Dynamic Programming with Successive Approximation, DDDP—Discrete Differential Dynamic
Programming, FDP—Folded Dynamic Programming, GA— Genetic Algorithm, PSO—Particle Swarm
Optimization, EMPSO—Elitist Mutated Particle Swarm Optimization, WOA—Weed Optimization Algorithm,
LP—Linear Programming, JA—Jaya Algorithm. 2 N.A. stands for ‘Not Applicable’.
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Figure 5. Release trajectories in Four reservoir system problem (Case Study 1).
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Figure 6. Storage trajectories in Four reservoir system problem (Case Study 1).

The versatility of LP has been proven in the literature as it is the most robust and profoundly
used technique over its diverse application in planning, scheduling, resource assignment, and design.
However, in contrast, LP is inflexible specifically in the capacitated facility location problem or the
simple terms in local search where it is approximated within a constant factor highlighting the local
optima. As anticipated, taking into account the success of JA when applied to the benchmark problem,
it has also been applied to optimize the operation of the Mula reservoir, Upper Godavari Basin, India.

3.2. Mula Reservoir

In the reservoir operation, the design inflows are generally 75% of dependable inflows. Real-time
studies are random; therefore, to incorporate randomness, the operation for the case study is done by
using 75% probable inflows. The probable inflows are random than the dependable inflows. JA has
been developed with the help of MATLAB for population size of 30 after performing sensitivity
analysis for population sizes of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. The optimal value is achieved
for 150,000 FEs; the square root of the objective function achieved is 218.88 MCM. The convergence
graph for square root of the objective function value with respect to the number of generation for
the JA model for Mula reservoir corresponding to the optimal solution is represented in Figure 7.
The model was permitted to run for 5000 generations, and it converges at 2141 generations such as
presented through the convergence graph (Figure 7). The rate of improvement decreases as the number
of generation increases that can be seen in Figure 7. The model has been further developed for different
probable inflows ranging from 50% to 90% with an interval of 5%, considering all the scenarios from an
excess of water to a scarce period. The deficit of releases from their target releases for these scenarios is
shown in Figures 8 and 9, respectively. From these figures, it can be noted that the deficit increases
with the increase in the percentage of probable inflow. It also means that the deficit is increasing with
the decrease in inflow, which implies the model has been applied appropriately. Further simulation
studies are carried out for nine time periods i.e., 1993–94, 2009–10, 2012–13, 1986–87, 2003–04, 1992–93,
1987–88, 1995–96 and 1995–96 corresponding to 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, and 90%
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inflows, respectively. Simulation is done for these nine years. Years corresponding to 85% and 90%
inflow are the same as the annual inflow among the data of 31 years are closest to the annual 85%
and 90% probable inflow corresponding to these years. Real inflows have been selected by annual
inflow values among the complete data set nearest to the respective percentage of probable inflow
value. As seen in Figure 9, the deficit is the same for 85% and 90% real inflows, since both deficits
belong to the same year (1995–96). Allocation of resources for design (75%) real inflow (1992–93)
has been simulated and is shown in Figure 10. JA has been observed to result in better allocation in
comparison to the existing policy of Mula reservoir (Figure 10). In the years 1992–93, the annual inflow
was 391.912 MCM for which utilization of resources by JA and existing policy are 349.30 and 286.39
MCM, respectively, which implies optimal utilization of the resources. Releases obtained from JA
are found to be more in comparison to the existing policy for the lean period (March to May), which
signifies better allocation through JA. It can be said that JA will be useful for reservoir operation of
Mula reservoir as it is utilizing the resources optimally. Hence, JA can be adopted to derive the optimal
operation policy for the Mula reservoir for its sustainable use.
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Figure 10. Release trajectories for 75% real inflow (1992–93) for Mula reservoir, Upper Godavari basin,
India (Case Study 2).

Furthermore, the computational complexity of JA has been examined in terms of big-O notations
with varying number of iterations and compared with the GA algorithm. This comparison has
been carried out with the help of the GuessCompx tool [44], which estimates the computational
complexity empirically. This tool uses the ‘Leave one out-mean square error (LOO-MSE)’ approach to
estimate the best fit of complexity using multiple and increasing-sizes samples from provided data [45].
Figures 11 and 12 show the nature of computational complexity, which represents the relation between
computation time and the number of iterations. Both methods show the linear complexity in terms of
big-O notations. This comparison signifies that both methods behave identically in the perspective of
computational complexity.
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4. Conclusions

In this paper, JA has been implemented and applied to two case studies, with the aim of
contributing to the optimal use and sustenance of reservoir systems. It has been checked that, when JA
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has been applied to a hypothetical four-reservoir system, it has provided the optimal resource allocation
results for the lowest FE values. JA has been successfully applied to the mentioned four-reservoir
system problem with faster convergence than other algorithms. With the increasing need for water
resources and the requirements associated, reservoir operation optimization is of great importance.
In this study, an attempt has been made to have better releases in comparison to the existing policy
releases; therefore, JA has been applied to the reservoir operation optimization of Mula Reservoir,
an existing installation in the Upper Godavari Basin, India. It was optimized for different probable
inflows and was simulated for a scarce to wet period. The releases thus obtained from the simulation
corresponding to an average inflow have been compared to those from existing ones. As a result, better
releases were obtained with the help of the JA model in terms of maximum utilization of resources
and better allocation of the resources in terms of its need during the lean period. Hence, from this
study, it can be concluded that JA was successful in achieving better operational releases for the Mula
Reservoir. Therefore, it can be summarized that JA can be further explored for other case studies and
for the more complex problem of multi-reservoir systems.
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The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
AFSA Artificial Fish Swarm Algorithm
AI Artificial Intelligence
CA Crow Algorithm
CADA Command Area Development Authority
CSSA Charged System Search Algorithm
DDDP Discrete Differential Dynamic Programming
DDP Differential Dynamic Programming
DE Differential Evolution
DP Dynamic Programming
DPSA Dynamic Programming with Successive Approximation
EA Evolutionary Algorithm
EMPSO Elitist Mutated Particle Swarm Optimization
FA Firefly Algorithm
FDP Folded Dynamic Programming
FEs Function Evaluations
GA Genetic Algorithm
GEA Gradient Evolution Algorithm
HA Hybrid Algorithm
HS Harmony Search
HBMO Honey Bee Mating Optimization
JA Jaya Algorithm
Kh. Kharif



Sustainability 2020, 12, 84 19 of 21

Kh. Hy. Kharif Hybrid
LBC Left Bank Canal
LINGO Language for Interactive General Optimization
LP Linear Programming
MATLAB Matrix Laboratory
MAX Maximization
MCM Million Cubic Metre
MHLLBC Mula High Level Left Bank Canal
MHLRBC Mula High Level Right Bank Canal
MIN Minimization
MLBC Mula Left Bank Canal
MRBC Mula Right Bank Canal
NIR Net Irrigation Requirement
NLP Non-Linear Programming
PBC Pathardi Branch Canal
PSO Particle Swarm Optimization
Rb. Rabi
Rb. Hy. Rabi Hybrid
RBC Right Bank Canal
SA Shark Algorithm
TLBO Teaching Learning Based Optimization
WCA Water Cycle Algorithm
WOA Weed Optimization Algorithm
WSA Wolf Search Algorithm
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